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Abstract

I. INTRODUCTION

Switched systems are a particular class of hybrid systems consisting of several subsystems and a switching law
specifying the active subsystems at each time instant. Examples of switched systems can be found in chemical
engineering, automotive systems, and electrical circuit systems, to name a few.

The problem of determining optimal control laws for hybrid systems and in particular for switched systems,
has been extensively investigated in recent years and many results may be found in the control and computer
science literature. It has attracted researchers from various fields in science and engineering, due to the problems’
significance in theory and applications. The results are both theoretical and computational. The available theoretical
results usually extend the classical maximum principle or the dynamic programming approach to switched systems.
The computational results take advantage of efficient nonlinear optimization techniques and high-speed computers
to develop efficient numerical methods for the optimal control of switched systems.

This paper surveys the recent progress in computational methods for optimal control problems of switched
systems. Such problems are difficult to solve, due to switchings of subsystem dynamics. The recent decade has
seen some breakthroughs in theoretical results as well as the development of efficient computational methods,
however there are no theoretical or computational results applicable to general optimal control problems for all
kinds of switched systems. The existing literature results are often based on different models and differ in problem
formulation and approaches. Therefore, this report is an attempt to summarize recent results that use different
problem formulations and explore the underlying relations among them.

The report is organized as follows. In Section II, a brief overview of theoretical results on optimal control of
hybrid systems is presented and the general optimal control problem formulation of switched systems is given.
Section III reviews the existing optimal control methodologies for switched systems with continuous control input.
The optimal control problems of continuous-time and discrete-time switched systems are discussed separately.
Section IV focuses mainly on the results on optimal control of autonomous switched systems. Section V concludes
the report.

II. GENERAL OPTIMAL CONTROL PROBLEMS OF SWITCHED DYNAMIC SYSTEMS

A. Optimal control of hybrid systems

The problem of determining optimal control laws for hybrid systems has been extensively investigated in the
recent years and many results can be found in the control and computer science literature. For the theoretical point
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of view, numerous results on necessary conditions for optimality have appeared for different models of hybrid
systems [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. However, most of the results consider general
problems and it is not always possible to develop tractable algorithms to numerically compute the optimal solution.
Here we present some important theoretical results.

For continuous-time hybrid systems, Branicky and Mitter [2] compare several algorithms for optimal control,
while Branicky et al. [1] discuss general necessary conditions for the existence of optimal control laws for
hybrid systems by using dynamic programming. They established a general hybrid framework for the optimal
control problem, proved the existence of optimal (relaxed or chattering) controls and near-optimal (precise or
nonchattering) controls, and derived generalized quasi-variational inequalities (GQVI’s) that the associated value
function is expected to satisfy.

Necessary optimality conditions for a trajectory of a hybrid system are derived using the maximum principle by
Sussmann [3] and Piccoli [4], who consider a fixed sequence of finite length. Several versions of hybrid maximum
principles are proposed. A similar approach is used by Riedinger et al. [5], who only consider the attention to
linear quadratic cost functionals but considering both autonomous and controlled switches.

Hedlund and Rantzer [6], [7] use convex dynamic programming (CDP) to approximate hybrid optimal control
laws and to compute lower and upper bounds of the optimal cost, while the case of piecewise-affine systems is
discussed by Rantzer and Johansson [8]. A MATLAB toolbox [13] is developed to solve hybrid optimal control
problems via CDP. For determining the optimal feedback control law these techniques require the discretization of
the state space in order to solve the corresponding Hamilton-Jacobi-Bellman equations.

Shaikh and Caines [9] consider a finite-time hybrid optimal control problem and give necessary optimality
conditions for a fixed sequence of modes using the maximum principle. In [10] these results are extended to
non-fixed sequences by using a suboptimal result based on the Hamming distance permutations of an initial given
sequence. Finally, in [11], [12], the authors derive a feedback law for a finite time LQR problem by integrating the
computation of the optimality zones in to the hybrid maximum principle algorithms class.

B. Optimal control of switched systems: problem formulation

In order to find ways to numerically compute the optimal control in hybrid systems, many researchers have
been focusing on a particular class of hybrid systems models, the switched systems. A switched system may be
obtained from a hybrid system by neglecting the details of the discrete behavior and instead considering all possible
switching patterns from a certain class. The discrete behavior in switched systems is “simplified” to “switching”,
which in general represents discontinuity in vector fields. There are many definitions of switched systems and here
we adopt the definition in [14].

A switched system consists of several subsystems and a switching law. A switching takes places when a certain
event signal is received. An event signal may be an external signal (generated exogenously) or an internal signal
generated when an internal condition for the states, inputs and/or time evolution is satisfied. In the sequel, we call
a switching triggered by an external event an externally forced switching (EFS) and a switching triggered by an
internal event an internally forced switching (IFS).

Definition 1 (General definition of switched systems). [14] A switched system is a 3-tuple S = (D, F , L) where

• D = (I, E) is a directed graph indicating the discrete mode structure of the system. I = 1, 2, · · · ,M is the
set of indices for subsystems. E is a subset of I × I − (i, i)|i ∈ I which contains the valid events. If an event
e = (i1, i2) takes place, the system switches from subsystem i1to i2. Furthermore E = EE ∪EI (EE and EI
may not be disjoint) where EE is the external event set and EI is the internal event set.
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• F = {fi : Xi × Ui → Rn|i ∈ I}where fi describes the vector field for the i-th subsystem ẋ = fi(x, u). Here
Xi ⊆ Rn, Ui ⊆ Rm are the state and control constraint sets for the i-th subsystem, respectively.

• L = LE ∪ LIprovides logic constraints that relate the continuous state and mode switchings. Here LE =

{Λe|Λe ⊆ Rn, ∅ 6= Λe ⊆ Xi1 ∩Xi2 , e = (i1,i2) ∈ EE} corresponds to the external events; only when x ∈
Λe for e = (i1, i2), an externally forced switching (EFS) from subsystem i1 to i2 is possible. Also here
LI = {Γe|Γe ⊆ Rn, ∅ 6= Γe ⊆ Xi1 ∩Xi2 , e = (i1,i2) ∈ EI} corresponds to the internal events; when the state
trajectory intersects Γe, e = (i1, i2), at subsystem i1, the event e = (i1, i2) must be triggered and the system
is internally forced to switch (IFS) to subsystem i2.

Definition 2. [14] A switching sequence σ in [t0, tf ] is a timed sequence σ = ((t0, i0), (t1, i1), · · · , (tK , iK)),
where 0 ≤ K <∞, t0 ≤ t1 ≤ · · · ≤ tK ≤ tf , and ik ∈ I for 0 ≤ k ≤ K.

Remark 3. Given a switched system, the overall exogenous control input is a pair (σE , u). Along with the evolution
of x(t), an IFS sequence σI will be generated implicitly. σE and σI then lead to the overall σ. For a switched
system in Definition 1, the continuous state does not exhibit jumps at switching instants. However, we note that
some methods reported here can be extended to problems with jumps.

Remark 4. A variety of particular models can be defined to address different aspects of the general switched systems
in Definition 1. Based on the types of switching, we have

1) Switched systems with state-dependent switchings,
2) Switched systems with state-independent switchings.

Based on the types of subsystems, we have

1) Continuous-time (discrete-time) switched systems if subsystems are continuous (discrete) time systems,
2) Switched linear (nonlinear) systems if subsystems are linear (nonlinear) systems.

If the continuous control input u is absent from the model, we call it an autonomous switched system.
Although in principle general optimal control problems can be formulated for switched systems with both EFS

and IFS, results would be difficult to obtain. Typically the original problem can be divided into two important
classes of problems which can be solved individually, i.e., optimal control problem with EFS only (EFS Problems),
and problems for systems with IFS only (IFS) problem. Most of the literature in this report address one of these
two classes of problems.

Problem 5 (EFS problem). [14] Consider a switched system S with EFS only. Find an admissible control pair
(σE , u) (u is piecewise continuous) such that x departs from a given initial state x(t0) = x0 at the given initial
time t0 and meets the terminal manifold defined by ψ (x (tf ) , tf ) = 0 where ψ is a vector function and

J = ψ(x(tf )) +

∫ tf

t0

L(x(t), u(t))dt+
∑

1≤k≤K
δ(x(tk), ik−1, ik) (1)

is minimized (here K is the number of switchings in σE).

Problem 6 (IFS problem). [14] Consider a switched system S with IFS only. Find an admissible control u(t) (u
is piecewise continuous) such that x departs from a given initial state x(t0) = x0 at the given initial time t0 and
meets he terminal manifold defined by ψ (x (tf ) , tf ) = 0 where ψ is a vector function and

J = ψ(x(tf )) +

∫ tf

t0

L(x(t), u(t))dt+
∑

1≤k≤K
δ(x(tk), ik−1, ik) (2)

is minimized (here K is the number of switchings in σI ).
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Problem 5 and Problem 6 are formulated as general Bolza problems with terminal cost ψ, running cost
∫ tf
t0
Ldt,

and switching cost δ. The two problems are different due to the different exogenous input. In general, EFS problem
is more difficult since we need to optimize both continuous control input u and switching signal σE , which are
strongly coupled in the optimal control problem. To address the role of EFS in optimal control problem, [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38], [39], [40] consider autonomous switched systems (i.e. without continuous control input u) and derive the
optimal switching conditions in the form of switching times or switching surfaces. On the other hand, the difficulty
in IFS problem is that we have no direct control of switchings assuming the internal switching conditions are given.

III. OPTIMAL CONTROL OF SWITCHED SYSTEMS WITH CONTROL INPUT

A. Optimal control of discrete-time switched systems

One of the modeling frameworks used for discrete-time switched systems is piecewise affine (PWA) systems,
defined by partitioning the state space into polyhedral regions, and associating with each region a different linear
state-update equation

x (t+ 1) = Aix(t) +Biu(t) + fi (3)

if

[
x(t)

u(t)

]
∈ Xi ,

{[
x

u

]
: Hix+ Jiu ≤ Ki

}

where x ∈ Rnc × {0, 1}nl , u ∈ Rmc × {0, 1}ml , {Xi}s−1i=0 is a polyhedral partition of the sets of state+input space
Rn+m, n , nc+nl, m , mc+ml. PWA systems can model a large number of physical processes, such as systems
with static nonlinearities, and can approximate nonlinear dynamics via multiple linearizations at different operating
points.

Consider the PWA system (3) subject to hard input and state constraints

Ex(t) + Lu(t) ≤M (4)

for t ≥ 0, and denote by constrained PWA system (CPWA) the restriction of the PWA system (3) over the set of
states and inputs defined by (4),

x (t+ 1) = Aix(t) +Biu(t) + fi (5)

if

[
x(t)

u(t)

]
∈ X̃ i ,

{[
x

u

]
: H̃ix+ J̃iu ≤ K̃i

}

where
{
X̃i
}s−1
i=0

is the new polyhedral partition of the sets of state+input space Rn+m by intersecting the polyhedrons
Xi in (3) with the polyhedron described by (4).

Define the following cost function

J
(
UT−10 , x(0)

)
, ‖Px(T )‖p +

T−1∑
k=0

(‖Qx(k)‖p + ‖Ru(k)‖p) (6)

and consider the finite-time optimal control problem (FTCOC)

J∗(x(0)) , min
{UT−1

0 }
J(UT−10 , x(0)) (7)
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s.t.


x(t+ 1) = Aix(t) +Biu(t) + fi

if

[
x(t)

u(t)

]
∈ X̃i

(8)

where the column vector UT−10 , [u′(0), . . . , u(T − 1)′]′ ∈ RmT , is the optimization vector and T is the time
horizon. In (6), ‖Qx‖p = x′Qx for p = 2 and ‖Qx‖p = ‖Qx‖1,∞ for p = 1,∞, where R = R′ � 0, Q = Q′,
P = P ′ � 0 if p = 2 and Q, R, P non-singular if p =∞or p = 1.

The FTCOC can be views as IFS problem since the switchings are implicitly determined by the partition of the
state space. The main results on FTCOC can be found in [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51],
[52], [53] by Bemporad and Morari et al. The work can be viewed as consisting of two kinds of results: theoretical
and computational. For the theoretical results, it has been proved that the closed form of the state-feedback solution
to finite time optimal control based on quadratic or linear norms performance criteria is a time-varying piecewise
affine feedback control law. For the computational results, two computational methods are provided to numerically
find the optimal solution.

One way is by describing the PWA system by a set of inequalities with integer variables as the system switches
between the different dynamics. An appropriate modeling framework for such class of systems is mixed logical
dynamic (MLD) framework where the switching behavior as well as the constraints of the system are modeled
with inequality conditions. So consider the equivalent MLD system of the PWA system. Problem (6)-(8) can be
rewritten as:

min
{UT−1

0 }
J
(
UT−10 , x(0)

)
, ‖Px(T )‖p +

T−1∑
k=0

(‖Qx(k)‖p + ‖Ru(k)‖p) (9)

subj. to

{
x(k + 1) = Ax(k) +Buu(k) +Bδδ(k) +Bzz(t),

Eδδ(k) + Ezz(k) ≤ Euu(t) + Exx(t) + E
(10)

The optimal control problem in (9)-(10) can be formulated as a Mixed Integer Quadratic Program (MIQP) when
the squared Euclidean norm p = 2 is used [54], or as a Mixed Integer Linear Program (MILP), when p = ∞ or
p = 1 [48]. In addition, multiparametric programming can be used to efficiently compute the explicit form of the
optimal state-feedback control law. Then, for performance indices based on the∞-norm or 1-norm, the optimization
problem can be treated as a multi-parametric MILP (mp-MILP) [48], [52], while for performance indices based on
the 2-norm, the optimization problem can be treated as a multi-parametric MIQP (mp-MIQP).

In addition to the algorithms based on the Mixed Integer Program (MIP), a more efficient way that combines
a dynamic programming strategy with a multi-parametric program solver is proposed. The equivalent dynamic
program is of the following form

J∗j (x(j)) , min
u(j)
‖Qx(j)‖p + ‖Ru(j)‖p + J∗j+1(fPWA(x(j), u(j))), (11)

subj. to fPWA(x(j), u(j)) ∈ X j+1 (12)

for j = T − 1, . . . , 0, with boundary conditions

XT = Xf , and (13)
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J∗T (x(T )) = ‖Px(T )‖p (14)

where
Xj =

{
x ∈ Rn|∃u, fPWA(x, u) ∈ X j+1

}
(15)

is the set of all initial states for which the problem (11)-(12) is feasible.
When the problem is a PWA system with a quadratic performance criterion, i.e. p = 2, the algorithm is based on a

dynamic programming recursion and a multiparametric quadratic solver [47], [49]. Similarly, when the problem is a
PWA system with a linear performance index, i.e. p = 1, or p =∞, the algorithm is based on dynamic programming
recursion and a multiparametric linear program solver [41], [49], [53]. Compared with the former algorithm based
on MIP, the dynamic programming algorithm is more efficient and less complex due to fewer underlying inequality
constraints. Also, the dynamic programming algorithm can be used to approximate infinite time horizon solutions
through finite time horizon solutions. Recent work [50], [42] shows how to exploit the underlying geometric structure
of the optimization problem with a linear performance index in order to significantly improve the efficiency of the
off-line computations. By using algebraic geometry methods, [45], [46] study the constrained finite-time optimal
control problem of discrete-time nonlinear systems.

Gorges et al [55] study the optimal control and scheduling problem of discrete-time switched linear systems by
assuming the switching is EFS. The model considered is

x (k + 1) = Aj(k)x(k) +Bj(k)u(k). (16)

Switching between subsystems is described by the switching index j(k) which is subject to control. Further, the
cost function is in the quadratic form

JN (k) = xT (k +N)Q0x(k +N) +

N−1∑
i=0

l(k + i) (17)

with step cost l(i) = l(x(i), u(i), j(i)) ≥ 0 defined by l(i) = xT (i)Q1j(i)x(i) + uT (i)Q2j(i)u(i) where Q0 and
Q1j(i) are symmetric positive definite; Q2j(i) is symmetric positive semi-definite. N is the prediction horizon. k
denotes the current time instant and i denotes the time instant with the prediction horizon. The optimal control
problem is then formulated using receding horizon control and scheduling strategy, as in Problem 7.

Problem 7. [55] For the switched system (16) and the current state x(k) find a control sequence

U∗(k, k +N − 1) = (u∗(k), . . . , u∗(k +N − 1))

and a switching sequence
J ∗(k, k +N − 1) = (j∗(k), . . . , j∗(k +N − 1))

such that the cost function (17) is minimized over the prediction horizon N , i.e.

min
U(k,k+N−1),J (k,k+N−1)

JN (k)

subject to x (k + 1 + i) = Aj(k+i)x(k + i) +Bj(k+i)u(k + i) with i = 0, . . . , N − 1.

By solving a set of difference Riccati Equations (DRE), the resulting optimal control input u(k) is in piecewise
linear state feedback form and the switching sequence and time are obtained through dynamic programming.

Wei Zhang [56], [57], [58], [59] considers the same discrete-time switched linear system model as in [55]. Here
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the optimal control problem studied is a discrete-time switched LQR problem with the cost function defined as

JN (u, j) = xT (k)Qfx(k) +

N−1∑
i=0

(
xT (i)Qj(i)x(i) + uT (i)Rj(i)u(i)

)
(18)

where Qf and Qj are symmetric positive semi-definite and Rj is symmetric positive definite. The explicit feedback
form of the optimal control input is obtained through dynamic programming, which is similar to the result in [55].
It is worth pointing out that both [56] and [55] face the problem that the size of the positive semi-definite matrix set,
obtained by solving a set of DREs, will grow exponentially as the time evolves. To reduce the size of the positive
semi-definite matrix set, [55] considers a sub-optimal cost function using which the optimal control problem can be
approached by relaxed dynamic programming [60], [61]. The different approach in [57], [58] resorts to finding the
minimum equivalent subset of the positive semi-definite matrix set by removing the redundant matrices. It should
be noted that the optimality of the problem is not jeopardized in [57], [58]. [57] also shows that a similar algorithm
can be extended to the case when sub-optimal performance is acceptable.

A more recent result [62], considers the optimal control problem of discrete-time nonlinear switched systems
and the goal is to find the optimal continuous control input and switching signal. It shows that the problem can be
numerically solved by dividing the original control problem into two sub-problems. The optimal continuous control
input can be obtained from the first sub-problem for a given switching sequence. The second sub-problem will
search for the optimal switching sequence through the discrete filled function method. The global optimal solutions
(for most cases) can be found by iteratively solving the two sub-problems.

B. Optimal control of continuous-time switched systems

The model of continuous-time switched systems is adopted from Definition 1, as

ẋ(t) = fi(t)(x(t), u(t)) (19)

where i(t) is the switching signal and it is of the EFS type. The set of vector fields fi(x, u) can be nonlinear or
linear functions of x and u. The form of cost function is as in (1). Due to computability of different numerical
algorithms, the form of cost function is subject to change when a different optimal control problem formulation is
considered.

Xu and Antsaklis consider the optimal control problem of seeking both the optimal control switching instants
and continuous control input of continuous-time switched nonlinear systems [63], [64], [65], [14], [66], [67], [68],
[69], [70], [71], [72], [73], [74]. A computational method based on a two stage optimization method is proposed
and proved to solve the EFS problem assuming a prespecified sequence of active subsystems is given. The method
is based on the fact that the following equation holds.

J (σ∗E , u
∗) = min

ad.(σE ,u)′s
J (σE , u) = min

σ∈{σE |∃u,(σE ,u) is ad.}
min

u∈{u|(σE ,u) is ad.}
J (σE , u) . (20)

Here ’ad.’ stands for ’admissible’. and J = ψ(x(tf )) +
∫ tf
t0
L(x(t), u(t))dt.

The right hand side of (20) needs twice the minimization processes. This implies that the following two stage
optimization can be applied.

Stage 1. (a) Fix the total number of switchings to be K and the sequence of active subsystems and let the
minimum value of J with respect to u to be a function of the K switching instants, i.e., J1 = J1(t1, · · · tK)

for K ≥ 0 (t0 ≤ t1 ≤ · · · ≤ tK ≤ tf ). Find J1.
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Stage 1. (b) Minimize J1with respect to t1, · · · , tK . i.e.

min
t̂
J1(t̂)

subject to t̂ ∈ T , where T , {t̂ = (t1, · · · , tK)T |t0 ≤ t1 ≤ · · · ≤ tK ≤ tf}.
Stage 2. (a) Vary the sequence of active subsystems to find an optimal solution under K switchings.
Stage 2. (b) Vary the value of K to find an optimal solution for Problem 5.

It can be seen that the stage 1 and stage 2 are relatively decoupled problems and therefore can be solved separately.
The stage 1 optimization proposed is an interesting topic in the optimal control of switched systems, while the
stage 2 optimization is more suitable to be formulated as a searching problem. Consequently the research mainly
focuses on the stage 1 optimization.

A computational method to solve stage 1 optimization is proposed based on nonlinear programming [64], [67].
The conceptual computational algorithm for stage 1 optimization is as follows.

1) Set the iteration index j = 0. Choose an initial t̂j .
2) By solving an optimal control problem (i.e., stage (a)), find J1(t̂j).
3) Find (∂J1/∂t̂)(t̂

j) (and (∂2J1/∂t̂
2)(t̂j) if second-order method is to be used).

4) Use some feasible direction method to update t̂j to be t̂j+1 = t̂j + αjdt̂j (here dt̂j is formed by using the
gradient information of J1, the step-size αj can be chosen using some step-size rule, e.g., Armijo’s rule). Set
the iteration index j = j + 1.

5) Repeat Steps (2), (3), (4) and (5), until a prespecified termination condition is satisfied (e.g., the norm of the
projection of (∂J1/∂t̂)(t̂

j) on any feasible direction is smaller than a given small number ε).

In fact, Step 2) poses an obstacle for the usage of the algorithm because (∂J1/∂t̂)(t̂
j) and (∂2J1/∂t̂

2)(t̂j) are
not readily available. In [64], [67], a method based on direct differentiations of the value function is proposed to
approximate the values of (∂J1/∂t̂)(t̂

j) and (∂2J1/∂t̂
2)(t̂j). Later in [63], [68], based on the equivalent problem

formulation, a method based on the solution of a two point boundary value differential algebraic equation (DAE)
is then developed for deriving accurate values of (∂J1/∂t̂)(t̂

j) and (∂2J1/∂t̂
2)(t̂j).

It has been shown that the proposed methods can also be applied to other problems under different switched
systems models. [63], [64] show the method of applying the algorithm to general switched linear quadratic problems.
[65] talks about the approach to finding the optimal switching instants for switched autonomous systems. [69]
extends the method to solve IFS problem. In [70], [72], [74], optimal control problems for switched systems with
state jumps are studied. [71], [73] examine the approach on time optimal control integrator switched systems with
state constraints.

A similar multi-stage optimization mechanism proposed by Sastry and Tomlin can be found in [75], [76]. The
innovation introduced by Sastry and Tomlin is that the proposed method aims to find the optimal continuous control
input as well as the full information of switching signal (switching sequence and time instants), without assuming
the switching sequence is prefixed. The switched system model used is constrained switched nonlinear systems.
By “constrained switched nonlinear systems”, it means the state in (19) is constrained to a set described by

x(t) ∈ {x ∈ Rn|hj(x) ≤ 0, j = 1, ..., N} . (21)

for all time and the cost function is defined as (1) but without the switching cost term. Based on this model,
[75] develops a bi-level hierarchical algorithm that divides the problem into two nonlinear constrained optimization
problems, as presented below.

Stage 1: Give a switching sequence σ, calculate the optimal switching time sequence s and the optimal control
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input u.
Stage 2: Calculate a new sequence σ̃, which is the result of the insertion of a new switching into the original

sequence σ. Repeat Stage 1 using σ̃.

At the lower level, the algorithm assumes a fixed modal sequence and determined the optimal mode duration and
optimal continuous input. At the higher level, the algorithm employs a single mode insertion technique to construct
a new lower cost sequence. The search for all possible switching sequences, which could grow exponentially after
each iteration, can be avoided by a single mode insertion technique. An improved algorithm is presented recently
[76], in which new features are implemented to overcome certain shortcomings of the original algorithm.

Essentially different from the results mentioned above, Bengea and DeCarlo [77], [78] consider solving the
optimal control problem for continuous-time switched nonlinear systems through embedding. The switched system
is first embedded into a larger family of continuous systems as

x(t) =

N∑
i=1

vi(t)fi(x(t), ui(t)) (22)

where vi ∈ [0, 1] and
∑N

i=1 vi(t) = 1.
Then the embedded system can be solved using conventional optimal control techniques. By adopting such

problem transformation, there is no need to make any assumptions about the number of switches nor about the
mode sequence at the beginning of the optimization. The theoretical results in [77] show that the set of trajectories of
the switching system is dense in the set of trajectories of the embedded system. Furthermore, the results also imply
that if one solves the embedded optimal control problem and obtains a solution, either the solution is the solution
of the original problem, or suboptimal solutions can be constructed. Recently, [78] further explores the possible
numerical nonlinear programming techniques under this framework. It shows that sequential quadratic programming
(SQP) can be utilized to reduce the computational complexity introduced by mixed integer programming (MIP).
The effectiveness of the proposed approach is demonstrated through several examples.

C. Software packages

Software packages to compute the optimal control solutions are available based on Mixed Integer Program or
multi-parametric program. The Multi-Parametric Toolbox (MPT) [79] is a free MATLAB toolbox for design, analysis
and deployment of optimal controllers for constrained linear, nonlinear and hybrid systems. Efficiency of the code
is guaranteed by the extensive library of algorithms from the field of computational geometry and multi-parametric
optimization. YALMIP [80] features an intuitive and flexible modeling language for solving optimization problems
in MATLAB. The main emphasis is on convex conic programming (linear, quadratic, second order cone and semi-
definite programming), but the toolbox supports also integer programming and non-convex problems. The toolbox
additionally includes modules for moment and sum of squares programming, mixed integer conic programming and
global non-convex optimization. A large number of solvers (both free and commercial) are interfaced and YALMIP
will automatically use the most suitable solver it can find. YALMIP can also be used together with the MPT toolbox
to setup and solve multiparametric programs.

IV. OPTIMAL CONTROL OF AUTONOMOUS SWITCHED SYSTEMS

A. Optimal control of autonomous switched linear systems

We present the model of switched affine systems with state jumps as a general mathematical representation of
autonomous switched linear systems, as in (23) and (24).
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ẋ(t) = Ai(t)x(t) + fi(t), i(t) ∈ S, (23)

x(t+) = Ji,jx(t−) if i(t−) = i, i(t+) = j, (24)

where i(t) is a controlled switching signal and S , {1, 2, . . . , s} is a finite set of index. Equation (24) models a
jump condition. It means whenever at time t a switch from mode i(t−) = i to mode i(t+) = j occurs, the state
jumps from x(t−) to x(t+) = Ji,jx(t−), where Ji,j ∈ Rn×n are constant matrices.

The main objective is to solve the optimal control problem

V ∗N , min
I,T
{F (I, T ) =

∫ ∞
0

x′(t)Qi(t)x(t)dt+

N∑
k=1

Hik−1,ik} (25)

s.t.



ẋ(t) = Ai(t)x(t) + fi(t),

x(0) = x0,

i(t) = ik ∈ S for τk ≤ t ≤ τk+1, k = 0, . . . , N,

0 = τ0 ≤ τ1 ≤ . . . ≤ τN < τN+1 = +∞,
x(τ+k ) = Jik−1,ik . . . Jih−1,ihx(τ−h ), if τh−1 < τh = . . . = τk < τk+1,

(26)

where Qi are positive semi-definite matrices, and x0 is the initial state of the system. The cost consists of two
components: a quadratic cost that depends on the time evolution (the integral) and a cost that depends on the
switches (the sum), where Hi,j ≥ 0, i, j ∈ S, is the cost for commuting from mode i to mode j, with Hi,i = 0,
∀i ∈ S. In this optimization problem there two types of decision variables: a finite sequence of switching times
T , {τ1, . . . , τN} and a finite sequence of modes I , {i0, . . . , iN}.

To solve such an optimal control problem, two different computational approaches are proposed by Giua et al
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. The first approach is called master-slave procedure (MSP)
[19], [24] and exploits a synergy of discrete-time and continuous-time techniques alternating between two different
procedures. The “master” procedure is based on mixed-integer quadratic programming (MIQP) and finds an optimal
switching sequence for a given initial state, assuming the switching instants are known. The “slave” procedure [17],
[20] is based on the construction of the switching regions and finds the optimal switching instants, assuming the
mode sequence is known. The results show that it is possible to numerically compute a region of the states space
in which an optimal control switch should occur.

The second approach, called switching table procedure (STP) [18], [23], is based on dynamic programming
ideas and allows one to avoid the explosion of the computational burden with the number of possible switching
sequences. It relies on the construction of switching tables which specify when the switching should occur and
what the next mode should be. Therefore it can be seen as a generalization of the slave procedure. Moreover, [15],
[21], [16], [22] show that STP can be applied to other hybrid system frameworks. [15] deals with linear hybrid
automata, namely switched linear autonomous systems whose mode of operation is determined by a controlled
automaton. The quantities to be optimized are the sequence of switching times and the sequence of modes under
some constraints. In [21], the results apply to autonomous hybrid automata, which have two types of edges: a
controllable edge represents a switching which can be triggered by the controller; an autonomous edge represents
a switching which is triggered by the continuous state of the system. Recently, [16] addressed an optimal control
problem for switched affine systems under safety and liveness constraints. The solution is based on a hierarchical
decomposition of the problem, where the low-level controller enforces safety and liveness constraints while the
high-level controller exploits the remaining degrees of freedom for performance optimization. Similar technique
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can also be applied to discrete-time hybrid automata [22].
It is pointed out that both procedures have pros and cons in terms of computational complexity and global

optimality and preferring one over another will depend on the application at hand. STP is guaranteed to find the
optimal solution and provides a “global” closed-loop solution but has high computational cost. On the other hand,
MSP is not guaranteed to converge to a global optimum: it only provides an open-loop solution for a given initial
state. Furthermore, MSP can handle more general cost functions than STP, such as penalties associated with mode
switching, with a lighter computational effort.

Similar to the embedding method in [77], [78], [81] embeds the autonomous switched linear system in a larger
family of systems and hence the optimization problem is generalized by treating the switching sequence, number
of switchings and switching instants, all as decision variable. After applying Pontryagin’s Minimum Principle, the
optimal solution can be determined by solving the ensuing two-point boundary value problem. It should be noted
that the complexity of analysis and numerical algorithm in [81] is less than the embedding method proposed in
[77], [78] since the continuous control input is absent from the model.

B. Optimal control of autonomous switched nonlinear systems

Consider an autonomous switched nonlinear system

ẋ = fi(x(t)), (27)

for all t ∈ [τi, τi+1), and for every i ∈ {0, . . . , N}, with the given initial condition x(0) = x0. τi are a sequence
of switching times and define τ0 = 0 and τN+1 = T . T is fixed. Let L : Rn → R be a continuously differentiable
function, and consider the cost function J , defined by

J =

∫ T

0
L(x(t))dt. (28)

The problem is to find a optimal switching sequence and switching times to minimize the cost function J .
As a starting point, Egerstedt and Wardi et al [30], [36] consider a simpler version of this problem by fixing

the switching sequence (i.e. assuming that the switching sequence is given). Therefore, the controlled parameter
to optimize the cost function is just a sequence of switching times, denoted by τ̄ := (τ1, . . . , τN )T . In [30], [36],
a simple formula for the gradient ∇J(τ̄) is derived, which leads itself to be directly used on gradient-descent
algorithms. Later, various practical issues, such as state estimation [25], [35] and on-line computation [37], [38],
[39], [40], are addressed when finding the optimal switching times. [25], [35] present the algorithms to solve
the problem for autonomous switched systems where the state of the system is only partially known through the
outputs. A method is presented that both guarantees that the current switch-time estimates remain optimal as the state
estimates evolve, and that ensures this in a computationally feasible manner, thus rendering the method applicable
to real-time applications. Inspired by this work, more results [37], [38], [39], [40] have appeared on the research of
on-line optimization of switched systems. The need for real-time on-line algorithms typically arises when complete
information about the system is not available apriori but the algorithm can acquire partial information about it in real
time. In these situations the objective is not to optimize the cost functional defined by (28), but rather to reduce the
cost to go at certain times. [38], [40] consider the case when the state variable cannot be measured and hence it has
to be estimated by a suitable observer. An on-line, Newton-like optimization algorithm to optimize the cost-to-go
function by recursively updating the switching times in real time is proposed. A similar algorithm is presented
in [37] to optimally update the switching times when the instantaneous cost is assumed to be unavailable before
run-time, but can be measured in real time. The recent paper [39] shows that a first-order convergent algorithm
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can be applied in on-line optimization of switching times when the dynamic response functions (state equations)
associated with the modes are not known in advance.

When the state jumps in autonomous switched nonlinear systems are considered, Teo et al [82] shows that an
approximate solution for this optimal control problem can be computed by solving a sequence of conventional
dynamic optimization problem. This approach can reduce the excessive switching between subsystems by merging
two or more switching times into one.

For completely solving the problem of finding the optimal switching sequence and switching times in a compact
manner, [28], [29] propose an algorithmic framework regarding the variable parameters consisting of the switching
times and the switching sequence. At the lower level, the algorithm considers a fixed switching sequence and
minimizes the cost functional with respect to the switching times. At the upper level, it updates the switching
sequence by inserting two switching points at some time with a system modal between them. Since the algorithms
proposed above is cast in the form of a nonlinear programming problem defined on a sequence of nested Eu-
clidean spaces with increasing dimensions, convergence analysis cannot be carried out by the theory of nonlinear
programming. Therefore, a notion of local optimality and a suitable concept of convergence are defined in [32] to
devise a provably convergent optimization algorithm. [83], however, proposes a different approach to address the
problem. The original problem is first transformed into a continuous polynomial systems and then the method of
moments can be applied. The necessary and sufficient condition for optimality is obtained and the example shows
that existing numerical methods in convex programming can used to solve the problem.

In addition to the problem of finding the optimal switching sequence and times, the other topic in optimal control
of autonomous switched systems is the optimization of the cost function (28) by constructing state-dependent
switching surfaces. In this problem, we consider a switched system described by (27) with

i+(t) = s(x(t), i(t)) (29)

(29) describes the discrete event dynamics of the system: the switch from the mode i to mode i+ occurs at the
trajectory of the system, in the continuous state space, intersects a guard set described by a function of the kind
gi(x, ai) = 0, i.e.,

s(x, i) =

{
i, gi(x, ai) 6= 0

i+, gi(x, ai) = 0
(30)

Here gi is assumed to be continuously differentiable in both arguments. ai ∈ Rm is a controllable switching
parameter. The problem considered here is how to choose such parameters in order to minimize a suitable cost
function (28). [27] derives the gradient of the cost function with respect to the switching surface parameters in a
costate-based formula. It then applies the formula in a gradient-descent algorithm for solving an obstacle-avoidance
problem in robotics. Furthermore, [33] considers the minimization of a given cost-functional with respect to the
switching parameter under the assumption that the initial state of the system is not completely known. By assuming
that the initial state can be anywhere in a given set, the proposed approach is based on minimizing the worst
possible cost over the given set of initial states using results from mini-max optimization. [34], [26] propose an
improved algorithm, allowing to build switching surfaces which are optimal for any possible initial conditions. The
algorithm is based on the sensitivity analysis of the optimal switching times with respect to the initial conditions
and on the identification of the set of initial conditions maximizing the information relevant to the design of the
surface.
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V. SUMMARY

This report surveys recent computational results on optimal control of switched systems. We first present the
general optimal control problem formulation and then the main methodologies under different problem formulations
are summarized. Among the results, we focus on the difference of their problem formulations, assumptions and
computational techniques.
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