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Decentralized Control of Petri Nets

Marian V. Iordache and Panos J. Antsaklis∗

Abstract

Supervision based on place invariants (SBPI) is an efficient technique for the supervisory

control of Petri nets. In this paper we propose extensions of the SBPI to a decentralized control

setting. In our setting, a decentralized supervisor consists of local supervisors, each controlling

and observing a part of the Petri net. We consider both versions of decentralized control, with

communication, and with no communication. In the case of communication, a local supervisor

may receive observations of events that are not locally observable and send enabling decisions

concerning events that are not locally controllable. In the first part of the paper we propose

efficient algorithms for the design of decentralized supervisors, based on the extension of the

SBPI concept of admissibility that we define. Then, in the second part of the paper, we propose

the design of decentralized supervisors based on transformations to admissible constraints. The

feasibility of this problem is demonstrated with a simple integer programming approach. This

approach can incorporate communication between local supervisors as well as communication

constraints.

1 Introduction

The decentralized control of discrete event systems (DES) has received considerable attention in

the recent years [12]. The current research effort has been focused on the automata setting, and has

considered both versions of decentralized control, with communication and with no communication.

This paper considers the decentralized control of Petri nets by means of the supervision based on

place invariants (SBPI) [3, 10, 19].

Petri nets are compact models of concurrent systems, as they do not represent explicitly the

state space of the system. Petri net models arise naturally in a variety of applications, such as

manufacturing systems and communication networks. Petri net methods relying on the structure

of the net rather than the state space are of special interest, as the size of the state space, when

finite, can be exponentially related to the size of the net. Among such methods, the SBPI offers

an efficient technique for the design of supervisors enforcing on Petri nets a particular class of

state predicates, called generalized mutual exclusion constraints. Note that the generalized mutual

exclusion constraints can represent any state predicate of a safe1 Petri net [19]. Furthermore,

∗Department of Electrical Engineering, University of Notre Dame, IN 46556, USA. E-mail: iordache.1, antsak-

lis.1@nd.edu.
1A Petri net is safe if for all reachable markings no place has more than one token.
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without loss of any of its benefits, the SBPI has been extended in [5] to handle any constraints that

can be enforced by control (monitor) places. While SBPI has been considered so far in a centralized

setting, this paper proposes extensions of SBPI to a decentralized setting.

Admissibility is a key concept in the SBPI of Petri nets with uncontrollable and unobservable

transitions. When dealing with such Petri nets, the SBPI approach classifies the specifications as

admissible and inadmissible, where the former can be directly enforced, and the latter are first

transformed to an admissible form and then enforced. In the automata setting [11], admissibility

corresponds to controllability and observability, and the transformation to an admissible form to

the computation of a controllable and observable sublanguage.

The main contributions of this paper are as follows. First, we define d-admissibility (decen-

tralized admissibility), as an extension of admissibility to the decentralized setting. Our concept

of d-admissibility extends the admissibility concept in the sense that a set of constraints that is

d-admissible can be directly enforced via SBPI (i.e., without computational overhead) in a decen-

tralized setting. Since d-admissibility identifies constraints for which the supervisors can be easily

computed, rather than the class of constraints for which supervisors can be computed, it does not

parallel controllability and coobservability in the automata setting [14]. Second, we show how to

enforce d-admissible constraints and show how to check whether a constraint is d-admissible. Third,

to deal with constraints that are not d-admissible, we provide an algorithmic approach to make

the constraints d-admissible by enabling communication of events (transition firings). Fourth, to

deal with the case in which the constraints are not d-admissible and communication is restricted

or unavailable, we propose a simple linear integer programming approach for the design of the

decentralized control. The design process generates both the local supervisors and the communi-

cation policy. Communication enables the local supervisors to observe events that are not locally

observable and to control events that are not locally controllable. The communication policy spec-

ifies for each local supervisor the events it remotely observes and the events it remotely controls.

This approach allows communication constraints to be incorporated in the design process and can

be used to minimize the communication. With regard to our use of integer programming, note

that while the development of alternative methods that are less computationally intensive are a

direction for future research, in the automata setting it was shown that a decentralized solution

cannot be found with polynomial complexity [12]. Note also that the size of the integer program

depends on the size of the Petri net structure, and not on the size of its state space (i.e. the size

of its equivalent automaton), which may not be finite.

To our knowledge, the decentralized supervisory control of Petri nets has not been yet considered

in the literature. In the automata setting, the related work is as follows. Decentralized control

when the specification is already given in a decomposed form is studied in [9]. The paper proposes

a coordinator for the enforcement of additional specifications not given in the decomposed form.

The existence of decentralized supervisors exactly implementing a given language has been first

studied in [2]. In [14] coobservability was defined, and it was shown that a decentralized supervisor
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exactly enforcing a language exists iff the language is controllable and coobservable. In [17], the

problem of finding a decentralized solution with the same performance as a centralized solution

is considered in a setting in which communication is allowed. The communication consists of

local supervisors sending to other local supervisors observation strings. The decentralized control

problem with communication is studied in [1]. In this problem both the communication policy

and the supervisors are designed. The communication setting consists of supervisors broadcasting

their state estimates. Other decentralized control work can be found in the survey [12] and the

references therein. Literature on SBPI or closely related to it is found in [3, 19, 10, 7, 8, 4, 15] and

the references therein.

Compared to the related work, the idea of information structures in [17] is related to the cluster-

ing of subsystems in our paper. However, unlike [17, 1], our communication setting involves sending

observed events rather than observation strings or state estimates. This kind of communication

has also been considered in [13]. Furthermore, note that in this paper our focus is on computa-

tionally efficient or tractable methods for the decentralized control of Petri nets. Therefore, while

the optimality of the result and the generality of the solution are also matters of interest, they are

not the primary goals of our approach. This differentiates our work from the fundamental results

of [14, 2], concerning optimal solutions in the general DES framework. The vast majority of the

decentralized control papers consider language specifications. In this paper most developments are

focused on a particular class of state predicate specifications on Petri nets. In the automata setting,

the existence of a decentralized solution enforcing state predicates is studied in [16]. The relation

between state predicate specifications and language specifications is as follows: any language can

be represented as a state predicate on a system consisting of the plant and a “memory” DES [7].

The paper is organized as follows. Section 2 describes the notation and outlines the SBPI.

Section 3 describes the decentralized setting of our approach. Section 4 defines the d-admissibility,

shows how d-admissible constraints can be enforced, and presents the algorithm checking whether

a constraint is d-admissible. Then, d-admissibility is applied to the design of local supervisors with

communication in section 5. The algorithm presented in section 5 uses communication in order to

reduce (when possible) the enforcement of constraints that are not d-admissible to the enforcement

of d-admissible constraints. Section 6 describes the supervisory approach for the enforcement of

constraints that are not d-admissible in the case in which the communication is restricted or not

available. Section 7 shows how the results obtained in the previous sections extend to the generalized

type of constraints described in [5] and to the automata setting. Finally, section 8 illustrates our

approach on a manufacturing example from [9].

2 Preliminaries

A Petri net structure is denoted by N = (P, T, F,W ), where P is the set of places, T the set of
transitions, F the set of transition arcs, and W the weight function. The incidence matrix of N is
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denoted by D (places correspond to rows and transitions to columns). A place (transition) denoted

by pj (ti) is the place (transition) corresponding to the j’th (i’th) row (column) of the incidence

matrix.

The specification of the SBPI [3, 10, 19] consists of the state constraints

Lµ ≤ b (1)

where L ∈ Znc×|P |, b ∈ Znc, and µ is the marking of N . To distinguish between the case nc = 1
and nc > 1, we say that (1) represents a constraint when nc = 1, and that (1) represents a set of

constraints when nc > 1. Note that N represents the plant. The SBPI provides a supervisor in
the form of a Petri net Ns = (Ps, T, Fs,Ws) with

Ds = −LD (2)

µ0,s = b− Lµ0 (3)

whereDs is the incidence matrix of the supervisor, µ0,s the initial marking of the supervisor, and µ0

is the initial marking of N . The places of the supervisor are called control places. The supervised
system, that is the closed-loop system, is a Petri net of incidence matrix:

Dc =

[
D

−LD

]
(4)

An example is shown in Figure 4(b), in which the supervisor enforcing µ1+µ2 ≤ 1 and µ3+µ4 ≤ 1
consists of the control places C1 and C2.

Note that (3) implies that when the plant and the supervisor are in closed-loop, the initial

marking of the plant satisfies (1). Let µc be the marking of the closed-loop, and let µc|N denote
µc restricted to the plant N . Let t ∈ T be a transition. t is closed-loop enabled if µc enables t.
t is plant-enabled, if µc|N enables t in N . The supervisor detects t if t is closed-loop enabled at
some reachable marking µc and firing t changes the marking of some control place. The supervisor

controls t if there is a reachable marking µc such that t is plant-enabled but not closed-loop

enabled. Given µc, the supervisor disables t if there is a control place C such that (C, t) ∈ Fs and
µc(C) < Ws(C, t).

In Petri nets with uncontrollable and unobservable transitions, admissibility issues arise. In-

deed, a supervisor generated as shown above may include control places preventing plant-enabled

uncontrollable transitions to fire, and may contain control places with marking varied by firings of

closed-loop enabled unobservable transitions. Such a supervisor is clearly not implementable. We

say that a supervisor is admissible, if it only controls controllable transitions, and it only detects

observable transitions. The constraints Lµ ≤ b are admissible if the supervisor defined by (2–3) is
admissible. When inadmissible, the constraints Lµ ≤ b are transformed (if possible) to an admis-
sible form Laµ ≤ ba such that Laµ ≤ ba ⇒ Lµ ≤ b [10]. Then, the supervisor enforcing Laµ ≤ ba
is admissible, and enforces Lµ ≤ b as well. Our discussion on admissibility is carried out in more
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Figure 1: Graphical representation of the transition types.
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Figure 2: Robotic manufacturing system.

detail in section 4. We will denote N with sets of uncontrollable and unobservable transitions Tuc
and Tuo by (N , Tuc, Tuo).
Finally, Figure 1 shows the graphical representation of the uncontrollable and/or unobservable

transitions that is used in this paper.

3 The Model

We assume that the system is given as a Petri net structure N = (P, T, F,W ). A decentralized
supervisor consists of a set of local supervisors S1, S2,. . .Sn, each acting upon individual parts of
the system, called subsystems, where the simultaneous operation of the local supervisors achieves a

global specification. A local supervisor Si observes the system through the set of locally observable
transitions To,i, and controls it through the set of locally controllable transitions Tc,i. So, from

the viewpoint of Si, the sets of uncontrollable and unobservable transitions are Tuc,i = T \ Tc,i
and Tuo,i = T \ To,i. This is the design problem: Given a global specification and the sets of
uncontrollable and unobservable transitions Tuc,1, Tuc,2, . . . Tuc,n and Tuo,1, Tuo,2, . . . Tuo,n, find

a set of local supervisors S1, S2,. . .Sn whose simultaneous operation guarantees that the global
specification is satisfied, where each Si can control T \ Tuc,i and observe T \ Tuo,i. A system N
with subsystems of uncontrollable and unobservable transitions Tuc,i and Tuo,i will be denoted by

(N , Tuc,1, . . . Tuc,n, Tuo,1, . . . Tuo,n).
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Figure 3: A Petri net model of the robotic manufacturing system.
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Figure 4: Examples of c-admissible supervision.

As an example, we consider the manufacturing system of [6], shown in Figure 2. In this example,

two robots access a common parts bin. The system can be modeled by the Petri net of Figure 3(a),

where µ2 = 1 (µ4 = 1) when the left (right) robot is in the assembly area, and µ1 = 1 (µ3 = 1)

when the left (right) robot is in the parts bin. The set of controllable transitions of the left (right)

subsystem may be taken as Tc,1 = {t1, t2} (Tc,2 = {t3, t4}). Assume that the subsystem of each
robot knows when the other robot enters or leaves the parts bin. Then each subsystem contains

the controllable transitions of the other subsystem as observable transitions; a possible graphical

representation of the subsystems is shown in Figure 3(b) and (c).

4 Admissibility

To distinguish between admissibility in the centralized case and admissibility in the decentralized

case (to be defined later), we denote by c-admissibility the admissibility property in the centralized

case. Therefore, c-admissibility is taken with respect to a Petri net (N , µ0) of uncontrollable
transitions Tuc and unobservable transitions Tuo. The significance of c-admissibility is as follows.

A c-admissible set of constraints (1) can be implemented with the simple construction of (2–3), as

in the fully controllable and observable case.
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It is essential for the understanding of this paper to see that supervisors defined by (2–3) may be

admissible even when they have control places connected to unobservable transitions, and control

places connected to uncontrollable transitions by place-to-transition arcs. We first illustrate this

fact by two examples, and then, in the next paragraph, we show how such admissible supervisors

can be (physically) implemented. In the first example, the supervisor enforcing µ1 + µ2 ≤ 1 and
µ3+µ4 ≤ 1 in the Petri net of Figure 4(a) is shown in Figure 4(b). By definition, the supervisor is
admissible, in spite of the fact that it is connected to the uncontrollable and unobservable transitions

t5 and t6. The reason is that, on one side, whenever the supervisor disables t5 (or t6), t5 (t6) is

anyway disabled by the plant and, on the other side, t5 and t6 are dead (they require µ1 + µ2 ≥ 2
and µ3+µ4 ≥ 2, respectively, in order to be plant-enabled) and so their observation is not necessary.
In the second example, the supervisor enforcing µ1 + µ2 + µ3 ≤ 3 and µ3 ≤ 2 in the Petri net of
Figure 4(c) is shown in Figure 4(d). Again, the supervisor is admissible, in spite of the fact that

it may disable the uncontrollable transition t5. Indeed, the supervisor never disables t5 when t5

is plant-enabled, and so its disablement decision does not need to be physically implemented. In

fact, the arc (C, t5) can be seen as corresponding to an observation action only, as the supervisor

decrements the marking of C2 whenever t5 fires.

The previous examples motivate the following interpretation of the arcs between the control

places of an admissible supervisor and the uncontrollable and/or unobservable transitions. Let C

be a control place and t a transition. If t is uncontrollable, an arc (C, t) models observation only,

due to the fact that an admissible supervisor never disables a plant-enabled transition; physically,

this means that the supervisor has a sensor to monitor t but no actuator to control t. If t is

unobservable and controllable, an arc (C, t) models control only, as the fact that an admissible

supervisor does not observe closed-loop enabled unobservable transitions indicates that t is dead in

the closed-loop2; physically, the supervisor has an actuator to control t but no sensor to monitor

t. If t is unobservable and uncontrollable, arcs between C and t can be ignored, as the fact that an

admissible supervisor would never disable or observe t if plant-enabled, implies that in the closed-

loop t is never plant-enabled. A summary of the interpretation of the arcs between control places

and transitions is found in Appendix A.

In the decentralized case, we are interested to define admissibility with respect to a Petri net

(N , µ0), and the sets of uncontrollable and unobservable transitions of the subsystems: Tuc,1 . . .
Tuc,n and Tuo,1 . . . Tuo,n. Admissibility in the decentralized case is called d-admissibility. As in

the case of c-admissibility, we would like d-admissibility to guarantee that we are able to construct

the (decentralized) supervisor without employing constraint transformations. This is achieved by

the following definition.

Definition 4.1 A constraint is d-admissible with respect to (N , µ0, Tuc,1 . . . Tuc,n, Tuo,1 . . . Tuo,n),
if there is a collection of subsystems C ⊆ {1, 2, . . . n}, C 6= ∅, such that the constraint is c-admissible

2Self-loops do not arise as long as we limit ourselves to the constraints of the type (1).
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Figure 5: Centralized control versus decentralized control.

with respect to (N , µ0, Tuc, Tuo), where Tuc =
⋂
i∈C
Tuc,i and Tuo =

⋃
i∈C
Tuo,i. A set of constraints is

d-admissible if each of its constraints is d-admissible.

To illustrate the definition, assume that we have a constraint that is c-admissible only with

respect to the first subsystem. Then, it is d-admissible, as we can select C = 1. An interesting
consequence is that when each subsystem has full observability of the net and every transition is

controllable with respect to some subsystem, any constraint is d-admissible. This consequence is

formally stated next.

Proposition 4.2 Any set of constraints is d-admissible if Tuo,i = ∅ for all i = 1 . . . n and⋂
i=1...n

Tuc,i = ∅.

The construction of a decentralized supervisor, given a d-admissible set of constraints, is illus-

trated on the Petri net of Figure 3. The mutual exclusion constraint

µ1 + µ3 ≤ 1 (5)

is to be enforced. The centralized control solution is shown in Figure 5. In the case of decentralized

supervision, there are two subsystems: the first one has Tuo,1 = ∅ and Tuc,1 = {t3, t4}, and the
other has Tuo,2 = ∅ and Tuc,2 = {t1, t2}. Note that (5) is not c-admissible with respect to any of
(N , Tuc,1, Tuo,1) or (N , Tuc,2, Tuo,2). However, it is d-admissible for C = {1, 2}. Given two variables
x1, x2 ∈ N, a decentralized supervisor S1 ∧ S2 enforcing (5) can be defined by the following rules:

The supervisor S1:

• initialize x1 to 0.

• disable t1 if x1 = 0

• increment x1 if t2 or t3 fires.

• decrement x1 if t1 or t4 fires.

The supervisor S2:

• initialize x2 to 0.

• disable t4 if x2 = 0

• increment x2 if t2 or t3 fires.

• decrement x2 if t1 or t4 fires.
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A graphical representation of S1 and S2 is possible, as shown in Figure 5. Thus, S1 is represented
by C1 and S2 by C2; x1 is the marking of C1 and x2 the marking of C2. Graphically, C1 and
C2 are copies of the control place C of the centralized supervisor. However, as discussed earlier

in the section, (C1, t4) and (C2, t1) represent observation arcs. This corresponds to the fact that

S1 never disables t4 and S2 never disables t1. As C1 and C2 have the same initial marking as C,
their markings stay equal at all times. So, whenever t1 should be disabled, the disablement action

is implemented by C1, and whenever t4 is to be disabled, the disablement action is implemented

by C2.

In the general case, the construction of a supervisor enforcing a d-admissible constraint lµ ≤ c
(l ∈ N1×|P | and c ∈ N) is as follows: (Note that the notation of Definition 4.1 is used)

Algorithm 4.3 Supervisor Design for a D-admissible Constraint

1. Let µ0 the initial marking of N , C the control place of the centralized SBPI supervisor
Ns = (Ps, T, Fs,Ws) enforcing lµ ≤ c, and C the set of Definition 4.1.

2. For all i ∈ C, let xi ∈ N be a state variable of Si.

3. Define Si, for all i ∈ C, by the following rules:

• Initialize xi to c− lµ0.
• If t ∈ Tc,i, t ∈ C• and xi < Ws(C, t), then Si disables t.
• If t fires, t ∈ To,i and t ∈ •C, then xi = xi +Ws(t, C).
• If t fires, t ∈ To,i and t ∈ C•, then xi = xi −Ws(C, t).

To enforce a d-admissible set of constraints Lµ ≤ b, the construction above is repeated for each
constraint lµ ≤ c. Note that in the graphical representation of the supervisors Si corresponds to
|C| copies of the control place C of the centralized supervisor, where each copy has the same initial
marking as C.

Next we prove that the resulting decentralized supervisor is feasible (physically implementable)

and as performant as the centralized supervisor. First, we formalize the feasibility concept. The

decentralized supervisor
∧
i∈C
Si is said to be feasible if for all reachable markings µc of the closed-

loop and for all transitions t: (i) for all i = 1 . . . n, if t is closed-loop enabled and t /∈ To,i, firing
t does not change the state (marking) of Si; (ii) if t is plant-enabled but not closed-loop enabled,
there is an Si disabling t such that t ∈ Tc,i.

Theorem 4.4 The decentralized supervisor constructed in Algorithm 4.3 is feasible, enforces the

desired constraint, and is as permissive as the centralized supervisor of (N , Tuc, Tuo).

Proof: Feasibility is an immediate consequence of the construction of Algorithm 4.3. To prove

the remaining part of the theorem, we show that a firing sequence σ is enabled by the centralized
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supervisor at the initial marking iff enabled by the decentralized supervisor at the initial marking.

The proof uses the notation of the Algorithm 4.3 and of Definition 4.1. In addition, let S be
the centralized supervisor implemented by the control place C, and Sd the decentralized supervisor∧
i∈C
Si. Given a firing sequence σ = ti1ti2 . . . tik enabled from µ0 in the open-loop (N , µ0), we denote

by µj the markings reached while firing σ: µ0
ti1−→ µ1 ti2−→ µ2 ti3−→ . . . µk.

First, note that for all firing sequences σ = ti1ti2 . . . tik enabled by both S and Sd from µ0, we
have that at all markings µj reached while firing σ

xi = c− lµj ∀i ∈ C (6)

This is proven by induction. For i = 0, (6) is satisfied, due to the way the variables xi are initialized.

Assume (6) satisfied for j < k. According to the SBPI, when the plant has the marking µj the

marking of C is c − lµj, the same as xi ∀i ∈ C. In view of Definition 4.1, the d-admissibility of
lµ ≤ c implies that S is c-admissible with respect to (N , µ0, Tuc, Tuo). Then, since tij is not dead,
tij /∈ Tuc. Then, tij /∈ Tuc ⇒ (∀i ∈ C) tij /∈ Tuo,i. Hence tij is observable to all Si, and so all xi are
changed in the same way. Moreover, according to the SBPI, firing tij changes the marking of C

the same way as xi are changed. From the SBPI we know that the new marking of C is c− lµj+1.
It follows that when µj+1 is reached, xi = c− lµj+1 ∀i ∈ C.
Finally, we prove by contradiction that the firing sequences enabled by S from µ0 are the firing

sequences enabled by Sd from µ0. Assume the contrary, that there is σ that is enabled by one
supervisor and not enabled by the other. We decompose σ into σ = σxtxσy, tx ∈ T , where σx is
enabled by both supervisors and σxtx is not. If µ0

σx−→ µx, then (6) is satisfied at µj = µx; the
marking of C is also c − lµx. There are two cases: (a) tx enabled by C; (b) tx not enabled by C.
As in the previous part of the proof, case (a) leads to the conclusion that Sd enables also tx, which
contradicts the assumption that not both S and Sd enable tx. In case (b), according to the SBPI,
we have that Ws(C, tx) < c − lµx and tx /∈ Tuc, by the d-admissibility of lµ ≤ c. It follows that
there is i ∈ C such that Si disables tx, and hence that Sd does not enable tx. This contradicts the
fact that one of S and Sd enables tx. 2

Next we turn our attention to checking whether a constraint is d-admissible. Let S be the
centralized supervisor that enforces the constraint in the fully controllable and observable version

of N . Let TMuo be the set of transitions that are not detected by S and TMuc the set of transitions
that are not controlled by S.

Algorithm 4.5 Checking whether a Constraint is D-admissible

1. Find TMuo and T
M
uc .

2. Find the largest set of subsystems C such that ∀i ∈ C: Tuo,i ⊆ TMuo .

3. If C = ∅, declare that the constraint is not d-admissible and exit.
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4. Define Tuc =
⋂
i∈C
Tuc,i.

5. Does Tuc satisfy Tuc ⊆ TMuc ? If yes, declare the constraint d-admissible. Otherwise, declare
that the constraint is not d-admissible.

In the algorithm above, as long as a constraint is d-admissible, the constraint can be imple-

mented for a minimal set Cmin ⊆ C containing the minimal number of subsystems such that
TMuc ⊇

⋂
i∈Cmin

Tuc,i.

Note that checking whether a set of constraints is d-admissible involves checking each constraint

individually. The reason the algorithm checks single constraints is that checking sets of constraints

as a whole may cause d-admissible sets of constraints to be declared not d-admissible. To see this,

note that the overall set TMuo of a d-admissible set of constraints may be empty, which would cause

the algorithm to declare the constraints not d-admissible (see step 3). Indeed, TMuo = ∅ is possible in
spite of d-admissibility since TMuo =

⋂
i

T i,Muo , where T
i,M
uo is the TMuo parameter for the i’th constraint

of the set of constraints.

Proposition 4.6 The algorithm checking d-admissibility is correct.

Proof: It is sufficient to prove that the algorithm declares a constraint d-admissible only if it is

d-admissible, and that all d-admissible constraints are declared d-admissible. Let Tuo =
⋃
i∈C
Tuo,i.

By construction, Tuo ⊆ TMuo .
A constraint is declared d-admissible if C 6= ∅ and Tuc ⊆ TMuc . The definition of TMuo and

TMuc implies that the constraint is c-admissible with respect to (N , Tuc, Tuo). Then, in view of
Definition 4.1, the algorithm is right to declare the constraint d-admissible.

Next, assume a d-admissible constraint. Then, there is a set of subsystems C′ 6= ∅ such that the
constraint is c-admissible with respect to (N , T ′uc, T ′uo) (where T ′uc =

⋂
i∈C′
Tuc,i and T

′
uo =

⋃
i∈C′
Tuc,i).

Then T ′uo ⊆ TMuo ; T ′uo ⊆ TMuo ⇒ C′ ⊆ C ⇒ Tuc ⊆ T ′uc ⇒ Tuc ⊆ TMuc . Consequently, the algorithm
declares the constraint to be d-admissible. 2

In general, it may be difficult to compute the sets TMuc and T
M
uo . Then estimates T

e
uc ⊆ TMuc

and T euo ⊆ TMuo can be used in the algorithm instead. In this case the algorithm only checks a
sufficient condition for d-admissibility, and so it can no longer detect constraints that are not d-

admissible. In the case of the SBPI, such estimates can be found from the structural admissibility

test of [10], stating that Lµ ≤ b is c-admissible if LDuc ≤ 0 and LDuo = 0, where Duc and Duo are
the restrictions of D to the columns of Tuc and Tuo.

Note that when it is possible and convenient to communicate in a reliable fashion with each

subsystem of a decentralized system, a centralized solution with Tuc =
⋂

i=1...n
Tuc,i and Tuo =⋂

i=1...n
Tuo,i is possible. Finally, note that in the implementation of d-admissible constraints, each

supervisor Si with i ∈ C relies on the proper operation of the other supervisors Sj with j ∈
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C. By itself, a local supervisor may not be able to implement a d-admissible constraint or its
implementation may be overrestrictive. For instance, in the example of Figure 3, the supervisor of

the first subsystem can only enforce µ1+µ3 ≤ 1 by itself by enforcing µ1 = 0. However, this solution
is overrestrictive. D-admissibility illustrates the fact that more can be achieved when supervisors

cooperate to achieve a given task, rather than when a supervisor tries on its own to achieve it (cf.

“two heads better than one” in [14]).

5 Supervision with Communication

Obviously, communication can be used to change the attributes of otherwise inaccessible transitions

to observable or even controllable. We begin with an illustration.

5.1 Illustration

As an illustration, consider again the robotic system of Figure 2. We assume that the computers

controlling the two robots are able to communicate through a network connection. The specifica-

tion is that the robots should not access at the same time the parts bin. By requiring each of the

computers to signal any transition firing in the subsystem it controls, the sets of observable transi-

tions become To,1 = To,2 = {t1, t2, t3, t4}. Then the decentralized supervisory solution of Figure 5
can be applied.3

The realization of a program implementing a local supervisor is illustrated on the left subsystem.

The marking of C1 may be implemented by a variable c1. Each time the right subsystem signals

that t3 fires, c1 is incremented, and each time the right subsystem announces that t4 fires, c1 is

decremented. Furthermore, t1 is the only transition controlled by the left subsystem; t1 is allowed

to fire only when c1 ≥ 1. When t1 fires, the right subsystem is announced and c1 is decremented.
When t2 fires, the right subsystem is announced and c1 is incremented.

5.2 Decentralized Supervisors with Communication

The purpose of communication is to reduce the set of unobservable transitions Tuo,i such that, if pos-

sible, the given constraints are c-admissible with respect to (N , Tuc, Tuo). Note that communication
cannot reduce Tuo below the attainable lower bound Tuo,L ⊆ Tuo, where Tuo,L =

⋂
i=1...n

Tuo,i. Tuc can

be changed by selecting a different set C. However, it cannot be reduced below Tuc,L =
⋂

i=1...n
Tuc,i.

Indeed, Tuc,L (Tuo,L) is the set of transitions uncontrollable (unobservable) in all subsystems.

3Note that in this example an arbitration procedure should be available, to ensure that a transition in the left

subsystem does not fire at the same time as one in the right subsystem. Such an arbitration method could be,

for instance, that transitions in the left subsystem may fire only at a time t0 + 2kδ, while transitions in the right

subsystem only at a time t0+(2k+1)δ. Furthermore, the communication between the two computers is to be reliable

(e.g. no lost transition-firing messages).

12



Algorithm 5.1 Decentralized Supervisor Design

1. Is the specification admissible with respect to (N , Tuc,L, Tuo,L)? If not, transform it to be
admissible (an approach of [10] could be used) or use the decentralized design approach of

section 6.

2. Let S be the centralized SBPI supervisor enforcing the specification. Let Tc be the set of
transitions controlled by S and To the set of transitions detected by S.

3. Find a set C such that Tuc =
⋂
i∈C
Tuc,i ⊆ T \ Tc.4

4. Design the decentralized supervisor by applying Algorithm 4.3 to N and C.

5. The communication can be designed as follows: for all t ∈ To ∩ (
⋃
i∈C
Tuo,i), a subsystem j such

that t ∈ To,j transmits the firings of t to all supervisors Sk with t ∈ Tuo,k and k ∈ C.

Note the following. First, no communication arises when To ∩ (
⋃
i∈C
Tuo,i) = ∅. Second, the

algorithm does not take in account communication limitations, such as bandwidth limitations of the

communication channel. Bandwidth limitations can be considered in the approach considered next

in section 6. Third, in this solution communication is used only to make some locally unobservable

transitions observable; there is no remote control of locally uncontrollable transitions. Fourth,

this solution tends to require less communication than a centralized solution. Indeed, a central

supervisor not only needs to send the control decisions to the local subsystems, but also to remotely

observe all transitions in To. Fifth, the main limitation of the algorithm is that in the case of

inadmissible specifications, the transformation at the step 1 may result in constraints that are

too restrictive. If so, the alternative solution we propose in section 6 could be used. Finally,

the only way the algorithm can fail is at step 1, when the specification is inadmissible and the

transformations to an admissible form fail.

Proposition 5.2 The decentralized supervisor is feasible and equally permissive to the centralized

supervisor S enforcing the specification on (N , Tuc, Tuo,L).

Proof: Since S is admissible, Tc ∩ Tuc = ∅ and To ∩ Tuo,L = ∅. Communication ensures that the
sets of locally unobservable transitions become T ′uo,i = Tuo,i \ To. It follows that the specification
is d-admissible with respect to (N , Tuc,1, . . . Tuc,n, T ′uo,1, . . . T ′uo,n) and so the conclusion follows by
Theorem 4.4. 2

4At least one solution exists, C = {1 . . . n}. This can be seen from the fact that S admissible w.r.t. (N , Tuc,L, Tuo,L)
implies Tuc,L ∩ Tc = ∅, and from Tuc,L = ⋂

i=1...n

Tuc,i.
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6 Constraint Transformations for Supervisor Design

Given a d-admissible set of constraints, a supervisor enforcing it can be easily constructed, as

shown in Algorithm 4.3. This section considers transformations of sets of constraints that are

not d-admissible. These transformations aim to obtain (more restrictive) d-admissible constraints,

in order to reduce the problem to the enforcement of d-admissible constraints. Two approaches

are proposed: transformations to single sets of constraints and transformations to multiple sets of

constraints. The former is a particular case of the latter, and can be done using techniques from

the literature [10, 15]. As the transformation to a single set of constraints cannot deal effectively

with some interesting problems, we will focus on the transformation to multiple sets of constraints.

This approach will be presented in both supervisory frameworks, with communication and with no

communication.

6.1 Transformation to a single set of constraints

A possible approach to transform a set of constraints to a d-admissible set of constraints is:

1. Select a nonempty subset C of {1, 2, . . . n}.

2. Transform5 the set of constraints to a c-admissible set of constraints with respect to (N , Tuc, Tuo),
for Tuc =

⋂
i∈C
Tuc,i and Tuo =

⋃
i∈C
Tuo,i.

In practice, it may not be trivial to select the “best” set C. However, for some particular cases the
choice of C is more obvious:

• If Tuo,1 = Tuo,2 = . . . Tuo,n (in particular, this is true when full observability is available in
each subsystem: Tuo,i = ∅ ∀i = 1 . . . n), then C can be chosen as C = {1, 2, . . . n}, to minimize
the number of transitions in Tuc.

• If To,i ∩ To,j = ∅ for all distinct i, j = 1 . . . n, then we could attempt to set C to each of {1},
{2}, . . . {n}, do in each case the transformation to admissible constraints, and then select the
one yielding the least restrictive constraints.

The main drawback of this approach is that it fails for many interesting systems and constraints.

For instance, it fails to provide a solution for the system of Figure 6, with Tuc,2 = Tuo,2 = {t1, t2},
Tuc,1 = Tuo,1 = {t3, t4}, initial marking as shown in figure, and specification

µ1 + µ3 ≤ 2 (7)

Indeed, no matter how C is chosen, no d-admissible inequality implying (7) is satisfied by the initial
5Techniques that can be used to perform this transformation appear in [10, 15].
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Figure 6: Decentralized control example.

marking. However, it is possible to enforce (7) with two d-admissible inequalities

µ1 ≤ 1 (8)

µ3 ≤ 1 (9)

as shown in Figure 6. To see that (8) and (9) are d-admissible, note that (8) satisfies Definition 4.1

for C = {1}, and (9) satisfies Definition 4.1 for C = {2}. Note also that none of (8) and (9), by itself,
implies (7). This example motivates the transformation to multiple constraints, which is presented

next.

6.2 Transformation to multiple sets of constraints

The problem can be stated as follows: Given a set of constraints Lµ ≤ b that is not d-admissible,
find d-admissible sets of constraints L1µ ≤ b1 . . . Lmµ ≤ bm such that

(L1µ ≤ b1 ∧ L2µ ≤ b2 ∧ . . . Lmµ ≤ bm)⇒ Lµ ≤ b (10)

Compared to the previous approach, we now use several sets C1, C2, . . ., Cm to design each of the
L1µ ≤ b1, L2µ ≤ b2, . . ., Lmµ ≤ bm, instead of a single set C. For instance, if To,i ∩ To,j = ∅ for
all i 6= j, then we may take Ci = {i}, for all i. Furthermore, note that this framework includes the
case when not all constraints Liµ ≤ bi are necessary to implement Lµ ≤ b, by allowing Li = 0 and
bi = 0.

In general, (10) may have many solutions, not all equally interesting. In order to have a more

interesting solution, we can use a set of markings of interest MI , and constrain each Li and bi to
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satisfy Liµ ≤ bi ∀µ ∈MI . This condition can be written as

LiM ≤ bi1T (11)

where ≤ means that each element of LiM is less or equal to the element of the same indices in bi1T ,
M is a matrix whose columns are the markings of interest, and 1T is a row vector of appropriate

dimension in which all elements are 1.

The problem is more tractable if we replace (10) with the stronger condition below:

[(α1L1 + α2L2 + . . . αmLm)µ ≤ (α1b1 + α2b2 + . . . αmbm)]⇒ Lµ ≤ b (12)

where αi are nonnegative scalars.
6 Without loss of generality, (12) assumes that L1 . . . Lm have

the same number of rows. Again, without loss of generality, (12) can be replaced by

[(L1 + L2 + . . . Lm)µ ≤ (b1 + b2 + . . . bm)]⇒ Lµ ≤ b (13)

We further simplify our problem to

L1 + L2 + . . . Lm = R1 +R2L (14)

b1 + b2 + . . . bm = R2(b+ 1)− 1 (15)

for R1 with nonnegative integer elements and R2 diagonal with positive integers on the diagonal.

Note that [(R1 +R2L)µ ≤ R2(b+ 1)− 1] ⇒ Lµ ≤ b has been proved in [10].
It is known that a sufficient condition for the c-admissibility of a set of constraints Lµ ≤ b is

that LDuc ≤ 0 and LDuo = 0, where Duc and Duo are the restrictions of the incidence matrix D
to the sets of uncontrollable and unobservable transitions [10]. The admissibility requirements in

our setting can then be written as

LiD
(i)
uc ≤ 0 (16)

LiD
(i)
uo = 0 (17)

where D
(i)
uc and D

(i)
uo are the restrictions of D to the sets T

(i)
uc =

⋂
i∈Ci
Tuc,i and T

(i)
uo =

⋃
i∈Ci
Tuo,i. Then

our problem becomes: find a feasible solution of (11) and (14–17). The unknowns are R1, R2,

Li, and bi, and integer programming can be used to find them. The next result is an immediate

consequence of our considerations above.

Proposition 6.1 Any sets of constraints Liµ ≤ bi satisfying (11) and (14–17) are d-admissible
and

∧
i=1...n

[Liµ ≤ bi] ⇒ Lµ ≤ b.

6In the literature, a relaxation of a hard problem that is similar to the relaxation from (10) to (12) is the S-

procedure mentioned in [18] at page 62.
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6.3 Decentralized control with communication

So far, we have ignored the possibility that the local supervisors Si may have the ability to com-
municate. We now consider the case in which the supervisors are able to communicate the firings

of certain transitions. Communication is useful, as it relaxes the admissibility constraints (16)

and (17) by reducing the number of uncontrollable and unobservable transitions. However, com-

munication constraints may be present, and bandwidth limitations may encourage the minimization

of the communication over the network. The analysis of this section, without being comprehensive,

serves as an illustration of the fact that such problems can be approached in this framework.

For each set Ci and transition tj, let αij be a binary variable, where αij = 1 if the firing of tj is
made known to the subsystems in Ci. Note that we have the following constraints:

∀tj ∈ Tuo,L : αij = 0 (18)

where Tuo,L =
⋂

i=1...n
Tuo,i is the set of transitions that cannot be observed anywhere in the system.

(Tuo,L is the set of transitions whose firing cannot be communicated.)

Let BiL and B
i
U be lower and upper bounds of LiD and A = [αij ] be the matrix of elements αij .

Given a vector v and a matrix M , let diag(v) denote the diagonal matrix of diagonal v, M(k, ·)
the k’th row of M , and M |

T
(i)
uo
the restriction of M to the transitions of T

(i)
uo (i.e. M |T (i)uo contains

the columns M(·, j) such that tj ∈ T (i)uo ). We require

LiD
(i)
uo ≤ [BiUdiag(A(i, ·))]|T (i)uo (19)

LiD
(i)
uo ≥ [BiLdiag(A(i, ·))]|T (i)uo (20)

instead of LiD
(i)
uo = 0. In this way, the admissibility requirement LiD

(i)
uo = 0 is relaxed by eliminating

the constraints corresponding to the transitions of T
(i)
uo that have their firings communicated to the

subsystems of Ci.
Similarly, (16) can also be relaxed by communicating enabling decisions of supervisors. Nat-

urally, for each transition t it controls, each supervisor Si has two enabling decisions: enable
and disable. They depend on whether all control places C of Si that are connected to t satisfy
µc(C) ≥ Ws(C, t) or not. A communication policy may be that a supervisor announces a remote
actuator each time its enabling decision changes. Then the actuator can determine its enabling by

taking the conjunction of the decisions corresponding to all supervisors controlling it. In our set-

ting, d-admissibility implies that the supervisors within a cluster Ci have always the same enabling
decisions, and so only communication between clusters needs to be considered. Similarly to αij , we

can introduce binary variables εij describing the communication of enabling decisions pertaining

to tj. Thus, εij = 1 if a supervisor from Ci communicates its enabling decisions to tj. As in the
case of αij , we have

∀tj ∈ Tuc,L : εij = 0 (21)
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for Tuc,L =
⋂

i=1...n
Tuc,i. Furthermore, if E = [εij ], (16) becomes:

LiD
(i)
uc ≤ [BiUdiag(E(i, ·))]|T (i)uc (22)

Communication constraints stating that certain transitions cannot be observed by communica-

tion or that certain transitions cannot be remotely controlled by communication, can be incorpo-

rated by setting coefficients αij and εij to zero. Constraints limiting the average network traffic

can be incorporated as constraints of the form:∑
i

A(i, ·)gi +
∑
i

E(i, ·)hi ≤ p (23)

where gi and hi are vectors of appropriate dimensions and p is a scalar. As an example, the elements

of gi could reflect average firing counts of the transitions over the operation of the system. Note

that (23) can be written more compactly as

Tr(AG+ EH) ≤ p (24)

where G and H are the matrices of columns gi and hi, and Tr(M) denotes the trace of a matrixM .

We may also choose to minimize the amount of communication involved in the system. Then

we can formulate our problem as

min
Li,bi,A,E,R1,R2

Tr(AC + EF ) (25)

where the weight matrices C and F are given, and the minimization is subject to the constraints

(11), (14–15), (18–22), and αij , εij ∈ {0, 1}|T |. This problem can be solved using linear integer
programming.

6.4 Liveness Constraints

One of the difficulties encountered with this approach is that the permissivity of the generated

constraints is hard or impossible to be expressed in the cost function. Moreover, the generated

constraints may cause parts of the system to unavoidably deadlock. This situation can be prevented

by using a special kind of constraints, that we call liveness constraints.

A liveness constraint consists of a vector x such that for all i: Lix ≤ 0. A possible way to
obtain such constraints is described next. Given a finite firing sequence σ, let xσ be a vector such

that xσ(i) is the number of occurrences of the transition ti in σ. Given the Petri net of incidence

matrix D and the constraints Lµ ≤ b, let y be a nonnegative integer vector such that Dy ≥ 0
and −LDy ≥ 0. A vector y satisfying these inequalities has the following property. If σ is a firing
sequence such that (a) σ can be fired without violating Lµ ≤ b and (b) xσ = y, then σ can be fired
infinitely often without violating Lµ ≤ b. However, if the decentralized control algorithm generates
a constraint Liµ ≤ bi such that LiDy 6≤ 0, then any firing sequence σ having xσ = y cannot be
infinitely often fired in the closed-loop. If such a situation is undesirable, the matrices Li can be

required to satisfy Lix ≤ 0 for x = Dy. An illustration will be given in section 8.
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6.5 Reducing the Computational Complexity

Obviously, an integer programming approach limits the size of the problems that can be solved.

A possible way to reduce the amount of computation is to solve several smaller integer programs

instead of a large integer program. This approach is outlined next.

Algorithm 6.2

1. Let L0µ ≤ b0 be the given set of constraints.
2. Let I = J = ∅ and set (L0,i, b0,i) as empty sets of constraints for all Ci, i = 1 . . . m.
3. For all inequalities lµ ≤ β of the set of inequalities L0µ ≤ b0 do
(a) Set L = l, b = β, and solve (25) subject to (11), (14–15), (18–22), αij , εij ∈ {0, 1}|T |,
αij = 1 ∀(i, j) ∈ I and εij = 1 ∀(i, j) ∈ J .

(b) If the integer program is feasible, include (Li, bi) in (L0,i, b0,i) and set I = {(i, j) : αij 6=
0} and J = {(i, j) : εij 6= 0}.

(c) If the integer program is infeasible, exit, and declare failure.

4. The output are the constraints (L0,i, b0,i), while communication is to ensure that the firing of

all transitions tj with (i, j) ∈ I is announced to Ci, and that for all (i, j) ∈ J , a supervisor
from Ci sends its enabling decisions to tj .

Other computational savings can be obtained by taking advantage of knowledge on the reachable

markings. Indeed, up to now our approach has relied exclusively on structural properties of the net.

However, knowledge on the reachable markings can be used to reduce the number of transitions

that need to be considered controllable and observable, based on reachability information and the

c-admissibility definition. This is shown in Appendix B. Reducing the number of controllable or

observable transitions results in a smaller number of constraints in the conditions (16) and (17).

Significant computational savings can be achieved when only a part of the elements of each Li

need to be calculated. For instance, we may choose to set the j′th column of Li to zero for all
places pj that are not part of the subsystem i.

The number of variables αij and εij is significantly reduced when the communication policy is

changed to broadcast. Then observed transitions and enabling decisions that are to be communi-

cated are broadcasted. In this case αij = αj and εij = εj , where αj = 1 means that a supervisor

observing tj broadcasts the firings of tj , and εj = 1 means that any supervisor that remotely

controls tj broadcasts its enabling decisions for tj .

7 Extensions

The main results presented so far in the paper consist of the definition of d-admissibility, algorithms

for decentralized control, and proofs of correctness. It can be noticed that while the results of sec-
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tion 6 are more specialized, taking advantage of the fact that the constraints have the particular

form Lµ ≤ b, the results of sections 4 and 5 are general. Indeed, in order to apply the latter results
to other types of constraints, we only need to replace the SBPI with the corresponding supervi-

sion techniques, and then change accordingly the c-admissibility definition. In this section two

extensions of our results are discussed. First the extension to the supervision of generalized linear

constraints [5] is discussed. Then, the extension to the automata setting is discussed. Note that

while the first extension effectively enhances the practical use of our results, the second extension

has an illustrative purpose. The practical significance of the specialization of our approach to the

automata setting is a matter of further investigation.

7.1 Extensions to Generalized Linear Constraints

This section applies the results derived so far in the paper to generalized linear constraints [5]. This

type of constraints generalizes the constraints Lµ ≤ b to the form

Lµ+Hq + Cv ≤ b (26)

where q, the firing vector, and v, the Parikh vector, are defined as follows. The firing vector q

identifies a transition that is to fire by the position of its nonzero element; namely, if ti is the

transition to fire, qj = 1 for j = i and qj = 0 ∀j 6= i. The Parikh vector v consists of elements vi
that count the number of firings of each transition ti since the initialization of the system.

A supervisor enforcing (26) ensures that (i) all reachable states (µ, v) of the plant satisfy Lµ+

Cv ≤ b and (ii) a transition ti can be fired from the state (µ, v) only if Lµ+Hq(i) + Cv ≤ b and
Lµ′+Cv′ ≤ b, where q(i)j = 1 if j = i and q(i)j = 0 otherwise, µ′ is the marking reached by firing ti,
and v′ = v + q(i).
As shown in [5], in the fully controllable and observable case, a centralized supervisor enforcing

(26) is defined by the input and output matrices

D+s = D+lc +max(0,H −D−lc) (27)

D−s = max(D−lc ,H) (28)

where

D+lc = max(0,−LD − C) (29)

D−lc = max(0, LD + C) (30)

The initial marking of the supervisor is7

µs0 = b− Lµ0 (31)

7Note that the initial v is zero.
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Similarly to (4), the closed-loop system has the incidence matrix

Dc =

[
D

Ds

]
(32)

where Ds = D
+
s −D−s . Note that as in the case of the SBPI, the supervisor consists of control places

connected to the transitions of the plant. Therefore, the definitions for detection and control in

section 2 are still valid. So, the c-admissibility definitions can be adapted as follows. A supervisor

enforcing (26) is c-admissible if it only controls controllable transitions and it only detects observable

transitions. The set of constraints (26) is c-admissible if the supervisor defined by (27), (28) and

(31) is c-admissible.

The results of the sections 4, 5 and 6 apply to specifications (26) as follows:

1. All results in the sections 4 and 5 apply once the references to the SBPI are replaced by

references to the supervision method of (27), (28) and (31).

2. The material of section 6 can be applied to specifications in the form of constraints (26) after

applying the C- and H-transformations defined in [5]. These transformations transform the

Petri net and the constraints to reduce the problem to the enforcement of constraints Leµ ≤ b.

7.2 Extension to Automata

In this section the results of sections 4 and 5 are specialized to the automata setting. Note that the

results of section 6 are harder to extend, as they rely on a particular type of specifications. First,

the notation is introduced.

An automaton is denoted by the tuple G = (Σ, Q, δ, q0, Qm), where Σ is the set of events, Q

is the set of states, δ : Q × Σ → Q is a (partial) function representing the transition function,
q0 ∈ Q is the initial state, and Qm ⊆ Q is the set of marked states. The empty symbol is denoted
by ε. Let Σ∗ denote the set of all strings over the alphabet Σ. Let δ∗ : Q × Σ∗ → Q be the
(partial) function recursively defined as follows: ∀q ∈ Q: δ∗(q, ε) = q and ∀q ∈ Q ∀α ∈ Σ ∀σ ∈ Σ∗:
δ∗(q, σα) = δ(δ∗(q, σ), α) when δ∗(q, σ) and δ(δ∗(q, σ), α) are defined. The fact that δ∗(q, σ) is
defined is denoted as δ∗(q, σ)!. The language accepted by G is L(G) = {σ ∈ Σ∗ : δ∗(q0, σ)!}, and
the language marked by G is Lm(G) = {σ ∈ L(G) : δ∗(q0, σ) ∈ Qm}.
Consider a prefix-closed specification K ⊆ L(G). The controllability and observability of K

are defined with respect to the set of uncontrollable events Σuc ⊆ Σ and the set of unobservable
events Σuo ⊆ Σ. K is controllable if KΣuc ∩ L(G) ⊆ K. K is observable if (∀α ∈ Σ ∀σ1, σ2 ∈ K)
[P (σ1) = P (σ2) ∧ σ1α, σ2α ∈ L(G)] ⇒ [σ1α, σ2α ∈ K ∨ σ1α, σ2α /∈ K], where P : Σ∗ → (Σ \Σuo)∗
is the projection removing the elements of Σuo from any string.

A supervisor S of G is defined as a map S : (Σ \ Σuo)∗ → 2Σ. To implement K, the supervisor
S can be defined as follows: ∀σ ∈ (Σ \ Σuo)∗, S(σ) = {α ∈ Σ : ∃σx ∈ P−1(σ), σxα ∈ K}. Then, if
K is observable, the closed-loop language is L(S/G) = K. Note that the control action taken after
the occurrence of σ ∈ L(G) in G is S(P (σ)).
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In a decentralized setting, G can be partitioned in n subsystems, each with the set of un-

controllable events Σuc,i ⊆ Σ and the set of unobservable events Σuo,i ⊆ Σ, for i = 1 . . . n.
Compared to the Petri net notation, we have G instead of N , and Σuc,i and Σuo,i instead of
Tuc,i and Tuo,i. Thus the decentralized system is (G,Σuc,1, . . .Σuc,n,Σuo,1, . . .Σuo,n) instead of

(N , Tuc,1, . . . Tuc,n, Tuo,1, . . . Tuo,n).
C-admissibility can be defined as follows: K is c-admissible with respect to (G,Σuc,Σuo), if

controllable and observable with respect to (G,Σuc,Σuo). The supervisor S enforcingK and defined
as above is c-admissible if K is c-admissible.

D-admissibility extends as follows. The prefix-closed specification K ⊆ L(G) is d-admissible
with respect to (G,Σuc,1, . . .Σuc,n,Σuo,1, . . .Σuo,n) if there is a collection of subsystems C ⊆ {1, 2, . . . n},
C 6= ∅, such that K is c-admissible with respect to (G,Σuc,Σuo), for Σuc =

⋂
i∈C
Σuc,i and Σuo =⋃

i∈C
Σuo,i. A decentralized supervisor enforcing the d-admissible specification K consists of the su-

pervisors Si : (Σ \ Σuo,i)∗ → 2Σ, i ∈ C, such that ∀σ ∈ (Σ \ Σuo,i)∗: Si(σ) = Σuc,i ∪ {α ∈ Σ :
∃σx ∈ P−1i (σ), α ∈ S(P (σx))}, where Pi is the projection removing the elements of Σuo,i and S is
defined as a map S : (Σ \ Σuo)∗ → 2Σ such that ∀σ ∈ (Σ \ Σuo)∗: S(σ) = Σuc ∪ {α ∈ Σ : ∃σx ∈
P−1(σ), σxα ∈ K}. Note that Σuo,i ⊆ Σuo implies ∀σ ∈ Σ∗: P (P−1i (Pi(σ))) = P (σ), from which it
can be seen that

(∀σ ∈ Σ∗) Si(Pi(σ)) = Σuc,i ∪ S(P (σ)) (33)

This construction of the supervisors Si is the equivalent of Algorithm 4.3. To state also the equiv-
alent of Theorem 4.4, we need to define feasibility. Note first that by defining the supervisors on

(Σ \Σuc,i)∗ rather than on Σ∗, there is no need to include an observability requirement in the fea-
sibility definition. Then, we say that Si is feasible with respect to (G,Σuc,i,Σuo,i) if ∀σ ∈ L(Si/G)
∀α ∈ Σuc: σα ∈ L(G) ⇒ α ∈ Si(Pi(σ)). Furthermore, we say that the decentralized supervisor is
feasible if all its components Si are feasible. Then Theorem 4.4 extends to:

Theorem 7.1 The decentralized supervisor
∧
i∈C
Si is feasible and L(

∧
i∈C
Si/G) = K.

Proof: The feasibility of Si is satisfied because the way Si has been defined guarantees ∀σ ∈ L(G):
Σuc,i ⊆ Si(σ).
For the second part of the proof, note that in view of (33) we have that for any σ ∈ Σ∗:∧

i∈C
Si(Pi(σ)) =

⋂
i∈C
(Σuc,i ∪ S(P (σ))) ⇒

∧
i∈C
Si(Pi(σ)) = Σuc ∪ S(P (σ)) ⇒

∧
i∈C
Si(Pi(σ)) = S(P (σ)).

Therefore, L(∧
i∈C
Si/G) = L(S/G). Furthermore, by the observability and controllability of K with

respect to (G,Σuc,Σuo) it follows that L(S/G) = K. 2

As in Theorem 4.4, the decentralized supervisor has the same performance as the centralized

supervisor, in the sense that L(∧
i∈C
Si/G) = L(S/G). However, the decentralized supervisor does

not involve communication, while the implementation of a centralized supervisor in a decentralized

setting requires communication.
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The remaining results, namely Algorithm 4.5 and Algorithm 5.1, are harder to extend. The

reason is that the correspondent of the set TMuo may not exist in the automata setting. However,

for the purpose of illustration, we discuss the direct extensions of the two results for the case in

which the set corresponding to TMuo exists. Σ
M
uc and Σ

M
uo, the correspondents of T

M
uo and T

M
uc , are

defined as the largest subsets of Σ for which K is controllable and observable with respect to

(G,ΣMuc ,Σ
M
uo). Algorithm 4.5, checking whether a specification is d-admissible, can be used without

further modification, once the sets TMuc and T
M
uo are replaced with Σ

M
uc and Σ

M
uo. Algorithm 5.1,

proposed for the design of decentralized supervisors with communication that enforce constraints

that are not d-admissible, can also be extended:

Algorithm 7.2 Decentralized Supervisor Design

1. Let Σuc,L =
⋂

i=1...n
Σuc,i and Σuo,L =

⋂
i=1...n

Σuo,i. Is the specification K controllable and

observable with respect to (G,Σuc,L,Σuo,L)? If yes, let L = K. If not, find a controllable and

observable sublanguge L of K.

2. Let ΣMuc and Σ
M
uo be the largest subsets of Σ such that L is controllable and observable with

respect to (G,ΣMuc ,Σ
M
uo). Let S be the centralized supervisor enforcing the specification L on

(G,ΣMuc ,Σ
M
uo).

3. Find a set C such that Σuc =
⋂
i∈C
Σuc,i ⊆ ΣMuc.8

4. The decentralized supervisor consists of the supervisors Si, for i ∈ C, defined as Si(σ) =
S(σ) ∪ Σuc,i ∀σ ∈ Σ∗.

5. The communication can be designed as follows: for all events α ∈ (Σ \ ΣMuo) ∩ (
⋃
i∈C
Σuo,i), a

subsystem j such that α ∈ Σ \Σuo,j transmits the occurrences of α to all supervisors Sk with
α ∈ Σuo,k and k ∈ C.

As previously mentioned, the extensions of the Algorithms 4.5 and 5.1 require the sets ΣMuc and

ΣMuo. In Appendix C it is shown that Σ
M
uc exists, however Σ

M
uo may not exist. Therefore, these

extensions can be used when the structure of G guarantees the existence of ΣMuo.

8 Example

This section illustrates our approach on the manufacturing example from [9], shown in Figure 7.

The system consists of two machines (M1 and M2), four robots (H1 . . . H4), and four buffers of

finite capacity (B1 . . . B4). The events associated with the movement of the parts within the

8At least one solution exists, C = {1 . . . n}. This can be seen from the fact that L controllable and observable
w.r.t. (G,Σuc,L,Σuo,L) implies Σuc,L ⊆ ΣMuc, and from Σuc,L =

⋂

i=1...n

Σuc,i.
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Figure 7: A manufacturing system.

[      ]

[      ]

[      ] [      ] [      ][      ][      ][      ][      ][      ][      ][      ][      ][      ][      ][      ][      ]

2M

M1

η 2 2M 4α 2B

γ 1 1M τ 1 H1 π 1 α 3B 1 M2 τ 3 H3 π 3 B 3 α 1 1M η 1[      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ]

2 γM2τπ 2H 2 H 24B 44π4α 21Mτ

t7t6t5 843

t 16

t

p15

p16

13

t

p

t2t1t

9t10t11t12t11t14t15t 13p 8p9p10p

p

12p14p

7p6p5p4p3pp21

Figure 8: Petri net model of the system.

system are marked with Greek letters. There are two types of parts. The manufacturing process

of the first type of parts is represented by the following sequence of events: γ1τ1π1α3τ3π3α1η1.

The manufacturing process of the second kind of parts is represented by γ2τ4π4α2τ2π2α4η2. These

processes can be represented by the Petri net of Figure 8. In the Petri net, the transitions are labeled

by the events they represent, and the places by the names of the manufacturing components. For

instance, a token in p16 indicates that M2 is idle, and a token in p8 indicates that M2 is working

on a part of type 2 that has just entered the system. Furthermore, the number of parts in a buffer

is the marking of the place modeling the buffer; for instance, µ13 represents the number of parts in

B2 at the marking µ. The number of parts the machines M1 and M2 can process at the same time

is µ1 + µ7 + µ11 + µ15 = n1 and µ4 + µ8 + µ14 + µ16 = n2, respectively. In [9], n1 = n2 = 1.

The first supervisory requirements are that the buffers do not overflow. If the capacity of the
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Figure 9: Decentralized supervision.

buffers is k, the requirement can be written as:

µi ≤ k for i ∈ {3, 6, 10, 13} (34)

In [9] the capacity of the buffers is k = 2. Another requirement is that the number of completed

parts of type 1 is about the same as the number of completed parts of type 2:

v8 − v16 ≤ u (35)

v16 − v8 ≤ u (36)

where v8 and v16 denote the number of firings of t8 and t16, respectively. In [9], u = 2. Note that

constraints involving the vector v can be easily represented as marking constraints in a transformed

Petri net [5].

Following [9], the constraints (34) are enforced assuming that the system consists of the sub-

systems: Tc,1 = {t2, t4} and To,1 = {t2, t3, t4}, Tc,2 = {t5, t7} and To,2 = {t5, t6, t7}, Tc,3 = {t10, t12}
and To,3 = {t10, t11, t12}, Tc,4 = {t13, t15} and To,4 = {t13, t14, t15}. We take Ci = {i} for i = 1 . . . 4.
Enforcing (34) results in the control places C1, C2, C3, and C4 shown in Figure 9. They correspond

to the subsystems 1,2,3 and 4, respectively, and enforce µ2 + µ3 ≤ 2, µ5 + µ6 ≤ 2, µ9 + µ10 ≤ 2,
and µ12 + µ13 ≤ 2.
In [9], (35–36) are assumed to be enforced at a higher hierarchical level at which all transitions

locally observable and controllable are observable and controllable, except for t7 and t8, which

are uncontrollable due to communication problems. In this context, (35) is inadmissible and (36)

is admissible. The design of an admissible constraint for (35) illustrates the need for liveness

constraints. Indeed, our computer implementation of the decentralized algorithms generates the
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admissible constraint µ5 + µ6 + µ7 + v8 ≤ 2 for (35). However, this is clearly an unacceptable
constraint, as it causes the closed-loop to unavoidably deadlock. As discussed in section 6.4, a

remedy is to add liveness constraints. So we added the liveness constraint Lix ≤ 0 for x = Dy and
y = [1, 1, . . . 1]T . This is to prevent the constraints generated by the algorithm from blocking the

firing sequence t1t2 . . . t16 to occur infinitely often. Then, the generated constraints for (35–36) are

µ5 + µ6 + µ7 + v8 − v16 ≤ 2 (37)

v16 − v8 ≤ 2 (38)

They are enforced by the control places C5 and C6 in Figure 9. Note that compared to the solution

of [9], our solution is equivalent. However, in our case the supervisor can be reused for other values

of n1, n2, k and u, by changing accordingly the initial markings of C1. . .C6.

Assuming that the higher level supervisor implementing C5 and C6 uses direct links to access

each transition, the communication cost depends only on the number of links, that is, the number

of transitions it controls and/or observes. Figure 9 shows that the communication between the

plant and C5 and C6 involves t5, t8 and t16. Is three the minimal number of transitions? While

our approach is suboptimal, the minimization it employs could be used to find a solution with

communication that involves less transitions. To do so, we could attempt to design a supervisor

for (35-36) minimizing communication. The setting is as follows. At the higher level, no transition

is controllable or observable. Communication can make all transitions observable and controllable,

except for the transitions of Tuc,L = {t3, t6, t11, t14, t7, t8}, which cannot be controlled. With the
notation of section 6.3, we have c = 1T , fi = 0

T (here i = 1), and we constrain εij to εij = 0

∀tj ∈ Tuc,L and εij = αij = αj ∀tj /∈ Tuc,L. By solving the integer program the following constraints
were obtained

µ1 + µ2 + µ3 + 2µ4 + µ5 + µ6 + µ7 + µ8 + µ16 + v8 − v16 ≤ 2 (39)

µ14 + v16 − v8 ≤ 2 (40)

which are enforced by control places C ′5 and C ′6 such that C ′5• = {t1}, •C ′5 = {t15}, C ′6• = {t15}
and •C ′6 = {t8}. In this solution, the communication involves t1, t8 and t15. While this solution is
obviously less permissive than that of (37–38), it shows that our approach cannot find a solution

involving the communication of less transitions. In this sense, (37–38) are optimal. Finally, (39–

40) illustrate once more that the permissivity of the solutions is hard to control. However, in this

particular case, a second integer program can be used to improve the permissivity, by minimizing

the sum of the positive coefficients in (39–40), while requiring the other coefficients to stay less or

equal to zero (the integer program is also subject to the constraints of the previous integer program

and to
∑
αi = 3, which constrains the communication cost to the minimum value). After solving

this second integer program, the solution of (37–38) is again obtained.

Note that the total amount of time taken by our software implementation to design the super-

visors described in this section is less than one second on an average computer.
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9 Conclusions

The design of decentralized supervisors is computationally easy for the class of specifications iden-

tified as d-admissible. When communication between the local supervisors is allowed, the concept

of d-admissibility can also be used for the design of supervisors enforcing specifications that are

not d-admissible, by the identification of the events that need to be communicated. In the de-

centralized settings with no communication or with restricted communication, the enforcement of

specifications that are not d-admissible can be done via linear integer programming. The integer

programming approach is suboptimal, as it may not produce the least restrictive solution, when it

exists. However, it allows to design both the supervisors and their communication policy. Moreover,

it can be used to minimize the communication of the local supervisors. Future work may explore

possibilities to increase the computational efficiency of the supervisor design. Another direction to

be considered is decentralized deadlock prevention, to avoid the deadlock possibilities existing in

the system and those caused by supervision. Finally, many of the results presented in this paper

can be extended to other supervisory techniques and/or DES models.
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APPENDIX

A Summary of the Interpretation of the Transition Arcs

Table 1 summarizes the interpretation of the transition arcs connected to admissible supervisors.

The notation is as follows: t is a transition of the plant and C is a control place of the supervisor.

The first column of the table shows the configurations under consideration. The second column

shows the interpretation of the transition arcs. The third column shows the admissibility property

of the configuration that makes the interpretation valid. The more obvious interpretations, e.g.

those for arcs of controllable and observable transitions, are not included.

Table 1: Supervisor Implementation

Configuration Supervisor Action Admissibility requirements

mC t inhibit t when µ(C) < m;

when t fires, µ(C) −→ µ(C)−m —

nt
C when t fires, µ(C) −→ µ(C) + n —

mC t when t fires, µ(C) −→ µ(C)−m t must not be plant-enabled when

µ(C) < m

n
Ct when t fires, µ(C) −→ µ(C) + n —

mC t
inhibit t when µ(C) < m t must be dead in the closed-loop

nt
C — t must be dead in the closed-loop

C tm

m
inhibit t when µ(C) < m —

mC t — t must be dead in the closed-loop

n
C

t — t must be dead in the closed-loop

B Reducing the Number of Uncontrollable or Unobservable Tran-

sitions

This appendix shows how knowledge on the reachable markings can be used to eliminate transitions

from the list of uncontrollable transitions and the list of unobservable transitions. Thus, transitions
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that a supervisor does not need to control or observe are identified.

Assume that a supervisor is to enforce Lµ ≤ b, while it is known that all reachable markings
will satisfy LRµ ≤ bR. While LRµ ≤ bR ⇒ Lµ ≤ b, additional constraints in LRµ ≤ bR can be
added if information on the initial marking is available. The following computable tests can be

used:

Given a transition t, let w be the column corresponding to t in D−, the output matrix,
and q the firing vector associated to the firing of t. A supervisor enforcing Lµ ≤ b does
not need to control an uncontrollable transition t if the system

LRµ ≤ bR
µ ≥ w

L(µ+Dq) 6≤ b

is infeasible. Furthermore, t never fires (and so never needs to be observed) if the system

LRµ ≤ bR
µ ≥ w

is infeasible.

C The Sets ΣMuc and Σ
M
uo

This appendix studies the existence of the sets ΣMuc and Σ
M
uo. These are defined for a prefix-closed

specification K ⊆ L(G) as the maximal subsets of Σ such that K is controllable and observable
with respect to (G,ΣMuc,Σ

M
uo). We show that Σ

M
uc exists, but Σ

M
uo may not exist.

Note first that regardless of K, sets Σuc and Σuo such that K is controllable and observable

with respect to (G,Σuc,Σuo) exist. Indeed, this is true of the fully controllable and observable case,

for which Σuc = ∅ and Σuo = ∅.
The existence of ΣMuc can be proven based on the fact that if K is controllable with respect to

Σ1uc and Σ
2
uc, then it is controllable with respect to Σ

1
uc ∪ Σ2uc. Indeed, according to the definition

of controllability: KΣ1uc ∩ L(G) ⊆ K and KΣ2uc ∩L(G) ⊆ K. Then K(Σ1uc ∪Σ2uc)∩L(G) ⊆ K can
be immediately checked, by noticing that K(Σ1uc ∪Σ2uc)∩L(G) = (KΣ1uc ∩L(G))∪ (KΣ2uc ∩L(G)).
To prove the existence of ΣMuc, let’s denote by Σ

i
uc all distinct subsets of Σ, i = 1 . . . p, such

that for all i = 1 . . . p, K is controllable with respect to G and Σiuc. In view of the previous result,

there is Σjuc = Σmaxuc , for Σ
max
uc =

⋃
i=1...p

Σiuc. Then note that Σ
max
uc satisfies the definition of ΣMuc, so

ΣMuc = Σ
max
uc .

The fact that ΣMuo may not exist can be seen in an example. Consider G with the language

L(G) = {abcd, ad}, K = {abcd}, Σ1uo = {b} and Σ2uo = {c}. It can be easily checked that K is
observable with respect to Σ1uo and Σ

2
uo, however not observable with respect to Σuo = Σ

1
uo ∪ Σ2uo.
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Indeed, if P is the projection removing the elements of Σuo, we have that P (a) = P (abc) = a,

ad, abcd ∈ L(G), ad /∈ K and abcd ∈ K. It follows that ΣMuo does not exist, since it cannot contain
both b and c.

Note that the same is true even if we define ΣMuo with respect to normality, instead of with

respect to observability. (K is normal with respect to G and Σuo if K = L(G)∩P−1(P (K)), where
P is the projection removing the elements of Σuo.) The previous example can also be used to show

that ΣMuo may not exist. If P1 and P2 are the projections with respect to Σ
1
uo and Σ

2
uo, note that

K = L(G) ∩ P−11 (P1(K)), K = L(G) ∩ P−12 (P2(K)), but K 6= L(G) = L(G) ∩ P−1(P (K)). So in
this example ΣMuo does not exist.

With regard to the computational complexity, the set ΣMuc can be computed in polynomial time,

since controllability can be checked in polynomial time. This is also true of ΣMuo, when it exists.
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