Upper Triangular Matrices and Normal Operators

In class I got hung up on establishing the following fact, which Treil uses in his proof of the spectral theorem for normal operators.

Proposition 0.1. Let $A \in M_{n \times n}(\mathbf{C})$ be an upper triangular matrix such that $\bar{A}^{T} A=A \bar{A}^{T}$. Then A is diagonal.

Treil proves this fact himself in the text. He also observes (earlier) that the corresponding fact in the self-adjoint case ('If $A=\bar{A}^{T}$ is upper triangular, then A is diagonal') is obvious. Nevertheless, in order to assuage my guilty conscience, I give you my argument, cleaned up and corrected, in writing.

Proof. Let the columns of A be denoted in order by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and the rows of A by $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$. Then with a little effort, one sees that the $i j$-entry of $\bar{A}^{T} A$ is $\overline{\mathbf{v}_{i} \cdot \mathbf{v}_{j}}=\left\{\mathbf{v}_{j} \cdot \mathbf{v}_{i}\right\}$ (I think I forgot the bar in class). In particular, the ii-element of $\bar{A}^{T} A$ is $\left\|\mathbf{v}_{i}\right\|^{2}$. Similarly, the $i i$-entry of $A \bar{A}^{T}$ is $\left|\mathbf{w}_{i}\right|^{2}$. So if A and \bar{A}^{T} commute, we must have that the norm of the i th row of A is the same as the norm of the i th column.

Now suppose, in order to reach a contradiction, that A is not diagonal. Let i be the smallest index such that the i th row of A contains a non-zero off-diagonal element $a_{i J}$, for some $i<J \leq n$. Then

$$
\left\|\mathbf{w}_{i}\right\|^{2}=\sum_{j=1}^{n}\left|a_{i j}\right|^{2} \geq\left|a_{i i}\right|^{2}+\left|a_{i J}\right|^{2} .
$$

But on the other hand, the i th column of A contains no non-zero off diagonal elements. We have $a_{j i}=0$ for $j>i$ because A is upper triangular, and $a_{j i}=0$ for $j<i$, by our choice of i. Hence

$$
\left\|\mathbf{v}_{i}\right\|^{2}=\left|a_{i i}\right|^{2}<\left|a_{i i}\right|^{2}+\left|a_{i j}\right|^{2} \leq\left\|\mathbf{w}_{i}\right\|^{2},
$$

which by the first paragraph is inconsistent with the fact that A and \bar{A}^{T} commute. I conclude that there are no non-zero off-diagonal elements in A.

