- - (a) $\frac{\pi}{4}$
- (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) 0 (e) $\frac{\pi}{6}$

- 2. Let $\mathbf{y} = \begin{pmatrix} 6 \\ 7 \end{pmatrix}$ and $\vec{u} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$. Find orthogonal projection of \vec{y} onto \vec{u} .
 - (a) $\begin{pmatrix} 4 \\ 8 \end{pmatrix}$ (b) $\begin{pmatrix} 8 \\ 4 \end{pmatrix}$ (c) $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$ (d) $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ (e) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

- 3. Let $\mathbf{y} = \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}$, $\mathbf{v}_1 = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ and $W = Span\{\mathbf{v}_1, \mathbf{v}_2\}$. Use the fact that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal to compute $Proj_W \mathbf{y}$.

 - (a) $\begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}$ (b) $\begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix}$ (c) $\begin{pmatrix} 0 \\ 2 \\ 6 \end{pmatrix}$ (d) $\begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}$ (e) $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

- 4. Find the distance between \mathbf{y} and W, where $\mathbf{y} = \begin{pmatrix} 3 \\ -1 \\ 1 \\ 13 \end{pmatrix}$, $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ -1 \\ 2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} -4 \\ 1 \\ 0 \\ 3 \end{pmatrix}$ and $W = Span\{\mathbf{v}_1, \mathbf{v}_2\}.$
 - (a) 8
- (b) 0
- (c) 1
- (d) 3
- (e) 13

- 5. Find a least-squares solution of inconsistent system $A\mathbf{x} = \mathbf{b}$ for $A = \begin{pmatrix} 0 & 4 \\ 2 & 0 \\ 1 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ 11 \end{pmatrix}.$

- (a) $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ (c) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (d) $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ (e) $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

- 6. Find \vec{u}_3 so that the subset $\left\{\begin{pmatrix}1\\1\\1\\1\end{pmatrix},\begin{pmatrix}1\\-1\\-1\end{pmatrix},\vec{u}_3\right\}$ becomes an orthogonal basis of W=
 - $Span\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\3\\1 \end{pmatrix} \right\}$
 - (a) $\begin{pmatrix} -3\\1\\-1\\3 \end{pmatrix}$ (b) $\begin{pmatrix} 1\\3\\1\\7 \end{pmatrix}$ (c) $\begin{pmatrix} 4\\2\\2\\4 \end{pmatrix}$ (d) $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$ (e) $\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}$

- 7. Find an orthonormal basis of the subspace $W = Span\left\{\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\9\\9\\1 \end{pmatrix}\right\}$.
 - (a) $\left\{\frac{1}{2}\begin{pmatrix}1\\1\\1\end{pmatrix}, \frac{1}{2}\begin{pmatrix}1\\-1\\-1\end{pmatrix}\right\}$ (b) $\left\{\begin{pmatrix}1\\1\\1\\1\end{pmatrix}, \begin{pmatrix}1\\-1\\-1\end{pmatrix}\right\}$ (c) $\left\{\begin{pmatrix}1\\1\\1\\1\end{pmatrix}, \begin{pmatrix}1\\9\\9\\1\end{pmatrix}\right\}$

- (d) $\left\{\frac{1}{2} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\9\\9 \end{pmatrix}\right\}$ (e) $\left\{\frac{1}{2} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\9\\-9 \end{pmatrix}\right\}$

- 8. Let $A = \frac{1}{7} \begin{pmatrix} 2 & 6 & 3 \\ 3 & 2 & -6 \\ 6 & -3 & 2 \end{pmatrix}$. Find A^{-1} .
 - (a) $\frac{1}{7} \begin{pmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{pmatrix}$ (b) A^2

(c) A^{3}

(d) 0

- (e) $\begin{pmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{pmatrix}$
- 9. Solve the initial value problem of ty' + 2y = 4t with the initial condition y(1) = 3

- (a) $t^2 + \frac{2}{t^2}$ (b) $t^2 + \frac{1}{t^2}$ (c) $t^2 \frac{1}{t^2}$ (d) $2t^2 + \frac{1}{t^2}$ (e) $t^2 \frac{2}{t^2}$
- 10. Solve equation $y' = 9.8 \frac{y}{5}$ with initial condition y(0) = 50.

 - (a) $49 + e^{-\frac{t}{5}}$ (b) $1 + 49e^{-\frac{t}{5}}$ (c) 50
- (d) 9.8
- (e) 49

- 11. Find all solutions to the separable equation $y' = \frac{x^2}{y(1+x^3)}$.
 - (a) $3y^2 2\ln|1 + x^3| = c$ (b) $3y^2 \ln|1 + x^3| = c$ (c) $y^2 2\ln|1 + x^3| = c$

(d) 0

(e) $2u^2 - 3\ln|1 + x^3| = c$

- 12. Suppose that a sum S_0 is invested at an annual rate of return r compounded continuously. Find the return rate that must be achieved if the initial investment is to double in 10 years.
 - (a) $\frac{\ln 2}{10}$
- (b) $\frac{\ln 10}{2}$ (c) 10% (d) 20%
- (e) 2

13. Find the solution of $\frac{dy}{dt} = \frac{1}{2}(1-y)y$ with y(0) = 4 and find $\lim_{t \to \infty} y(t)$.

14. Find an integrating factor for the equation $(3xy + y + 1)dx + (x^2 + xy)dy = 0$ and then solve the equation.

15. Find $\min_{\mathbf{x}} \{ \|A\mathbf{x} - \mathbf{b}\| \}$, where $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix}$. (Hint: the least squares solution \mathbf{x}^* is given by $(A^T A)^{-1} A^T \mathbf{b}$).