1. Berman-Boucksom formula for the derivative of the modified energy FUNCTIONAL

Let X be a compact complex manifold with Kähler form ω. Let $E: \operatorname{PSH}(\omega) \rightarrow[-\infty, \infty)$ be the Aubin-Mabuchi energy functional discussed in class, and $\mathcal{E}^{1}(\omega)$ denote the subset of $\operatorname{PSH}(\omega)$ on which E is finite. From concavity and upper-semicontinuity of E, it follows that \mathcal{E}^{1} is convex and closed (in the L^{1} topology).

Given $\varphi \in \mathcal{E}^{1}(\omega)$ and $\psi \in C(X)$, we set $\varphi_{t}=\varphi+t \psi$ and $e(t)=E\left(\varphi_{t}\right)$. We showed in class that $e^{\prime}(0)=\int \psi \omega_{\varphi}^{n}$, which is very useful for understanding critical points of E. However, a big drawback in the definition of e is that it concerns values of the energy functional at functions φ_{t} which are not necessarily ω-psh. To fix this problem, we replace E with the modified energy functional $E \circ P$ where, for any usc function ϕ we define $P(\phi)$ to be an upper envelope

$$
P(\phi):=\sup \{u \in \operatorname{PSH}(\omega): u \leq \phi\} .
$$

If the set on the right side is non-empty, then $P(\phi) \in \operatorname{PSH}(\omega)$ (note that the upper envelope $P(\phi)$ is automatically usc since ϕ is). If not, we set $P(\phi) \equiv-\infty$. Several properties of P are immediate consequences of the definition:

- $P(\phi) \leq \phi$ with equality everywhere if and only if $\varphi \in \operatorname{PSH}(\omega)$;
- $P\left(\phi_{1}+\phi_{2}\right) \geq P\left(\phi_{1}\right)+P\left(\phi_{2}\right)$;
- $\phi_{1} \leq \phi_{2}$ implies $P\left(\phi_{1}\right) \leq P\left(\phi_{2}\right)$;
- $P\left(\varphi_{t}\right) \geq \varphi+t\|\psi\|_{\infty}$.

A less obvious property that will be important to us is
Theorem 1.1. For any continuous function ϕ on X, we have $P(\phi)=\phi$ a.e. with respect to $\omega_{P(\phi)}$.

Proof. Suppose $P(\phi)<\phi$ at z_{0}. We work in local coordinates about z_{0}. Since $P(\phi)-\phi$ is usc, there exist $\epsilon, r>0$ such that $P(\phi)<\phi\left(\underline{\left.z_{0}\right)-\epsilon}<\phi\right.$ on $\overline{B_{r}\left(z_{0}\right)}$. Let h be a local potential for ω on a neighborhood of $\overline{B_{r}\left(z_{0}\right)}$. Let $u: \overline{B_{r}\left(z_{0}\right)} \rightarrow \mathbf{R}$ be the maximal psh function such that $u \equiv P(\phi)+h$ on $b B_{r}\left(z_{0}\right)$. Then

$$
\tilde{\phi}:=\left\{\begin{array}{lll}
u-h & \text { on } & B_{r}\left(z_{0}\right) \\
P(\phi) & \text { on } & X-B_{r}\left(z_{0}\right) .
\end{array}\right.
$$

is an ω-psh function satisfying $P(\phi) \leq \tilde{\phi} \leq \phi$. Therefore $P(\phi)=\tilde{\phi}$ and $\omega_{P(\phi)}^{n}=\left(d d^{c} u\right)^{n} \equiv 0$ on $B_{r}\left(z_{0}\right)$. It follows that $z_{0} \notin \operatorname{supp} \omega_{P(\phi)}^{n}$.

Let $\tilde{e}(t)=E \circ P\left(\varphi_{t}\right)$. Berman and Boucksom showed that \tilde{e} has the same derivative as e at $t=0$.

Theorem 1.2. $\tilde{e}^{\prime}(0)=\int \psi \omega_{\varphi}^{n}$
Let us take this theorem for granted momentarily and explain its connection with variational solution of the complex Monge-Ampere equation.

Corollary 1.3. Let μ be a non-negative Borel measure on X with the same total mass as ω^{n}. If $\varphi \in \mathcal{E}(\omega)$ maximizes $E_{\mu}(\varphi):=E(\varphi)-\int \varphi \mu$, then $\omega_{\varphi}^{n}=\mu$.

Proof. Note first that since $P(\varphi)=\varphi$, we have that φ maximizes $E_{\mu} \circ P$ over all usc functions on X. On the other hand, since $P(\phi) \leq \phi$, we have

$$
E \circ P(\phi)-\int \phi \mu \leq E_{\mu} \circ P(\phi)
$$

with equality at any $\phi \in \operatorname{PSH}(\omega)$. Hence φ also maximizes the left side of this inequality. But the second term on the left is linear in φ, so from Theorem 1.2, we see that the function

$$
g(t)=E \circ P\left(\varphi_{t}\right)-\int \varphi_{t} \mu
$$

is differentiable at $t=0$ with

$$
g^{\prime}(0)=\int \psi\left(\omega_{\varphi}^{n}-\mu\right)
$$

We infer that the right side is zero for any $\psi \in C(X)$. Hence $\omega_{\varphi}^{n}=\mu$ as desired.
1.1. Proof of Theorem 1.2, step 1. We spend the remainder of this section proving Theorem 1.2. First we reduce to the case where both φ and ψ are smooth. Since both functions are at least usc, we can choose sequences $\left(\varphi_{j}\right),\left(\psi_{j}\right) \subset C^{\infty}(X)$ decreasing to φ and ψ at every point. One can check that then $P\left(\varphi_{j}+t \psi_{j}\right)$ decreases to $P\left(\varphi_{t}\right)$, too.

Note that by the fundamental theorem of calculus, Theorem 1.2 is equivalent to the statement that

$$
\tilde{e}(T)-\tilde{e}(0)=\int_{0}^{T} \int_{X} \psi \omega_{P\left(\varphi_{t}\right)}^{n} d t
$$

By continuity of Monge-Ampere under decreasing limits and (on the right side) the dominated convergence theorem, this equation is the limit of

$$
E \circ P\left(\varphi_{j}+t \psi_{j}\right)-E \circ P\left(\varphi_{j}\right)=\int_{0}^{T} \int_{X} \psi \omega_{P\left(\varphi_{j}+t \psi_{j}\right)}^{n} d t
$$

So it suffices to justify this equation, which is (again) equivalent to

$$
\left.\frac{d}{d t} E \circ P\left(\varphi_{j}+t \psi_{j}\right)\right|_{t=0}=\int \psi_{j} \omega_{P\left(\varphi_{j}\right)}^{n}
$$

Note that we write $P\left(\varphi_{j}\right)$ instead of φ_{j} on the right side, because we do not assume that the approximants φ_{j} are ω-psh (we could do this if we were willing to break down and invoke Demailly's approximation theorem).
1.2. Proof of Theorem 1.2, step 2. So from now on, we take φ, ψ to be smooth, but we do assume that φ is necessarily ω-psh. Our next step will be to 'linearize' out the E in $E \circ P$. By concavity of E, we have

$$
\tilde{e}(t)-\tilde{e}(0)=E\left(P\left(\varphi_{t}\right)\right)-E(P(\varphi)) \leq D_{P(\varphi)} E\left(P\left(\varphi_{t}\right)-P(\varphi)\right)=\int\left(P\left(\varphi_{t}\right)-P(\varphi)\right) \omega_{P(\varphi)}^{n} .
$$

Thus

$$
\limsup _{t \rightarrow 0} \frac{\tilde{e}(t)-\tilde{e}(0)}{t} \leq \limsup _{t \rightarrow 0} \frac{1}{t} \int\left(P\left(\varphi_{t}\right)-P(\varphi)\right) \omega_{P(\varphi)}^{n}
$$

With slightly more effort we will show that the reverse inequality holds. For any $t \in \mathbf{R}$ and any $s \in[0,1]$, we have $\varphi_{s t}=\varphi(1-s)+s \varphi_{t}$. Setting $T=s t$, we invoke convexity of P to get

$$
\tilde{e}(T)=E\left(P\left(\varphi_{T}\right)\right) \geq E\left(P(\varphi)+s\left(P\left(\varphi_{t}\right)-P(\varphi)\right)\right.
$$

Letting $s \rightarrow 0$ while holding t fixed gives

$$
\liminf _{T \rightarrow 0} \frac{\tilde{e}(T)-\tilde{e}(0)}{T} \geq \frac{1}{t} D E_{P(\varphi)}\left(\left(P\left(\varphi_{t}\right)-P(\varphi)\right)=\frac{1}{t} \int\left(P\left(\varphi_{t}\right)-P(\varphi)\right) \omega_{P(\varphi)}^{n} .\right.
$$

Letting $t \rightarrow 0$ on the right side, we infer that $\tilde{e}^{\prime}(0)$ exists and satisfies

$$
\tilde{e}^{\prime}(0)=\limsup _{t \rightarrow 0} \frac{1}{t} \int\left(P\left(\varphi_{t}\right)-P(\varphi)\right) \omega_{P(\varphi)}^{n} .
$$

1.3. Proof of Theorem 1.2, step 3. We will conclude the proof of Theorem 1.2 by showing for any $\varphi, \psi \in C(X)$.

$$
\lim _{t \rightarrow 0} \frac{1}{t} \int\left(P\left(\varphi_{t}\right)-P(\varphi)\right) \omega_{P(\varphi)}^{n}=\int \psi \omega_{P(\varphi)}^{n} .
$$

In fact \leq follows from subadditivity of P : namely, $P\left(\varphi_{t}\right) \leq P(\varphi)+t P(\psi) \leq P(\varphi)+t \psi$. So we need only establish that

$$
\liminf _{t \rightarrow 0} \frac{1}{t} \int\left(P\left(\varphi_{t}\right)-P(\varphi)-t \psi\right) \omega_{P(\varphi)}^{n} \geq 0
$$

Since $P\left(\varphi_{t}\right)-P(\varphi) \geq t P(\psi) \geq-t\|\psi\|_{\infty}$, the integrand is bounded below by $-C t$ and is non-zero only on the open set

$$
\tilde{\mathcal{O}}_{t}:=\left\{P\left(\varphi_{t}\right)<P(\varphi)+t \psi\right\} \subset \mathcal{O}_{t}:=\left\{P\left(\varphi_{t}\right)<\varphi_{t}\right\}\left\{P\left(\varphi_{t}\right)<P(\varphi)+t \psi\right\}
$$

It therefore suffices to show that $\omega_{P(\varphi)}^{n}\left(\tilde{\mathcal{O}}_{t}\right)$ tends to 0 with t.
Scaling ψ appropriately, we may assume that $\omega \geq-d d^{c} \psi$, i.e. $\psi \in \operatorname{PSH}(\omega)$. Hence φ_{t} and $\tilde{\varphi}_{t}:=P(\varphi)+t \psi$ are ω_{t}-psh, where $\omega_{t}:=(1+t) \omega$. We estimate

$$
\int_{\tilde{\mathcal{O}}_{t}} \omega_{P(\varphi)}^{n} \leq \int_{\tilde{\mathcal{O}}_{t}}\left(\omega_{P(\varphi)}+t \omega_{\psi}\right)^{n}=\int_{\tilde{\mathcal{O}}_{t}} \omega_{t, P(\varphi)+t \psi}^{n} \leq \int_{\tilde{\mathcal{O}}_{t}} \omega_{t, P\left(\varphi_{t}\right)} \leq \int_{\mathcal{O}_{t}} \omega_{t, P\left(\varphi_{t}\right)},
$$

the second inequality resulting from the comparison principle and the definition of $\tilde{\mathcal{O}}_{t}$. The last integral is equal to.

$$
\int_{\mathcal{O}_{t}} \omega_{P\left(\varphi_{t}\right)}^{n}+\sum_{j=1}^{n} t^{j}\binom{n}{j} \int_{\mathcal{O}_{t}} \omega^{j} \wedge \omega_{P\left(\varphi_{t}\right)}^{n-j}
$$

Theorem 1.1 tells us that $P\left(\varphi_{t}\right)=\varphi_{t}$ a.e. with respect to $\omega_{P\left(\varphi_{t}\right)}^{n}$, so the first integral is zero. The integrals in the sum are all controlled by expanding the domain of integrationa dn applying Stokes Theorem:

$$
\int_{\mathcal{O}_{t}} \omega^{j} \wedge \omega_{P\left(\varphi_{t}\right)}^{n-j} \leq \int_{X} \omega^{j} \wedge \omega_{P\left(\varphi_{t}\right)}^{n-j}=\int_{X} \omega^{j}
$$

Together our estimates show that

$$
\int_{\tilde{\mathcal{O}}_{t}} \omega_{P(\varphi)}^{n} \leq O(t)
$$

so that the left side tends to zero with t as desired.

