
1. Berman-Boucksom formula for the derivative of the modified energy

functional

Let X be a compact complex manifold with Kähler form ω. Let E : PSH(ω) → [−∞,∞)
be the Aubin-Mabuchi energy functional discussed in class, and E1(ω) denote the subset of
PSH(ω) on which E is finite. From concavity and upper-semicontinuity of E, it follows that
E1 is convex and closed (in the L1 topology).

Given ϕ ∈ E1(ω) and ψ ∈ C(X), we set ϕt = ϕ+ tψ and e(t) = E(ϕt). We showed in class
that e′(0) =

∫

ψ ωnϕ, which is very useful for understanding critical points of E. However,
a big drawback in the definition of e is that it concerns values of the energy functional at
functions ϕt which are not necessarily ω-psh. To fix this problem, we replace E with the
modified energy functional E ◦ P where, for any usc function φ we define P (φ) to be an
upper envelope

P (φ) := sup{u ∈ PSH(ω) : u ≤ φ}.

If the set on the right side is non-empty, then P (φ) ∈ PSH(ω) (note that the upper envelope
P (φ) is automatically usc since φ is). If not, we set P (φ) ≡ −∞. Several properties of P
are immediate consequences of the definition:

• P (φ) ≤ φ with equality everywhere if and only if ϕ ∈ PSH(ω);
• P (φ1 + φ2) ≥ P (φ1) + P (φ2);
• φ1 ≤ φ2 implies P (φ1) ≤ P (φ2);
• P (ϕt) ≥ ϕ+ t ‖ψ‖

∞
.

A less obvious property that will be important to us is

Theorem 1.1. For any continuous function φ on X, we have P (φ) = φ a.e. with respect to

ωP (φ).

Proof. Suppose P (φ) < φ at z0. We work in local coordinates about z0. Since P (φ)− φ is

usc, there exist ǫ, r > 0 such that P (φ) < φ(z0)− ǫ < φ on Br(z0). Let h be a local potential

for ω on a neighborhood of Br(z0). Let u : Br(z0) → R be the maximal psh function such
that u ≡ P (φ) + h on bBr(z0). Then

φ̃ :=

{

u− h on Br(z0)
P (φ) on X − Br(z0).

is an ω-psh function satisfying P (φ) ≤ φ̃ ≤ φ. Therefore P (φ) = φ̃ and ωnP (φ) = (ddcu)n ≡ 0

on Br(z0). It follows that z0 /∈ suppωnP (φ). �

Let ẽ(t) = E ◦ P (ϕt). Berman and Boucksom showed that ẽ has the same derivative as e
at t = 0.

Theorem 1.2. ẽ′(0) =
∫

ψ ωnϕ

Let us take this theorem for granted momentarily and explain its connection with varia-
tional solution of the complex Monge-Ampere equation.

Corollary 1.3. Let µ be a non-negative Borel measure on X with the same total mass as

ωn. If ϕ ∈ E(ω) maximizes Eµ(ϕ) := E(ϕ)−
∫

ϕµ, then ωnϕ = µ.
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Proof. Note first that since P (ϕ) = ϕ, we have that ϕ maximizes Eµ◦P over all usc functions
on X . On the other hand, since P (φ) ≤ φ, we have

E ◦ P (φ)−

∫

φµ ≤ Eµ ◦ P (φ)

with equality at any φ ∈ PSH(ω). Hence ϕ also maximizes the left side of this inequality.
But the second term on the left is linear in ϕ, so from Theorem 1.2, we see that the function

g(t) = E ◦ P (ϕt)−

∫

ϕt µ

is differentiable at t = 0 with

g′(0) =

∫

ψ (ωnϕ − µ).

We infer that the right side is zero for any ψ ∈ C(X). Hence ωnϕ = µ as desired. �

1.1. Proof of Theorem 1.2, step 1. We spend the remainder of this section proving
Theorem 1.2. First we reduce to the case where both ϕ and ψ are smooth. Since both
functions are at least usc, we can choose sequences (ϕj), (ψj) ⊂ C∞(X) decreasing to ϕ and
ψ at every point. One can check that then P (ϕj + tψj) decreases to P (ϕt), too.

Note that by the fundamental theorem of calculus, Theorem 1.2 is equivalent to the
statement that

ẽ(T )− ẽ(0) =

∫ T

0

∫

X

ψ ωnP (ϕt) dt.

By continuity of Monge-Ampere under decreasing limits and (on the right side) the domi-
nated convergence theorem, this equation is the limit of

E ◦ P (ϕj + tψj)− E ◦ P (ϕj) =

∫ T

0

∫

X

ψ ωnP (ϕj+tψj)
dt.

So it suffices to justify this equation, which is (again) equivalent to

d

dt
E ◦ P (ϕj + tψj)|t=0 =

∫

ψj ω
n
P (ϕj)

.

Note that we write P (ϕj) instead of ϕj on the right side, because we do not assume that the
approximants ϕj are ω-psh (we could do this if we were willing to break down and invoke
Demailly’s approximation theorem).

1.2. Proof of Theorem 1.2, step 2. So from now on, we take ϕ, ψ to be smooth, but
we do assume that ϕ is necessarily ω-psh. Our next step will be to ‘linearize’ out the E in
E ◦ P . By concavity of E, we have

ẽ(t)− ẽ(0) = E(P (ϕt))−E(P (ϕ)) ≤ DP (ϕ)E(P (ϕt)− P (ϕ)) =

∫

(P (ϕt)− P (ϕ))ωnP (ϕ).

Thus

lim sup
t→0

ẽ(t)− ẽ(0)

t
≤ lim sup

t→0

1

t

∫

(P (ϕt)− P (ϕ))ωnP (ϕ).

With slightly more effort we will show that the reverse inequality holds. For any t ∈ R and
any s ∈ [0, 1], we have ϕst = ϕ(1− s) + sϕt. Setting T = st, we invoke convexity of P to get

ẽ(T ) = E(P (ϕT )) ≥ E(P (ϕ) + s(P (ϕt)− P (ϕ)).



Letting s→ 0 while holding t fixed gives

lim inf
T→0

ẽ(T )− ẽ(0)

T
≥

1

t
DEP (ϕ)((P (ϕt)− P (ϕ)) =

1

t

∫

(P (ϕt)− P (ϕ))ωnP (ϕ).

Letting t→ 0 on the right side, we infer that ẽ′(0) exists and satisfies

ẽ′(0) = lim sup
t→0

1

t

∫

(P (ϕt)− P (ϕ))ωnP (ϕ).

1.3. Proof of Theorem 1.2, step 3. We will conclude the proof of Theorem 1.2 by showing
for any ϕ, ψ ∈ C(X).

lim
t→0

1

t

∫

(P (ϕt)− P (ϕ))ωnP (ϕ) =

∫

ψ ωnP (ϕ).

In fact ≤ follows from subadditivity of P : namely, P (ϕt) ≤ P (ϕ) + tP (ψ) ≤ P (ϕ) + tψ. So
we need only establish that

lim inf
t→0

1

t

∫

(P (ϕt)− P (ϕ)− tψ)ωnP (ϕ) ≥ 0.

Since P (ϕt) − P (ϕ) ≥ tP (ψ) ≥ −t ‖ψ‖
∞
, the integrand is bounded below by −Ct and is

non-zero only on the open set

Õt := {P (ϕt) < P (ϕ) + tψ} ⊂ Ot := {P (ϕt) < ϕt}{P (ϕt) < P (ϕ) + tψ}

It therefore suffices to show that ωnP (ϕ)(Õt) tends to 0 with t.

Scaling ψ appropriately, we may assume that ω ≥ −ddcψ, i.e. ψ ∈ PSH(ω). Hence ϕt and
ϕ̃t := P (ϕ) + tψ are ωt-psh, where ωt := (1 + t)ω. We estimate

∫

Õt

ωnP (ϕ) ≤

∫

Õt

(ωP (ϕ) + tωψ)
n =

∫

Õt

ωnt,P (ϕ)+tψ ≤

∫

Õt

ωt,P (ϕt) ≤

∫

Ot

ωt,P (ϕt),

the second inequality resulting from the comparison principle and the definition of Õt. The
last integral is equal to.

∫

Ot

ωnP (ϕt) +

n
∑

j=1

tj
(

n
j

)
∫

Ot

ωj ∧ ωn−j
P (ϕt)

Theorem 1.1 tells us that P (ϕt) = ϕt a.e. with respect to ωnP (ϕt)
, so the first integral is

zero. The integrals in the sum are all controlled by expanding the domain of integrationa
dn applying Stokes Theorem:

∫

Ot

ωj ∧ ωn−j
P (ϕt)

≤

∫

X

ωj ∧ ωn−j
P (ϕt)

=

∫

X

ωj.

Together our estimates show that
∫

Õt

ωnP (ϕ) ≤ O(t)

so that the left side tends to zero with t as desired. �


