\qquad

Math 20810: Honors Algebra I
 Fall Semester 2008
 Final Exam
 Thursday, December 18

This examination contains 6 problems, not counting the extra credit at the end. All vector spaces on this exam are finite dimensional and real (i.e. vector spaces over \mathbf{R}). On computational problems please show enough work (or give enough explanation) to justify your answer.

Scores

Question	Possible	Actual
1	20	
2	30	
$3-6$	50	
Total	100	

GOOD LUCK

1. Respond to all of the following. (5 points each)
(a) Define linearly independent.
(b) State the Cayley-Hamilton Theorem.
(c) Define eigenvector.
(d) Define the adjoint of a linear transformation.
2. Following are twelve assertions. Many are false. Find five false ones and, on the next page, give specific counterexamples. Note that you need not justify your examples. It might encourage you to know that for every false statement there's a fairly simple counterexample involving vector spaces with small dimensions. (6 points each)
(a) If V is a finite dimensional inner product space and $H \subset V$ is a subspace, then there is a unique subspace $H^{\prime} \subset V$ complementary to H.
(b) If two square matrices are similar, then they have the same determinant.
(c) A union of two subspaces is a subspace.
(d) Suppose V is an inner product space and H is a subspace. Then for every \mathbf{v} in V, the norm (i.e. length) of \mathbf{v} is at least as large as the length of the orthogonal projection of \mathbf{v} onto H.
(e) If $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear operator, then there is a vector $\mathbf{v} \in \mathbf{R}^{2}$ such that $\{\mathbf{v}, T(\mathbf{v})\}$ is a basis for \mathbf{R}^{2}.
(f) If $A \in M_{n \times n}(\mathbf{R})$ and t is a scalar, then $\operatorname{det}(t A)=t \operatorname{det}(A)$.
(g) If A is an invertible matrix, then A and A^{-1} have the same characteristic polynomial.
(h) If $\operatorname{dim} V>\operatorname{dim} W$ and $T: V \rightarrow W$ is linear, then T is not surjective.
(i) Let V be a finite dimensional inner product space and $H_{1}, H_{2} \subset V$ be orthogonal subspaces. Then $\operatorname{dim} H_{1}+\operatorname{dim} H_{2} \leq \operatorname{dim} V$.
(j) If $T: V \rightarrow V$ is an operator, then $\operatorname{ker} T$ is a T-invariant subspace.
(k) All linear operators are diagonalizable.
(l) If the characteristic polynomial of a linear operator $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is $x^{2}-2 x$, then T is not invertible.

Your answers to Problem 2:
3. (15 points) Consider the matrix $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & -1\end{array}\right]$.
(a) Find A^{-1}.
(b) Based on your computation of A^{-1}, what is $\operatorname{det} A$?
4. (15 points) Suppose $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ is given by $T(\mathbf{x})=A \mathbf{x}$ where

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
4 & -5 & -4 \\
-2 & 2 & 1
\end{array}\right]
$$

(a) Show that $(0,2,-1)$ is an eigenvector of T and find the corresponding eigenvalue. Do this before finding the characteristic polynomial of T !
(b) Find the characteristic polynomial of T.
(c) Find a basis $\mathcal{B} \subset \mathbf{R}^{3}$ and a diagonal matrix D such that T has matrix D relative to \mathcal{B}. Or explain why this can't be done.
5. (10 points) Consider the linear system $\left[\begin{array}{cc}1 & 3 \\ 1 & -1 \\ 1 & 1\end{array}\right] \mathbf{x}=\left(\begin{array}{l}5 \\ 1 \\ 0\end{array}\right)$.

- Find the least squares solution.
- Using your answer, determine how far the right side of the equation is from the column space of the matrix on the left side.

6. (10 points) Let $V=P_{2}(\mathbf{R})$ and consider the inner product $\langle p(x), q(x)\rangle=p(1) q(1)+$ $p(0) q(0)+p(-1) q(-1)$.
(a) Explain briefly why this is non-degenerate. That is, why is $\|p(x)\|=0$ only if $p(x)$ is the zero polynomial?
(b) Find an orthogonal basis for $P_{2}(\mathbf{R})$ relative to this inner product.
7. (Extra credit-5 points) Suppose that V is a finite dimensional vector space and T : $V \rightarrow V$ is a linear operator such that $T^{2}=$ id. Show that there is a basis for V relative to which the matrix for T is diagonal with block form

$$
\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right] .
$$

Note that the two blocks can have different sizes and either one might be empty.

