Upper Triangular Matrices and Normal Operators

In class I got hung up on establishing the following fact, which Treil uses in his proof of the spectral theorem for normal operators.

Proposition 0.1. Let $A \in M_{n \times n}(\mathbf{C})$ be an upper triangular matrix such that $\bar{A}^T A = A\bar{A}^T$. Then A is diagonal.

Treil proves this fact himself in the text. He also observes (earlier) that the corresponding fact in the self-adjoint case ('If $A = \overline{A}^T$ is upper triangular, then A is diagonal') is obvious. Nevertheless, in order to assuage my guilty conscience, I give you my argument, cleaned up and corrected, in writing.

Proof. Let the columns of A be denoted in order by $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and the rows of A by $\mathbf{w}_1, \ldots, \mathbf{w}_n$. Then with a little effort, one sees that the *ij*-entry of $\bar{A}^T A$ is $\overline{\mathbf{v}_i \cdot \mathbf{v}_j} = {\mathbf{v}_j \cdot \mathbf{v}_i}$ (I think I forgot the bar in class). In particular, the *ii*-element of $\bar{A}^T A$ is $\|\mathbf{v}_i\|^2$. Similarly, the *ii*-entry of $A\bar{A}^T$ is $\|\mathbf{w}_i\|^2$. So if A and \bar{A}^T commute, we must have that the norm of the *i*th row of A is the same as the norm of the *i*th column.

Now suppose, in order to reach a contradiction, that A is not diagonal. Let i be the smallest index such that the *i*th row of A contains a non-zero off-diagonal element a_{iJ} , for some $i < J \leq n$. Then

$$\|\mathbf{w}_i\|^2 = \sum_{j=1}^n |a_{ij}|^2 \ge |a_{ii}|^2 + |a_{iJ}|^2.$$

But on the other hand, the *i*th column of A contains no non-zero off diagonal elements. We have $a_{ji} = 0$ for j > i because A is upper triangular, and $a_{ji} = 0$ for j < i, by our choice of *i*. Hence

$$\|\mathbf{v}_i\|^2 = |a_{ii}|^2 < |a_{ii}|^2 + |a_{ij}|^2 \le \|\mathbf{w}_i\|^2$$
,

which by the first paragraph is inconsistent with the fact that A and \bar{A}^T commute. I conclude that there are no non-zero off-diagonal elements in A.