1. Let $A=\left(\begin{array}{ccc}3 & 2 & -1 \\ 1 & 3 & 2 \\ 4 & 5 & 1\end{array}\right)$. The rank of A is
(a) 4
(b) 3
(c) 1
(d) 2
(e) 0
2. Let $\mathbf{P}_{2}=\left\{a_{0}+a_{1} t+a_{2} t^{2}\right\}$ where $\left\{a_{0}, a_{1}, a_{2}\right\}$ range over all real numbers, and let T : $\mathbf{P}_{2} \rightarrow \mathbf{P}_{2}$ be a linear transformation defined by

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=a_{1}+9 a_{2} t
$$

If $T(p(t))=\lambda p(t)$ for some non-zero polynomial $p(t)$ in \mathbf{P}_{2} and some real number λ, then $p(t)$ is called an eigenvector of T corresponding to λ. The linear transformation T has an eigenvector:
(a) t
(b) $t+9 t^{2}$
(c) 100
(d) t^{2}
(e) 0
3. Let $\left\{\lambda_{1}, \lambda_{2}\right\}$ be two eigenvalues of $A=\left(\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right)$. Then the product of two eigenvalues, $\lambda_{1} \lambda_{2}$, is equal to
(a) -28
(b) 4
(c) 7
(d) 3
(e) 28
4. Let $\mathbf{b}_{1}=\binom{1}{-1}, \mathbf{b}_{2}=\binom{1}{2}, \mathbf{x}=\binom{5}{4}$ and $\mathbf{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Find $[\mathbf{x}]_{\mathbf{B}}$.
(a) $\binom{1}{-1}$
(b) $\binom{1}{2}$
(c) $\binom{2}{3}$
(d) $\binom{5}{4}$
(e) $\binom{3}{2}$
5. The matrix $A=\left(\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right)$ has a complex eigenvector:
(a) $\binom{3}{4 i}$
(b) $\binom{1}{i}$
(c) $\binom{4}{3}$
(d) $\binom{4}{3 i}$
(e) $\binom{1}{-1}$
6. Let $A=\left(\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right)$. The eigenvalues of A are
(a) $0,1,2$
(b) $1,-2,-2$
(c) $1,2,3$
(d) $1, \pm 2$
(e) $0,1,-2$
7. Let S be the parallelogram determined by the vectors $\mathbf{b}_{1}=\binom{5}{3}, \mathbf{b}_{2}=\binom{3}{2}$ and let $A=\left(\begin{array}{cc}-2 & 99 \\ 0 & 1\end{array}\right)$. Compute the area of the images of S under the mapping $\mathbf{v} \longmapsto A \mathbf{v}$.
(a) 2
(b) 99
(c) 3
(d) 5
(e) -2
8. Let $A=\left(\begin{array}{cc}5 & -5 \\ 1 & 1\end{array}\right)$. The complex eigenvalues of A are
(a) $3 \pm i$
(b) $1 \pm 3 i$
(c) $\pm 3 i$
(d) 4
(e) $\pm i$
9. For what value(s) of h will \mathbf{y} be in the subspace spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, if $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, $\mathbf{v}_{2}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{l}6 \\ 4 \\ h\end{array}\right)$.
(a) 2
(b) 4
(c) 3
(d) 6
(e) 10
10. Let $\mathbf{b}_{1}=\binom{-9}{1}, \mathbf{b}_{2}=\binom{-5}{-1}, \mathbf{c}_{1}=\binom{1}{-4}, \mathbf{c}_{2}=\binom{3}{-5}, \mathbf{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathbf{C}=$ $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$. If $P=\left[\left[\mathbf{b}_{1}\right]_{\mathbf{C}},\left[\mathbf{b}_{2}\right]_{\mathbf{C}}\right]$ is the change-of-coordinates matrix from \mathbf{B} to \mathbf{C}, then find P.
(a) $\left(\begin{array}{cc}-9 & -5 \\ 1 & -1\end{array}\right)$
(b) $\left(\begin{array}{cc}1 & 3 \\ -4 & -5\end{array}\right)$
(c) $\left(\begin{array}{cc}6 & 4 \\ -5 & -3\end{array}\right)$
(d) $\frac{1}{4}\left(\begin{array}{cc}1 & -5 \\ 1 & 9\end{array}\right)$
(e) $\frac{1}{7}\left(\begin{array}{cc}-5 & 3 \\ 4 & 1\end{array}\right)$
11. Find a matrix A such that $W=\operatorname{Col}(A)$ where $W=\left\{\left(\begin{array}{c}9 a-8 b \\ a+2 b \\ -5 a\end{array}\right)\right\}$ and $\{a, b\}$ range over all real numbers.
(a) $\left(\begin{array}{ccc}9 & 1 & -5 \\ -8 & 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{cc}9 & -8 \\ 1 & 2 \\ -5 & 0\end{array}\right)$
(c) $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
(d) $\left(\begin{array}{cc}9 & -8 \\ 1 & 2 \\ 0 & -5\end{array}\right)$
(e) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$
12. Let $S=\left\{\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)\right\}$. Then the subset S
(a) $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is orthogonal to $\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)$
(b) spans R^{3}
(c) a linearly dependent subset (d) a linearly independent subset
(e) a basis of R^{3}
13. Let $A=\left(\begin{array}{ccc}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right)$. Use Cramer's rule to solve $A \mathbf{x}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
14. Let $P_{2}=\left\{a_{0}+a_{1} t+a_{2} t^{2}\right\}$ where $\left\{a_{0}, a_{1}, a_{2}\right\}$ range over all real numbers, and let $T: P_{2} \rightarrow P_{1}$ be a linear transformation given by $T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=a_{1}+2 a_{2} t$. Suppose that $\mathbf{B}=\left\{1, t, t^{2}\right\}$ is a basis of P_{2} and $\mathbf{C}=\{1, t\}$ is a basis of P_{1}.
(1) Find a matrix A such that $[T \mathbf{v}]_{\mathbf{C}}=A[\mathbf{v}]_{\mathbf{B}}$;
(2) Find $N u l(A)$ and $\operatorname{Col}(A)$.
15. Let $A=\frac{1}{5}\left(\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right)$. Find $\lim _{k \rightarrow \infty} A^{k}$. (Hint: Find the Diagonalization D of A and use the formula $A^{k}=P D^{k} P^{-1}$).

