Cyclic subspaces for linear operators

Let V be a finite dimensional vector space and $T: V \rightarrow V$ be a linear operator. One way to create T-invariant subspaces is as follows. Choose a non-zero vector $\mathbf{v} \in V$, and let $k \in \mathbf{N}$ be the smallest integer such that $\left\{\mathbf{v}, T \mathbf{v}, T^{2} \mathbf{v}, \ldots, T^{k} \mathbf{v}\right\}$ is a dependent set. Let

$$
H_{\mathbf{v}}=\operatorname{span}\left\{\mathbf{v}, T \mathbf{v}, \ldots, T^{k-1} \mathbf{v}\right\} .
$$

Then $H_{\mathbf{v}}$ is called the cyclic subspace generated by \mathbf{v}. By our choice of k, we have a nontrivial linear combination of $\mathbf{v}, T \mathbf{v}, \ldots, T^{k} \mathbf{v}$ that vanishes. Moreover, the coefficient of $T^{k} \mathbf{v}$ in this combination must be non-zero, because the vectors $\mathbf{v}, \ldots, T^{k-1} \mathbf{v}$ are independent. Hence after dividing the combination by the coefficient of $T^{k} \mathbf{v}$, we arrive at

$$
T^{k} \mathbf{v}+c_{k-1} T^{k-1} \mathbf{v}+\cdots+c_{0} \mathbf{v}=\mathbf{0}
$$

for some scalars c_{0}, \ldots, c_{k-1}. We associate to the linear combination on the right a polynomial

$$
p_{\mathbf{v}}(x):=x^{k}+c_{k-1} x^{k-1}+\cdots+c_{0} .
$$

Theorem 0.1. $H_{\mathbf{v}}$ is the smallest T-invariant subspaces that contains $T^{\ell} \mathbf{v}$ for every $\ell \in \mathbf{N}$. Relative to the basis $\left\{\mathbf{v}, T \mathbf{v}, \ldots, T^{k-1} \mathbf{v}\right\}$, the restricited transformation $T: H_{\mathbf{v}} \rightarrow H_{\mathbf{v}}$ has matrix

$$
A=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & c_{0} \\
1 & 0 & \ldots & 0 & c_{1} \\
0 & 1 & \ldots & 0 & c_{2} \\
& & \ddots & & \vdots \\
0 & 0 & \ldots & 1 & c_{k-1}
\end{array}\right]
$$

Hence the characteristic polynomial of $\left.T\right|_{H}$ is $p_{\mathbf{v}}$.
Proof. First I show by induction that $T^{\ell} \mathbf{v} \in H_{\mathbf{v}}$ for every $\ell \in \mathbf{N}$. When $\ell=0$, this is true by definition of $H_{\mathbf{v}}$. Suppose it's true for $\ell=m-1$. That is,

$$
T^{m-1} \mathbf{v}=a_{0} \mathbf{v}+\cdots+a_{k-1} T^{k-1} \mathbf{v} \in H_{\mathbf{v}}
$$

Then

$$
T^{m} \mathbf{v}=T\left(T^{m-1} \mathbf{v}\right)=a_{0} T \mathbf{v}+\cdots+a_{k-2} T^{k-1} \mathbf{v}+a_{k-1} T^{k} \mathbf{v}
$$

All terms on the right, except the last one, belong to $H_{\mathbf{v}}$ by definition. The final term belongs to $H_{\mathbf{v}}$, because as we saw above, $T^{k} \mathbf{v}$ is a equal to a linear combination of $\mathbf{v}, \ldots, T^{k-1} \mathbf{v}$. Hence $T^{m} \mathbf{v} \in H_{\mathbf{v}}$, which completes the induction step and the proof that $T^{\ell} \mathbf{v} \in H_{\mathbf{v}}$ for every $\ell \in \mathbf{N}$.

Note that this fact implies that T maps each of the basis vectors $\mathbf{v}, \ldots, T^{k-1}$ for $H_{\mathbf{v}}$ back into $H_{\mathbf{v}}$. Hence $H_{\mathbf{v}}$ is T-invariant. Note further that if H is any subspace (let alone an invariant one) containing $T^{\ell}(\mathbf{v})$ for every ℓ, then in particular, H contains the basis $\left\{\mathbf{v}, \ldots, T^{k-1} \mathbf{v}\right\}$ for $H_{\mathbf{v}}$. Therefore H contains $H_{\mathbf{v}}$. That is, $H_{\mathbf{v}}$ is the smallest subspace of V that contains $T^{\ell} \mathbf{v}$ for all $\ell \in \mathbf{N}$.

Now the matrix of T relative to $\mathcal{B}=\left\{\mathbf{v}, \ldots, T^{k-1} \mathbf{v}\right\}$ is

$$
\begin{aligned}
A & =\left[[T(\mathbf{v})]_{\mathcal{B}}[T(T \mathbf{v})]_{\mathcal{B}} \ldots\left[T\left(T^{k-1} \mathbf{v}\right)\right]_{\mathcal{B}}\right]=\left[[T \mathbf{v}]_{\mathcal{B}}\left[T^{2} \mathbf{v}\right]_{\mathcal{B}} \ldots\left[T^{k} \mathbf{v}\right]_{\mathcal{B}}\right] \\
& =\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -c_{0} \\
1 & 0 & \ldots & 0 & -c_{1} \\
0 & 1 & \ldots & 0 & -c_{2} \\
& & \ddots & & \vdots \\
0 & 0 & \ldots & 1 & -c_{k-1}
\end{array}\right],
\end{aligned}
$$

where, in the last column, I have used the formula for $T^{k}(\mathbf{v})$ that precedes the statement of the theorem.

Thus I evaluate the characteristic polynomial of T by cofactor expansion about the last column in
$\operatorname{det}(\lambda I-A)=\left|\begin{array}{ccccc}\lambda & 0 & \ldots & 0 & c_{0} \\ -1 & \lambda & \ldots & 0 & c_{1} \\ 0 & -1 & \ldots & 0 & c_{2} \\ & & \ddots & & \vdots \\ 0 & 0 & \ldots & -1 & \lambda+c_{k-1}\end{array}\right|=(-1)^{2 k}\left(\lambda+c_{k-1}\right) \operatorname{det} A_{k k}+\sum_{j=1}^{k-1}(-1)^{j+k}\left(c_{j-1}\right) \operatorname{det} A_{j k}$.
Here $A_{j k}$ is the $j k$-minor of $\lambda I-A$. It has block diagonal form

$$
A_{j k}=\left[\begin{array}{cc}
B_{j} & 0 \\
0 & C_{j}
\end{array}\right]
$$

where the $(j-1) \times(j-1)$ matrix B_{j} and the $(k-j) \times(k-j)$ matrix C_{j} are given by

$$
B_{j}=\left[\begin{array}{ccccc}
\lambda & 0 & \ldots & 0 & 0 \\
-1 & \lambda & \ldots & 0 & 0 \\
0 & -1 & \ldots & 0 & 0 \\
& & \ddots & & \vdots \\
0 & 0 & \ldots & -1 & \lambda
\end{array}\right], \quad C_{j}=\left[\begin{array}{ccccc}
-1 & \lambda & 0 & \ldots & 0 \\
0 & -1 & \lambda & \ldots & 0 \\
& & \ddots & & \vdots \\
0 & 0 & 0 & \ldots & \lambda \\
0 & 0 & 0 & \ldots & -1
\end{array}\right],
$$

Thus $\operatorname{det} A_{j k}=\left(\operatorname{det} B_{j}\right)\left(\operatorname{det} C_{j}\right)=(\lambda)^{j-1}(-1)^{k-j}$. Plugging back into the cofactor formula, we find that the characteristic polynomial of T is

$$
(-1)^{2 k}\left(\lambda+c_{k-1}\right) \lambda^{k-1}+\sum_{j=1}^{k-1}(-1)^{2 k} c_{j-1} \lambda^{j-1}=\lambda^{k}+c_{k-1} \lambda^{k-1}+c_{k-2} \lambda^{k-2}+\cdots+c_{0}
$$

as asserted.

