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1. Introduction.

The main goal of these notes is to present a more-or-less self-contained
discussion of some of the recent results and techniques of Berman-
Boucksom in the setting of weighted pluripotential theory. We follow
mainly the arguments of Berman-Boucksom in [4], [5] and [6] as well as
the Berman paper [3] and the paper of Berman-Boucksom-Nystrom [7]
These notes are for comprehension purposes only, not for publication;
the key results are from [4], [5], [6], [7] and [3]. In particular, these
notes provide

(1) a proof of Rumely’s formula relating the transfinite diameter of
a compact setK in C

d with certain integrals involving the Robin
function ρK of K, as well as weighted versions of the formula;

(2) a proof that asymptotically Fekete arrays distribute asymptoti-
cally to the Monge-Ampere measure µK := 1

(2π)d
(ddcV ∗

K)
d of the

global extremal function V ∗
K , and, more generally, that asymp-

totically weighted Fekete arrays distribute asymptotically to the
weighted Monge-Ampere measure µK,Q := 1

(2π)d
(ddcV ∗

K,Q)
d of

the weighted global extremal function V ∗
K,Q;

(3) a proof that (weighted) optimal measures distribute asymptot-
ically like the (weighted) Monge-Ampere measure µK (µK,Q);

(4) general results on strong Bergman asymptotics for Bernstein-
Markov pairs (K,µ) where µ is a measure on K, as well as for
weighted Bernstein-Markov triples (K,µ,Q).

We provide some background results on pluripotential theory and
weighted pluripotential theory. Many items which are nowadays con-
sidered fundamental (albeit not necessarily elementary to prove) are
stated without proof but with references. In particular, Appendix B in
[28] as well as [9] are good sources for weighted pluripotential theory.
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A note to those not yet initiated in this area: the weighted theory is
essential for proving even the unweighted versions of (1)-(4).
We would like to thank several people for valuable comments regard-

ing portions of this material; in alphabetical order, here is a subset:
Muhammed Ali Alan, Tom Bagby, Tom Bloom, Len Bos, Dan Coman
and Eugene Poletsky. The biggest thanks, of course, go to Robert
Berman and Sébastien Boucksom for their deep and beautiful work, as
well as their patience with my questions. My main reason for writ-
ing these notes is to advertise their contributions to the pluripotential
theory community.
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2. Background.

2.1. Extremal functions and extremal measures. In pluripoten-
tial theory, one considers E ⊂ Cd compact or, slightly more general,
E ⊂ Cd is a bounded Borel set. The global extremal function or global
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pluricomplex Green function of E is given by V ∗
E(z) := lim supζ→z VE(ζ)

where
VE(z) := sup{u(z) : u ∈ L(Cd), u ≤ 0 on E}.

Here, L(Cd) is the set of all plurisubharmonic (psh) functions u on
C

d with the property that u(z) − log |z| = 0(1), |z| → ∞. Either
V ∗
E ∈ L+(Cd) where

L+(Cd) = {u ∈ L(Cd) : u(z) ≥ log+ |z|+ C}
and C is a constant depending on u, or V ∗

E ≡ +∞. This latter situation
happens precisely when E is pluripolar. If E is compact,

VE(z) = sup{ 1

deg(p)
log |p(z)| : ||p||E ≤ 1}

where p is a polynomial. We call

µE :=
1

(2π)d
(ddcV ∗

E)
d

the extremal measure for E if E is not pluripolar. Here, ddc = 2i∂∂
although in Appendix 2 we incorporate a factor of 2π.
In the weighted theory, one restricts to closed sets but, for certain

weights, these sets may be unbounded. To be precise, let K ⊂ Cd

be closed and let w be an admissible weight function on K: w is a
nonnegative, usc function with {z ∈ K : w(z) > 0} nonpluripolar; if K
is unbounded, we require that w satisfies the growth property

(2.1) |z|w(z) → 0 as |z| → ∞, z ∈ K.

Let Q := − logw – we use Q and w interchangeably – and define the
weighted extremal function or weighted pluricomplex Green function
V ∗
K,Q(z) := lim supζ→z VK,Q(ζ) where

VK,Q(z) := sup{u(z) : u ∈ L(Cd), u ≤ Q on K}.
We have V ∗

K,Q ∈ L+(Cd). In the unbounded case, note that property
(2.1) is equivalent to

Q(z)− log |z| → +∞ as |z| → ∞ through points in K.

Due to this growth assumption for Q, VK,Q is well-defined and equals
VK∩BR,Q for R > 0 sufficiently large where BR = {z : |z| ≤ R} (Defini-
tion 2.1 and Lemma 2.2 of Appendix B in [28]). It is known that the
support

Sw := supp(µK,Q)
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of the weighted extremal measure

µK,Q :=
1

(2π)d
(ddcV ∗

K,Q)
d

is compact – this plays a very important role in what follows;

(2.2) Sw ⊂ S∗
w := {z ∈ K : V ∗

K,Q(z) ≥ Q(z)};
moreover,

V ∗
K,Q = Q q.e. on Sw

(i.e., V ∗
K,Q = Q on Sw − F where F is pluripolar); and if u ∈ L(Cd)

satisfies u ≤ Q q.e. on Sw then u ≤ V ∗
K,Q on Cd. Indeed,

(2.3)

VK,Q(z) = sup{ 1

deg(p)
log |p(z)| : ||wdeg(p)p||Sw ≤ 1, p polynomial}

and
||wdeg(p)p||Sw = ||wdeg(p)p||K .

Theorem 2.8 of Appendix B in [28] includes the slightly stronger state-
ment that

V ∗
K,Q(z) =

[
sup{ 1

deg(p)
log |p(z)| : ||wdeg(p)p||∗K ≤ 1, p polynomial}

]∗

where

||wdeg(p)p||∗K := inf{||wdeg(p)p||K\F : F ⊂ K pluripolar}.
The unweighted case is when K is compact and w ≡ 1 (Q ≡ 0); we

then write VK := VK,0 to be consistent with the previous notation.
Even in one variable (d = 1) the weighted theory introduces new

phenomena from the unweighted case. As an elementary example, µK

puts no mass on the interior of K (in one variable, the support of
µK is the outer boundary of K); but this is not necessarily true in
the weighted setting. As a simple but illustrative example, taking K
to be the closed unit ball {z : |z| ≤ 1} and Q(z) = |z|2, it is easy
to see that VK,Q = Q on the ball {z : |z| ≤ 1/

√
2} and VK,Q(z) =

log |z|+ 1/2− log(1/
√
2) outside this ball. Indeed, taking K = Cd and

the same weight function Q(z) = |z|2, one obtains the same weighted
extremal function VK,Q; this illustrates one of the results in subsection
4.1.
A compact set K is called regular if VK = V ∗

K ; i.e., VK is continuous;
and K is locally regular if for each z ∈ K, the set K is locally regular
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at z; i.e., the sets K ∩ Br(z) are regular for r > 0 where Br(z) denotes
the ball of radius r centered at z. If K is locally regular and Q is
continuous, then VK,Q is continuous (cf, [31]). Indeed, if K is compact
and VK,Q is continuous for every continuous admissible weight Q on K,
then K is locally regular (Proposition 6.1 [23]). If K is an arbitrary
compact set, then for ǫ > 0,

Kǫ := {z ∈ C
d : dist(z,K) ≤ ǫ}

is a regular compact set and

lim
ǫ↓0

VKǫ = VK ;

indeed, VK1/j
↑ VK as j ↑ ∞ (cf., Corollary 5.1.5 of [22]). In the

weighted case, given a compact, nonpluripolar set K and an admissible
weight w onK, we can find a sequence of locally regular compacta {Kj}
decreasing toK and a sequence of weights {wj} with wj continuous and
admissible on Kj such that wj ↓ w on K. In this setting,

(2.4) VKj ,Qj
↑ VK,Q.

A proof of (2.4) can be found in [12] (equation (7.4)). We give a con-
struction of such locally regular compacta {Kj} and weights {wj} in
Proposition 7.9 of Appendix 1.
A bit of notation: if Q is an admissible weight on Cd, then we write

VQ := VCd,Q. Note that an admissible weight Q on a closed set K can
always be extended in a trivial way to all of Cd by setting Q := +∞
on Cd \K so that VQ = VK,Q.
We often want to emphasize the relation between the weight Q and

the weighted extremal function V ∗
K,Q, so we may write

(2.5) P (Q) = PK(Q) := V ∗
K,Q

especially in section 4.2. Two elementary observations are that this
“projection” operation P is increasing and concave. Precisely, if Q1 ≤
Q2 are admissible weights on E, then trivially P (Q1) ≤ P (Q2); and if
0 ≤ s ≤ 1 and a, a′ are admissible weights on E,

(2.6) P (sa+ (1− s)a′) ≥ sP (a) + (1− s)P (a′).

Note that sa + (1 − s)a′, being a convex combination of a, a′, is an
admissible weight on E. Then (2.6) follows since the right-hand-side
is a competitor for the weighted extremal function on the left-hand-
side. Also, for future use, we show that P is Lipschitz; i.e., if a, b are
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admissible weights on E and 0 ≤ t ≤ 1 then on Cd,

(2.7) |P (a+ t(b− a))− P (a)| ≤ Ct

where C = C(a, b). Similarly, if u ∈ C(E), we have, for t ∈ R,

(2.8) |P (a+ tu)− P (a)| ≤ C|t|
where C = C(u). To see these, first observe that

P (a+ t(b− a)) ≤ a + t(b− a)

on Cd so that, on D(0) := {P (a) = a},
P (a+ t(b− a)) ≤ a+ |t| sup

D(0)

|b− a|

which implies, by the definition of P (a), equation (2.2) and the remark
following, that

P (a+ t(b− a)) ≤ P (a) + |t| sup
D(0)

|b− a|

on Cd. Similarly,

P (a) ≤ a

on C
d so that

P (a) ≤ a = P (a+ t(b− a))− t(b− a)

on D(t) := {P (a+ t(b− a)) = a + t(b− a)} which implies

P (a) ≤ P (a+ t(b− a)) + |t| sup
D(t)

|b− a|

on D(t). Thus again by the definition of P (a+ t(b−a)), equation (2.2)
and the remark following,

P (a) ≤ P (a+ t(b− a)) + |t| sup
D(t)

|b− a|

on Cd. This gives (2.7) with C = max[supD(0) |b − a|, supD(t) |b − a|]
or (2.8) with C = supE |u|. In the former case, if E is unbounded, in
order that max[supD(0) |b− a|, supD(t) |b− a|] is a finite constant which
is independent of t, we assume that

(2.9) ∪0≤t≤1 D(t) is bounded and u := b− a ∈ L∞(∪0≤t≤1D(t)).

Then (2.7) holds. This observation will be used in the proof of Theorem
4.1. Of course in both cases, if E is compact, C is finite.
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Associated to the asymptotic behavior of the weighted pluricomplex
Green function V ∗

K,Q is its Robin function

ρK,Q(z) := lim sup
|λ|→∞

[V ∗
K,Q(λz)− log |λ|].

We write ρK := ρK,0 in the unweighted case. This is a logarithmically
homogeneous psh function in L(Cd). A “projectivized” version is

(2.10) ρ̃K,Q(z) := lim sup
|λ|→∞

[V ∗
K,Q(λz)− log |λz|].

Indeed, given any function u ∈ L(Cd), we can form the Robin function

ρu(z) := lim sup
|λ|→∞

[u(λz)− log |λ|]

and the “projectivized” Robin function

ρ̃u(z) := lim sup
|λ|→∞

[u(λz)− log |λz|].

Since ρ̃(tz) = ρ̃(z) for t ∈ C \ {0}, we can consider ρ̃ as a function on
lines through the origin in Cd; i.e., as a function on Pd−1. In general,
either ρu ≡ −∞ or ρu is a logarithmically homogeneous psh function
in L(Cd). This latter case always occurs if, e.g., u ∈ L+(Cd). In this
case ρ̃u is bounded (above and below).
We record two results related to the classes L(Cd) and L+(Cd). The

first is a domination principle and the second is a comparison principle
in L+(Cd). The first result is Lemma 6.5 in [1].

Proposition 2.1. Let u ∈ L+(Cd) and v ∈ L(Cd). If v ≤ u a.e-
(ddcu)d, then v ≤ u in Cd.

Proposition 2.2. Let u1, u2 ∈ L+(Cd). Then
∫

{u1<u2}
(ddcu2)

d ≤
∫

{u1<u2}
(ddcu1)

d.

Note that the integrand may be unbounded but since u1, u2 ∈ L+(Cd)
each integral is finite (indeed, bounded above by (2π)d).

Proof. By adding a constant to u1, if necessary, we may assume u1 ≥ 0.
Then for ǫ > 0, we have

{(1 + ǫ)u1 < u2} ⊂ {u1 < u2}
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and {(1+ ǫ)u1 < u2} is bounded. By the standard comparison theorem
for locally bounded psh functions on bounded domains (cf., Theorem
3.7.1, [22]),

(2.11)

∫

{(1+ǫ)u1<u2}
(ddcu2)

d ≤ (1 + ǫ)d
∫

{(1+ǫ)u1<u2}
(ddcu1)

d.

Clearly
∞⋃

j=1

{(1 + 1/j)u1 < u2} = {u1 < u2}

so applying (2.11) with ǫ = 1/j, the result follows by monotone con-
vergence upon letting j → ∞. �

2.2. Transfinite diameter. We let Pn denote the complex vector
space of holomorphic polynomials of degree at most n and we adopt
the convention that

N = N(n) := dimPn =

(
n+ d

n

)
.

Thus

Pn = span{e1, ..., eN}
where {ej(z) := zα(j)} are the standard basis monomials. For points
ζ1, ..., ζN ∈ Cd, let

(2.12) V DM(ζ1, ..., ζN) = det[ei(ζj)]i,j=1,...,N

= det



e1(ζ1) e1(ζ2) . . . e1(ζN)

...
...

. . .
...

eN (ζ1) eN(ζ2) . . . eN (ζN)




and for a compact subset K ⊂ Cd let

Vn = Vn(K) := max
ζ1,...,ζN∈K

|V DM(ζ1, ..., ζN)|.

Then

(2.13) δ(K) = δ1(K) = lim
n→∞

V
d+1
dnN
n

where dnN
d+1

is the sum of the degrees of a set of basis monomials for
Pn, is the transfinite diameter of K. The temporary superscript “1”
refers to a weight w ≡ 1. Zaharjuta [32] showed that the limit exists;
we outline his proof in Appendix 1.
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The Rumely formula, relating the transfinite diameter δ(K) with V ∗
K

and ρ̃K , can be stated as follows:
(2.14)

−log δ(K) =
1

d(2π)d−1

∫

Pd−1

[ρ̃K−ρ̃T ]
d−1∑

j=0

(ddcρ̃K+ω)j∧(ddcρ̃T+ω)d−j−1.

Here, ω is the standard Kähler form on Pd and T is the unit torus in
Cd. We will prove a generalization of (2.14) in section 5.
More generally, let K ⊂ Cd be compact and let w be an admissible

weight function on K. Given ζ1, ..., ζN ∈ K, let

W (ζ1, ..., ζN) := V DM(ζ1, ..., ζN)w(ζ1)
n · · ·w(ζN)n

= det



e1(ζ1) e1(ζ2) . . . e1(ζN)

...
...

. . .
...

eN (ζ1) eN(ζ2) . . . eN(ζN)


 · w(ζ1)n · · ·w(ζN)n

be a weighted Vandermonde determinant. Let

(2.15) Wn(K) := max
ζ1,...,ζN∈K

|W (ζ1, ..., ζN)|

and define an n−th weighted Fekete set for K and w to be a set of N
points ζ1, ..., ζN ∈ K with the property that

|W (ζ1, ..., ζN)| = Wn(K).

We also write δw,n(K) := Wn(K)
d+1
dnN and define

(2.16) δw(K) := lim
n→∞

δw,n(K) := lim
n→∞

Wn(K)
d+1
dnN .

A proof of the existence of the limit may be found in [4] or [13]; we give
this latter proof in Appendix 1 (see Proposition 7.7).

The weighted Fekete conjecture is that for each n, let x
(n)
1 , ..., x

(n)
N be

an n−th weighted Fekete set for K and w and let µn := 1
N

∑N
j=1 δx(n)

j
.

Then

µn → 1

(2π)d
(ddcV ∗

K,Q)
d weak− ∗.

This is one of the applications of the Berman-Boucksom theory, to be
presented in section 6. Indeed, we prove a slightly stronger statement
on asymptotically weighted Fekete sets in Proposition 6.6.
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A Rumely-type formula relating the weighted transfinite diameter
δw(K) with V ∗

K,Q and ρ̃K,Q, can be stated as follows:

(2.17) − log δw(K) =
1

d(2π)d

∫

Cd

V ∗
K,Q(dd

cV ∗
K,Q)

d

+
1

d(2π)d−1

∫

Pd−1

[ρ̃K,Q − ρ̃T ]

d−1∑

j=0

(ddcρ̃K,Q + ω)j ∧ (ddcρ̃T + ω)d−j−1.

Here we assume K is contained in the unit polydisk U . We will prove
an equivalent version of (2.17) in section 5. Rumely proved a weighted
version of (2.14):
(2.18)

−log dw(K) =
1

d(2π)d−1

∫

Pd−1

[ρ̃K,Q−ρ̃T ]
d−1∑

j=0

(ddcρ̃K,Q+ω)
j∧(ddcρ̃T+ω)d−j−1

where dw(K) is another weighted transfinite diameter, defined in [12].
The term ∫

Cd

V ∗
K,Q(dd

cV ∗
K,Q)

d =

∫

K

Q(ddcV ∗
K,Q)

d

in (2.17) arises due to the relationship between δw(K) and dw(K); this
relationship,

(2.19) δw(K) = [exp (−
∫

K

Q(ddcV ∗
K,Q)

d)]1/d · dw(K),

as well as the definition of dw(K), will be deferred to the appendices
(Appendix 1 for the definition; Appendix 2 for (2.19)). Indeed, to be
precise, the versions (2.14) and (2.18) of the Rumely formulas here are
symmetrized versions of Rumely’s original formulas, due to Demarco
and Rumely [17]. We prove the equivalence of these symmetrized ver-
sions with the “originals” in Appendix 2.

2.3. Bernstein-Markov properties. Given a compact set E ⊂ Cd

and a measure ν on E, we say that (E, ν) satisfies the Bernstein-Markov
inequality if there is a strong comparability between L2 and L∞ norms
of holomorphic polynomials on E. Precisely, for all pn ∈ Pn,

||pn||E ≤Mn||pn||L2(ν) with lim sup
n→∞

M1/n
n = 1.
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If E is regular, (E, µE) satisfies the Bernstein-Markov inequality (cf.,
[24]). It is known if (E, ν) satisfies the Bernstein-Markov inequality
that

(2.20) lim
n→∞

1

2n
logKν

n(z, z) = VE(z)

locally uniformly on Cd where

Bν
n(z) := Kν

n(z, z) =
N∑

j=1

|q(n)j (z)|2

is the n− th Bergman function of E, ν (cf., [15]) and

Kν
n(z, ζ) :=

N∑

j=1

q
(n)
j (z)q

(n)
j (ζ)

where {q(n)j }j=1,...,N is an orthonormal basis for Pn with respect to L2(ν).

More generally, for K ⊂ Cd compact, w = e−Q an admissible weight
function on K, and ν a measure on K, we say that the triple (K, ν,Q)
satisfies a weighted Bernstein-Markov property if there is a strong com-
parability between L2 and L∞ norms of weighted polynomials on K;
precisely, for all pn ∈ Pn, writing ||wnpn||K := supz∈K |w(z)npn(z)| and
||wnpn||2L2(ν) :=

∫
K
|pn(z)|2|w(z)|2ndν(z),

||wnpn||K ≤Mn||wnpn||L2(ν) with lim sup
n→∞

M1/n
n = 1.

If K is locally regular and w is continuous, taking ν = (ddcVK,Q)
d

we have (K, ν,Q) satisfies a weighted Bernstein-Markov property (cf.,
[9]). Now if (K, ν,Q) satisfies a weighted Bernstein-Markov property
we have that

(2.21) lim
n→∞

1

2n
logKν,w

n (z, z) = VK,Q(z)

locally uniformly on Cd where

(2.22) Bν,w
n (z) := Kν,w

n (z, z)w(z)2n =
N∑

j=1

|q(n)j (z)|2w(z)2n,

is the n− th Bergman function of K,w, ν (cf., [8]) and

Kν,w
n (z, ζ) :=

N∑

j=1

q
(n)
j (z)q

(n)
j (ζ).
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Here, {q(n)j }j=1,...,N is an orthonormal basis for Pn with respect to the

weighted L2−norm p → ||wnpn||L2(ν). A sketch of the proof of (2.21)
and/or (2.20) runs as follows: first, one shows that if

ΦK,Q,n(z) := sup{|p(z)| : ||wdeg pp||K ≤ 1, p ∈ ∪n
k=0Pk},

then
1

n
log ΦK,Q,n → VK,Q

locally uniformly on Cd. Next, one verifies the inequality

[ΦK,Q,n(z)]
2

N
≤ Kν,w

n (z, z) ≤ N ·Mn[ΦK,Q,n(z)]
2.

The left-hand inequality follows simply from the reproducing property
of the kernel function Kν,w

n (z, ζ); i.e., for any p ∈ Pn,

p(z) =

∫

K

Kν,w
n (z, ζ)p(ζ)w(ζ)2ndν(ζ),

and the Cauchy-Schwartz inequality; it is the right-side inequality which
utilizes the weighted Bernstein-Markov property. Indeed, for an ele-

ment q
(n)
j ∈ Pn in the orthonormal basis,

||wnq
(n)
j ||K ≤Mn and

|q(n)j (z)|
||wnq

(n)
j ||K

≤ ΦK,Q,n(z)

imply

|q(n)j (z)| ≤MnΦK,Q,n(z)

so that

Kν,w
n (z, z) =

N∑

j=1

|q(n)j (z)|2 ≤ N ·M2
n [ΦK,Q,n(z)]

2.

This was proved in the unweighted case; i.e., (2.20), by Bloom and
Shiffman [15] and in the general (weighted) case; i.e., (2.21), by Bloom
[8].
From the local uniform convergence in (2.21) follows the weak-* con-

vergence of the Monge-Ampere measures

[ddc
1

2n
logKν,w

n (z, z)]d → (ddcV ∗
K,Q)

d weak- ∗ .
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One of the main results of this paper is a much stronger version of
“Bergman asymptotics” to be proved in Corollary 6.4: if (K, ν, w) sat-
isfies a weighted Bernstein-Markov inequality, then

1

N
Bν,w

n dν → µK,Q :=
1

(2π)d
(ddcV ∗

K,Q)
d weak- ∗ .

This was proved in the one variable case (d = 1) in [11].
We will have occasion to consider the case of unbounded sets. If

E ⊂ Cd is closed and unbounded, w = e−Q is an admissible weight on
E and µ is a positive measure carried by E we say the triple (E, µ,Q)
satisfies a weighted Bernstein-Markov property if there exists an integer
n0 such that for each n > n0 and all pn ∈ Pn, we have

∫

E

|pn|2w2ndµ < +∞

and

sup
E

|pnwn| ≤Mn[

∫

E

|pn|2w2ndµ]1/2 with lim sup
n→∞

M1/n
n = 1.

(cf., (4.19) in subsection 4.1). Indeed, an important special case of
Corollary 6.4, Theorem 4.2, involves strong Bergman asymptotics with
E = Cd.
Which pairs (K,µ) satisfy a Bernstein-Markov property? Which

triples (K,µ,Q) satisfy a weighted Bernstein-Markov property? As
mentioned, if K is regular (VK is continuous), the extremal measure
µK := 1

(2π)d
(ddcVK)

d works. In the weighted case, if K is locally

regular and w is continuous (so that VK,Q is continuous), µK,Q :=
1

(2π)d
(ddcVK,Q)

d works. These claims are a special case of a more general

result. We begin with a definition.

Definition 2.3. Let K ⊂ Cd be compact and let µ be a probability
measure on K. We say that µ is a determined measure for K if for each
Borel set E ⊂ K with µ(E) = µ(K), we have V ∗

E = V ∗
K . If w is an

admissible weight on K, we say that µ is a determined measure for K,w
if for each Borel set E ⊂ K with µ(E) = µ(K), we have V ∗

E,Q = V ∗
K,Q.

Equivalently, if u ∈ L(Cd) and u ≤ Q µ−a.e. on K then u ≤ V ∗
K,Q.

Proposition 2.4. Let K ⊂ Cd be compact and let w be an admissible
weight on K. Then µK,Q is a determined measure for K,w.
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Proof. Fix u ∈ L(Cd) with u ≤ Q µK,Q−a.e. on K. By the L+(Cd)
version of the domination principle, Proposition 2.1, u ≤ V ∗

K,Q. �

The claim in the paragraph before Definition 2.3 follows from the
general result below (cf., [30]).

Proposition 2.5. If VK,Q is continuous, and if a probability mea-
sure µ is a determined measure for K,w, then (K,µ,Q) satisfies the
Bernstein-Markov property.

Proof. Suppose that (K,µ,Q) does not satisfy the Bernstein-Markov
property. Then there is an ǫ > 0 and a sequence of polynomials {pk}
with degpk = k satisfying

(2.23) ||pke−kQ||L2(µ) = (1 + ǫ)−k

while

(2.24) ||pke−kQ||K = sup
z∈K

|pk(z)e−kQ(z)| ≥ k(1 + ǫ)k.

For m > 0, define

Km := {z ∈ K : sup
k

|pk(z)e−kQ(z)| ≤ m}.

Then clearly for each k

1

k
log

|pk|
m

≤ VKm,Q ≤ V ∗
Km,Q

so that

(2.25) |pk(z)e−kQ(z)| ≤ mek[V
∗

Km,Q(z)−Q(z)] on K.

Let
K ′ := ∪m>0Km = {z ∈ K : sup

k
|pk(z)e−kQ(z)| < +∞}.

Then V ∗
Km,Q ↓ V ∗

K ′,Q (here we simply restrict Q to Km, K
′). Since

K ′ ⊂ K and VK,Q is continuous, VK,Q = V ∗
K,Q ≤ V ∗

K ′,Q. We show
equality holds; i.e.,

(2.26) VK,Q = V ∗
K ′,Q.

To verify (2.26), we first claim that µ(K \ K ′) = 0. For by (2.23),∑
k |pk(z)e−kQ(z)|2 converges in L1(µ) and hence |pk(z)e−kQ(z)| → 0

µ−a.e. as k → ∞; hence supk |pk(z)e−kQ(z)| < +∞ µ−a.e., proving
the claim. Now since by hypothesis, µ is a determined measure for
K,w, (2.26) follows.
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Finally, we conclude that the usc functions {V ∗
Km,Q} decrease to VK,Q

pointwise on the compact set K; since VK,Q is continuous, we conclude,
by Dini’s theorem, that V ∗

Km,Q → VK,Q uniformly on K. In particular,
for m sufficiently large,

eV
∗

Km,Q−Q ≤ 1 + ǫ on K.

Fixing such an m and using (2.25), we have

|pk(z)e−kQ(z)| ≤ m(1 + ǫ)k on K.

This contradicts (2.24) for k sufficiently large. �

2.4. Gram matrices and optimal measures. We begin with some
motivation from [10]. Suppose that K ⊂ Cd is compact and non-
pluripolar. Note that if we write, for points ζ1, ..., ζN ∈ K,

Vn := [ei(ζj)]i,j=1,...,N,

then
1

N
VnV

∗
n = [

1

N

N∑

k=1

ei(ζk)ej(ζk)]i,j=1,...,N

which is a Gram matrix of inner products using the measure µn :=
1
N

∑N
k=1 δζk with respect to the monomial basis {e1, ..., eN}. More gen-

erally, let µ be a probability measure on K. We assume that µ is non-
degenerate on Pn. This means that with the associated inner-product

(2.27) 〈f, g〉µ :=

∫

K

fgdµ

and L2(µ) norm, ‖f‖L2(µ) =
√

〈f, f〉µ, we have ‖p‖L2(µ) = 0 for p ∈ Pn

implies that p = 0. It follows that µ is non-degenerate on Pn if and only
if supp(µ) is not contained in an algebraic variety of degree n. Then Pn

equipped with the inner-product (2.27) is a finite dimensional Hilbert
space of dimension N and, for any fixed basis βn := {p1, ..., pN} of Pn,
we can form the Gram matrix of µ with respect to the basis βn:

Gµ
n(βn) := [〈pi, pj〉µ]i,j=1,...,N.

If we change the basis βn = {p1, ..., pN} to Cn := {q1, ..., qN} by pi =∑N
j=1 aijqj , then the Gram matrices transform (see e.g. [18], §8.7) by

(2.28) Gµ
n(βn) = AGµ

n(Cn)A
∗

where A = [aij ] ∈ CN×N . Hence the following definition is independent
of the basis chosen.
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Definition 2.6. If a probability measure µ has the property that

(2.29) det(Gµ′

n ) ≤ det(Gµ
n)

for all other probability measures µ′ on K then µ is said to be an
optimal measure of degree n for K.

We make some observations. We may compare the uniform norm on
K with the L2(µ) norm for p ∈ Pn. For µ a probability measure we
have

‖p‖L2(µ) ≤ ‖p‖K ,
and since Pn is finite dimensional there is a constant C = C(n, µ,K)
such that

‖p‖K ≤ C‖p‖L2(µ).

The best constant C is given by

C = sup
p∈Pn, p 6=0

‖p‖K
‖p‖L2(µ)

= max
z∈K

√
Bµ

n(z)

where recall

(2.30) Bµ
n(z) :=

N∑

j=1

|qj(z)|2

is the n−th Bergman function for K,µ and Qn = {q1, q2, · · · , qN} is an
orthonormal basis for Pn.
It is natural to ask among all probability measures on K, which one

provides the smallest such factor, and this leads to an equivalent char-
acterization of optimal measures: Suppose that the probability measure
µ has the property that

max
z∈K

√
Bµ

n(z) ≤ max
z∈K

√
Bµ′

n (z)

for all other probability measures µ′ on K. Then µ is an optimal measure
of degree n for K.

Indeed, for any probability measure µ,

∫

K

Bµ
n(z)dµ = N, so that

max
z∈K

Bµ
n(z) ≥ N.

We will show that for an optimal measure

(2.31) max
z∈K

Bµ
n(z) = N.
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In fact, we will verify a more general (weighted) version of this (Propo-
sition 2.7).
We make an observation which will be useful. With a basis βn =

{p1, ..., pN} of Pn, if we write

(2.32) P (x) =




p1(x)
p2(x)
·
·

pN(x)



∈ C

N

then

(2.33) P (x)∗
(
Gµ

n(βn)
)−1

P (x) = Bµ
n(x).

To see this, G := Gµ
n(βn) and G−1 are positive definite, Hermitian

matrices; hence G1/2, G−1/2 := (G−1)1/2 exist; writing P := P (x), we
have

P ∗G−1P = P ∗G−1/2G−1/2P = (G−1/2P )∗G−1/2P.

To verify that the right-hand-side yields Bµ
n(x), note that since G =∫

K
PP ∗dµ, the polynomials {p̃1, p̃2, · · · , p̃N} defined by

(2.34) G−1/2P :=




p̃1(x)
p̃2(x)
·
·

p̃N(x)



∈ C

N

form an orthonormal basis for Pn in L2(µ): for
∫

K

G−1/2P · (G−1/2P )∗dµ = G−1/2
[∫

K

PP ∗dµ
]
G−1/2

= G−1/2GG1/2 = I,

the N ×N identity matrix. Thus

Bµ
n(x) =

N∑

j=1

|p̃j(x)|2 = (G−1/2P )∗G−1/2P.

We turn to weighted versions of Gram matrices and optimal mea-
sures. Let K ⊂ Cd be compact and non-pluripolar. Fix µ a probability
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measure on K and w an admissible weight on K. For each n we have
the weighted inner product of degree n

(2.35) 〈f, g〉µ,w :=

∫

K

f(z)g(z)w(z)2ndµ.

Again fixing a basis βn = {p1, p2, · · · , pN} of Pn we form the Gram
matrix

Gµ,w
n = Gµ,w

n (βn) := [〈pi, pj〉µ,w] ∈ C
N×N

and the associated n−th Bergman function

(2.36) Bµ,w
n (z) :=

N∑

j=1

|qj(z)|2w(z)2n

(see (2.22)) where Qn = {q1, q2, · · · , qN} is an orthonormal basis for Pn

with respect to the inner-product (2.35). If a probability measure µ
has the property that

(2.37) det(Gµ′,w
n ) ≤ det(Gµ,w

n )

for all other probability measures µ′ on K then µ is said to be an
optimal measure of degree n for K and w.
From Lemma 2.1 of [20], Chapter X, the set of matrices

{Gµ,w
n : µ is a probability measure on K}

is compact (and convex). Hence an optimal measure of degree n for K
and w always exists. They need not be unique. An equivalent char-
acterization of optimality is given by the Kiefer-Wolfowitz Equivalence
Theorem [21].

Proposition 2.7. Let w be an admissible weight on K. A probability
measure µ is an optimal measure of degree n for K and w if and only
if

(2.38) max
z∈K

Bµ,w
n (z) = N.

Proof. We give a proof of the equivalence of conditions (2.37) and (2.38)
following [Bo] (see also [20], Theorem 2.1, Chapter X). First, with P
defined as in (2.32), the proof of (2.33) gives

(2.39) w2nP ∗(Gµ,w
n )−1P = Bµ,w

n .

A computation shows that

µ→ log detGµ,w
n
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is concave on the space of probability measures; i.e., if

h(t) := log detGtµ1+(1−t)µ2 ,w
n

for two probability measures µ1 and µ2, then h
′′(t) ≤ 0. Indeed, since

Gµ1,w
n and Gµ2,w

n are positive definite Hermitian matrices, we can find a
nonsingular matrix A so that

A∗Gµ1,w
n A = diag[a1 · · · aN ] and A∗Gµ2,w

n A = diag[b1 · · · bN ]
Then

detGtµ1+(1−t)µ2 ,w
n = | detA|2 det diag[ta1 + (1− t)b1 · · · taN + (1− t)bN ]

and, computing,

d2

dt2
log detGtµ1+(1−t)µ2,w

n = −
N∑

j=1

(bj − aj)
2

[taj + (1− t)bj ]2
≤ 0.

Hence µ1 is optimal in the sense of (2.37) if and only if h′(t) ≤ 0
for all µ2. Computing this derivative one sees that µ1 is optimal in the
sense of (2.37) if and only if
(2.40)

trace
[(
Gµ1,w

n

)−1
Gµ2,w

n

]
=

∫

K

w2nP ∗(Gµ1,w
n )−1Pdµ2 =

∫
Bµ1,w

n dµ2 ≤ N

for all µ2. Here we use (2.39) and the fact that, for an N × N matrix
A, an N × 1 matrix B, and a 1×N matrix C,

trace(ABC) = trace(CAB) = CAB;

thus, writing Gj := G
µj ,w
n and using G2 =

∫
K
w2nPP ∗dµ2,

trace
[(
Gµ1,w

n

)−1
Gµ2,w

n

]

= trace
[
G−1

1

∫

K

w2nPP ∗dµ2

]
=

∫

K

w2nP ∗G−1
1 Pdµ2.

Taking µ2 to be a point mass at a point z ∈ K in (2.40) gives Bµ1,w
n (z) ≤

N ; then taking µ2 = µ1 gives
∫
Bµ1,w

n dµ1 = N by orthonormality. This
proves the equivalence of (2.37) and (2.38). �

Indeed, the end of this argument yields the following key property of
optimal measures.

Lemma 2.8. Suppose that µ is optimal for K and w. Then

Bµ,w
n (z) = N, a.e. [µ].
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Proof. On the one hand

max
z∈K

Bµ,w
n (z) = N

while on the other hand, again by orthonormality of the qj ,
∫

K

Bµ,w
n dµ =

∫

K

N∑

j=1

|qj(z)|2w(z)2n dµ(z) = N,

and the result follows. �

We relate the (weighted) Bernstein-Markov property with (weighted)
Gram determinants and (weighted) transfinite diameter.

Proposition 2.9. Let K ⊂ Cd be a compact set and let w be an ad-
missible weight function on K. If ν is a measure on K with (K, ν,Q)
satisfying a weighted Bernstein-Markov property, then

lim
n→∞

d+ 1

2dnN
· log detGν,w

n = log δw(K).

Here Gν,w
n = [

∫
K
pipjw

2ndµ]i,j=1,...,N where {p1, ..., pN} is either the
standard basis monomials {e1, ..., eN} for Pn or, e.g., an orthogonal
basis {r1, ..., rN} obtained by applying Gram-Schmidt to the standard
basis. Recall that dnN

d+1
is the sum of the degrees of a set of basis mono-

mials for Pn and the weighted n−th order diameter of K,w is

δw,n(K) :=
(

max
x1,...,xN∈K

det[ei(xj)w(x1)
n · · ·w(xN)n]i,j=1,...,N

) d+1
dnN

:=
(

max
x1,...,xN∈K

|V DM(x1, ..., xN)|w(x1)n · · ·w(xN)n
) d+1

dnN .

Proof. Note first that detGν,w
n =

∏N
j=1 ||rj||2L2(w2nν) where {r1, ..., rN}

are an orthogonal basis of Pn obtained by applying Gram-Schmidt to
the standard basis monomials of Pn. Defining

Zn := Zn(K,w, µ)

:=

∫

K

· · ·
∫

K

|V DM(z1, ..., zN)|2w(z1)2n · · ·w(zN)2ndµ(z1) · · ·dµ(zN)
we show that

lim
n→∞

Z
d+1
2dnN
n = δw(K).

To see this, clearly

(2.41) Zn ≤ δw,n(K)
2dnN
d+1 ν(K)N .
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On the other hand, taking points x1, ..., xN achieving the maximum
in δw,n(K), we have, upon applying the weighted Bernstein-Markov
property to the weighted polynomial

z1 → V DM(z1, x2..., xN)w(z1)
n · · ·w(xN)n,

δw,n(K)
2dnN
d+1 = |V DM(x1, ..., xN)|2w(x1)2n · · ·w(xN)2n

≤M2
n

∫

K

· · ·
∫

K

|V DM(z1, x2..., xN )|2w(z1)2n · · ·w(xN)2ndµ(z1).

Repeating this argument in each variable we obtain

(2.42) δw,n(K)
2dnN
d+1 ≤M2N

n Zn.

Note that (2.41) and (2.42) give

Zn ≤ δw,n(K)
2dnN
d+1 ν(K)N ≤ ν(K)NM2N

n Zn.

Since [ν(K)NM2N
n ]

d+1
2dnN → 1, using (2.16)

lim
n→∞

Z
d+1
2dnN
n

exists and equals

lim
n→∞

δw,n(K)
d+1
dnN .

Using elementary row operations in |V DM(z1, ..., zN)|2 in the inte-
grand of Zn, we can replace the monomials {ej} by the orthogonal basis
{r1, ..., rN} and obtain

(2.43) Zn = N !
N∏

j=1

||rj||2L2(w2nν).

Putting everything together gives the result. �

The quantity Zn occurring in the proof of Proposition 2.9 is called
the n−th free energy of K,µ. A similar argument shows that the Gram
determinants associated to a sequence of weighted optimal measures
also converges to δw(K). In this proposition, we again compute the
Gram determinant with respect to the standard basis monomials.

Proposition 2.10. Let K be compact and w an admissible weight func-
tion. For n = 1, 2, ..., let µn be an optimal measure of order n for K
and w. Then

lim
n→∞

det(Gµn,w
n )

d+1
2dnN = δw(K).
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Proof. Replacing the the standard basis monomials by an orthogonal
basis {r1, ..., rN} with respect to L2(w2nµn), the formula (2.43) says
that
∫

KN

|V DM(z1, · · · , zN)|2w(z1)2n · · ·w(zN)2ndµn(z1) · · ·dµn(zN)

= N ! det(Gµn,w
n ).

It follows, since µn is a probability measure, that

(2.44) det(Gµn,w
n ) ≤ 1

N !
(δwn (K))

2dnN
d+1 .

Now if f1, f2, · · · , fN ∈ K are weighted Fekete points of order n for K,
i.e., points in K for which

|V DM(z1, · · · , zN )|wn(z1)w
n(z2) · · ·wn(zN)

is maximal, then the discrete measure

(2.45) νn =
1

N

N∑

k=1

δfk

is a candidate for an optimal measure of order n; hence

det(Gνn,w
n ) ≤ det(Gµn,w

n ).

But

det(Gνn,w
n ) =

1

NN
|V DM(f1, · · · , fN)|2w(f1)2nw(f2)2n · · ·w(fN)2n

=

(
max
zi∈K

|V DM(z1, · · · , zN)|wn(z1)w
n(z2) · · ·wn(zN)

)2

=
1

NN
(δwn (K))

2dnN
d+1

so that
1

NN
(δwn (K))

2dnN
d+1 ≤ det(Gµn,w

n )

and the result follows from (2.16) . �

We will see in section 6 that if {µn} are a sequence of optimal mea-
sures for K,w then µn → µK,Q weak-*.
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2.5. Ball volumes. Given a (complex) N−dimensional vector space
V , and two subsets A,B in V , we write

[A : B] := log
vol(A)

vol(B)
.

Here, “vol” denotes any (Haar) measure on V (as taking the ratio makes
[A : B] independent of this choice). In particular, if V is equipped with
two Hermitian inner products h, h′, and B,B′ are the corresponding
unit balls, then a linear algebra exercise shows that

(2.46) [B : B′] = log det[h′(ei, ej)]i,j=1,...,N

where e1, ..., eN is an h−orthonormal basis for V . In other words, [B :
B′] is a Gram determinant with respect to the h′ inner product relative
to the h−orthonormal basis. Indeed, [B : B′] is independent of the
h−orthonormal basis chosen for V , as can be seen by (2.28).
We will generally take V = Pn and our subsets to be unit balls with

respect to norms on Pn. In particular, let µ be a probability measure
on a compact set K ⊂ C

d which is non-degenerate on Pn. Observe that
for the unit torus T ,

VT (z1, ..., zd) = max
j=1,...,d

log+ |zj |,

and the standard basis monomials βn := {e1, ..., eN} form an orthonor-
mal basis for Pn with respect to µT := 1

(2π)d
(ddcVT )

d, which is the

standard Haar measure on T . Letting

Bn = {pn ∈ Pn : ||pn||L2(µ) ≤ 1}
and

B′
n = {pn ∈ Pn : ||pn||L2(µT ) ≤ 1}

be L2−balls in Pn, we have

[Bn : B′
n] = log detGµ

n(βn).

We will also use L∞−balls in Pn; e.g., with

B̃n = {pn ∈ Pn : ||pn||K ≤ 1}
and

B̃′
n = {pn ∈ Pn : ||pn||T ≤ 1},



24 BERMAN-BOUCKSOM

we consider [B̃n : B̃′
n]. If (K,µ) satisfies a Bernstein-Markov property,

then the asymptotics (n→ ∞) of the sequence of ball-volume ratios

(2.47)
1

2nN
[Bn : B′

n] and
1

2nN
[B̃n : B̃′

n]

will be the same (note (T, µT ) satisfies a Bernstein-Markov property)
and the limit is related to the relative energy of V ∗

K with VT , to be
defined in the next section. This is a special (unweighted) case of the
main result of these notes, Theorem 4.1, and will immediately provide
us with a version of the Rumely formula.
For future use we note that [A : B] = −[B : A]; the ball volume

ratios trivially satisfy the cocycle condition:

[A : B] + [B : C] + [C : A] = 0;

and they are “monotone” in the first slot in the sense that for any
B ⊂ Pn, if E ⊂ Cd is closed with admissible weights Q1 ≤ Q2 and

B∞(E, nQi) := {pn ∈ Pn : ||pne−nQi||E ≤ 1}, i = 1, 2

then

(2.48) [B∞(E, nQ1) : B] ≤ [B∞(E, nQ2) : B].

The analogous properties will also hold for the relative energies, defined
next.

3. Energy.

We define the Monge-Ampere energy E(u, v) of u relative to v for
u, v ∈ L+(Cd) as

(3.1) E(u, v) :=
∫

Cd

(u− v)

d∑

j=0

(ddcu)j ∧ (ddcv)d−j.

This will be utilized in the version of the Rumely formula given in
section 5. To see the relation with (2.17), we begin with the fol-
lowing Bedford-Taylor integral formula (Theorem 5.5 of [1]). Given
v1, v2, u1, ..., ud−1 ∈ L+(Cd) we have

∫

Cd

(v1dd
cv2 − v2dd

cv1) ∧ ddcu1 ∧ · · · ∧ ddcud−1

(3.2) = 2π

∫

Pd−1

(ρ̃v1 − ρ̃v2)(dd
cρ̃u1 + ω) ∧ · · · ∧ (ddcρ̃ud−1

+ ω).
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Here, given u ∈ L+(Cd), recall that

ρ̃u(z) := lim sup
|λ|→∞

[u(λz)− log |λz|]

is the (projectivized) Robin function of u (cf., (2.10)) and ω is the
standard Kähler form on Pd−1.
Using (3) we prove an important formula relating E(u, v) with a

projectivized version.

Proposition 3.1. Let u, v ∈ L+(Cd) with supp(ddcu)d and supp(ddcv)d

compact. Then

(3.3) E(u, v) =
∫

Cd

u(ddcu)d −
∫

Cd

v(ddcv)d

+2π

∫

Pd−1

(ρ̃u − ρ̃v)

d−1∑

j=0

(ddcρ̃u + ω)j ∧ (ddcρ̃v + ω)d−j−1.

Proof. We begin with the algebraic formula

(3.4) (ddcu)d − (ddcv)d = ddc(u− v) ∧ T
where

T :=

d−1∑

j=0

(ddcu)j ∧ (ddcv)d−j−1.

Then we can write

E(u, v) =
∫

Cd

(u− v)
[
(ddcu)d + ddcv ∧ T

]
.

We now use the hypothesis that supp(ddcu)d and supp(ddcv)d are com-
pact to write this as

=

∫

Cd

u(ddcu)d −
∫

Cd

v(ddcu)d +

∫

Cd

(u− v)ddcv ∧ T

=

∫

Cd

u(ddcu)d −
∫

Cd

v(ddcv)d +

∫

Cd

v
[
(ddcv)d − (ddcu)d

]

+

∫

Cd

(u− v)ddcv ∧ T.

Using the algebraic formula (3.4), we obtain

E(u, v) =
∫

Cd

u(ddcu)d −
∫

Cd

v(ddcv)d
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+

∫

Cd

vddc(v − u) ∧ T +

∫

Cd

(u− v)ddcv ∧ T

=

∫

Cd

u(ddcu)d −
∫

Cd

v(ddcv)d +

∫

Cd

(uddcv − vddcu) ∧ T.

The result now follows from (3). �

Now suppose, as in the setting of (2.17), that K is contained in the
unit polydisk U . Then, with T the unit torus, applying Proposition
3.1,

E(V ∗
K,Q, VT ) =

∫

Cd

(V ∗
K,Q − VT )

d∑

j=0

(ddcV ∗
K,Q)

j ∧ (ddcVT )
d−j

=

∫

Cd

V ∗
K,Q(dd

cV ∗
K,Q)

d

+2π

∫

Pd−1

[ρ̃K,Q − ρ̃T ]

d−1∑

j=0

(ddcρ̃K,Q + ω)j ∧ (ddcρ̃T + ω)d−j−1

where we have used
∫
Cd VT (dd

cV ∗
K,Q)

d = 0 by the assumption that K ⊂
U . To prove (2.17), we need to verify, then, an “energy version” of
Rumely’s formula; i.e.,

− log δw(K) =
1

d(2π)d
E(V ∗

K,Q, VT ).

This we will do in section 5.
Next we prove a corollary of the Bedford-Taylor formula. We begin

with four functions A,B,C,D ∈ L+(Cd) and let u1, ..., ud−1 ∈ L+(Cd)
(so that T := ddcu1 ∧ · · · ∧ ddcud−1 is a positive closed (d − 1, d − 1)
current). Then

(3.5)

∫

Cd

(A− B)(ddcC − ddcD) ∧ ddcu1 ∧ · · · ∧ ddcud−1

=

∫

Cd

(C −D)(ddcA− ddcB) ∧ ddcu1 ∧ · · · ∧ ddcud−1.

To prove this, we have∫

Cd

(A−B)(ddcC − ddcD) ∧ ddcu1 ∧ · · · ∧ ddcud−1

−
∫

Cd

(C −D)(ddcA− ddcB) ∧ ddcu1 ∧ · · · ∧ ddcud−1
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=

∫

Cd

(AddcC − CddcA) ∧ T +

∫

Cd

(DddcA− AddcD) ∧ T

+

∫

Cd

(BddcD −DddcB) ∧ T +

∫

Cd

(CddcB −BddcC) ∧ T

which equals, by the integral formula (3), 2π times
∫

Pd−1

(ρ̃A− ρ̃C)T̃+
∫

Pd−1

(ρ̃D− ρ̃A)T̃+
∫

Pd−1

(ρ̃B− ρ̃D)T̃+

∫

Pd−1

(ρ̃C− ρ̃B)T̃ .

Clearly this sum vanishes.
Another formula which will be used is

(3.6)

∫

Cd

(A− B)(ddcC − ddcD) ∧ ddcu1 ∧ · · · ∧ ddcud−1

= −
∫

Cd

d(A−B) ∧ dc(C −D) ∧ ddcu1 ∧ · · · ∧ ddcud−1.

Remark. The following integration by parts “formula” is not valid:
∫

Cd

(A− B)(ddcC) ∧ ddcu1 ∧ · · · ∧ ddcud−1

=

∫

Cd

C(ddcA− ddcB) ∧ ddcu1 ∧ · · · ∧ ddcud−1.

For take B = C = u1 = · · · = ud−1 = log+ |z| and A = log+ |z|+ 1: the
top line equals a positive multiple of the area of the unit sphere in Cd

while the bottom line vanishes. Thus it is essential to use differences
in (3.6).
We prove a fundamental differentiability property of the energy.

Proposition 3.2. Let u, u′, v ∈ L+(Cd). For 0 ≤ t ≤ 1, let

f(t) := E(u+ t(u′ − u), v).

Then f ′(t) exists for 0 ≤ t ≤ 1 and

(3.7) f ′(t) = (d+ 1)

∫

Cd

(u′ − u)(ddc(u+ t(u′ − u)))d.

Proof. Here we mean the appropriate one-sided derivatives at t = 0 and
t = 1; e.g.,

(3.8) f ′(0) := lim
t→0+

f(t)− f(0)

t
= (d+ 1)

∫

Cd

(u′ − u)(ddcu)d.



28 BERMAN-BOUCKSOM

We prove this last statement. This implies the first; i.e., (3.7). For if s
is fixed,

g(t) := f(s+t) = E(u+(s+t)(u′−u), v) = E(u+s(u′−u)+t(u′−u), v)
and applying (3.8) to g (so u → u+ s(u′ − u)) we get

g′(0) = f ′(s) = (d+ 1)

∫

Cd

(u′ − u)(ddc(u+ s(u′ − u)))d.

We begin with the observation that if w := u′ − u, then

d∑

j=0

[ddc(u+ tw)]j ∧ (ddcv)d−j −
d∑

j=0

(ddcu)j ∧ (ddcv)d−j

= t
d∑

j=0

j[ddcw ∧ (ddcu)j−1 ∧ (ddcv)d−j + 0(t2).

Then (all integrals are over Cd)

E(u+ t(u′ − u), v)− E(u, v) = E(u+ tw, v)− E(u, v)

=

∫
[u+ tw − v]

d∑

j=0

[ddc(u+ tw)]j ∧ (ddcv)d−j

−
∫

(u− v)
d∑

j=0

(ddcu)j ∧ (ddcv)d−j

= t

∫
(u− v)

d∑

j=0

j[ddcw ∧ (ddcu)j−1 ∧ (ddcv)d−j + 0(t2)

+

∫
tw

d∑

j=0

[ddc(u+ tw)]j ∧ (ddcv)d−j

= t
[∫

(u− v)
d∑

j=0

j[ddcw ∧ (ddcu)j−1 ∧ (ddcv)d−j]

+

∫
w

d∑

j=0

(ddcu)j ∧ (ddcv)d−j
]
+ 0(t2)

= t
[∫

w
d∑

j=0

j[ddc(u− v) ∧ (ddcu)j−1 ∧ (ddcv)d−j ]
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+

∫
w

d∑

j=0

(ddcu)j ∧ (ddcv)d−j
]
+ 0(t2).

Here we have used (3.5) in the last step. Now check that

d∑

j=0

jddc(u− v) ∧ (ddcu)j−1 ∧ (ddcv)d−j +

d∑

j=0

(ddcu)j ∧ (ddcv)d−j

= (d+ 1)(ddcu)d

(try the case d = 2!) and the result follows. �

We sometimes write (3.8) in “directional derivative” notation as

(3.9) < E ′(u), u′ − u >= (d+ 1)

∫
(u′ − u)(ddcu)d.

Note that the differentiation formula (3.7) is independent of v. This
will also follow from the cocycle property, which we now prove using
(3.7).

Proposition 3.3. Let u, v, w ∈ L+(Cd). Then

E(u, v) + E(v, w) + E(w, u) = 0.

Proof. Let

f(t) := E(u+ t(w − u), v) + E(v, u)
and

g(t) := E(u+ t(w − u), w) + E(w, u).
Then f(0) = g(0) = 0 by antisymmetry of E . From the previous
proposition, specifically, (3.7),

f ′(t) = (d+ 1)

∫

Cd

(w − u)(ddc(u+ t(w − u)))d

and

g′(t) = (d+ 1)

∫

Cd

(w − u)(ddc(u+ t(w − u)))d;

i.e., f ′(t) = g′(t) for all t, Thus f(1) = g(1); i.e.,

E(w, v) + E(v, u) = E(w,w) + E(w, u) = E(w, u).
�
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The independence of (3.7) on v also follows from the cocycle property:
if v, v′ ∈ L+(Cd), then

E(u+ t(u′ − u), v′) + E(v′, v) + E(v, u+ t(u′ − u)) = 0

so that the difference

E(u+ t(u′ − u), v′)− E(u+ t(u′ − u), v) = E(v, v′)
is independent of t. Thus one should consider E as a functional on the
first slot with the second fixed. As such, as with the projection operator
P , it is increasing and concave:

Proposition 3.4. Let u, v, w ∈ L+(Cd). Then

u ≥ v implies E(u, w) ≥ E(v, w)
and for 0 ≤ t ≤ 1

E(tu+ (1− t)v, w) ≥ tE(u, w) + (1− t)E(v, w);
i.e., g(t) := E(tu+ (1− t)v, w) satisfies g′′(t) ≤ 0.

Proof. The monotonicity is trivial from the cocycle property and the
definition of E :

E(u, w)− E(v, w) = E(u, w) + E(w, v) = E(u, v)

=

∫
(u− v)

d∑

j=0

(ddcu)d−j ∧ (ddcv)j ≥ 0.

For the concavity, let

g(t) := E(tu+ (1− t)v, w) = E(v + t(u− v), w).

We show g′′(t) ≤ 0. From the differentiability result (3.7) in Proposition
3.2,

g′(t) = (d+ 1)

∫

Cd

(u− v)(ddc(v + t(u− v)))d.

To compute g′′(t), note that

d

dt
(ddc(a+ tb))d = d · ddcb ∧ (ddc(a+ tb))d−1

so that

g′′(t) = (d+ 1)d ·
∫

Cd

(u− v)ddc(u− v) ∧ (ddc(v + t(u− v)))d−1

= −(d+ 1)d ·
∫

Cd

d(u− v) ∧ dc(u− v) ∧ (ddc(v + t(u− v)))d−1 ≤ 0
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where the last equality comes from the integration by parts formula
(3.6). �

A consequence of concavity is the following. Let u1, u2, v ∈ L+(Cd).
Letting

g(s) := E(u1 + s(u2 − u1), v)

for 0 ≤ s ≤ 1, we have concavity of g so that g(s) ≤ g(0) + g′(0)s. In
particular, at s = 1, we have

(3.10) g(1) ≤ g(0) + g′(0);

i.e.,

(3.11) E(u2, v) ≤ E(u1, v) + (d+ 1)

∫

Cd

(u2 − u1)(dd
cu1)

d.

For future use, we record the following.

Lemma 3.5. Let {wj}, {vj} ⊂ L+(Cd) with wj ↑ w ∈ L+(Cd) and
vj ↑ v ∈ L+(Cd). Then

E(wj, v) → E(w, v) and E(wj, vj) → E(w, v).
Proof. From the cocycle condition (Proposition 3.3), it suffices to prove
the first statement. This follows directly from Lemma 6.3 of [1]: given

w, {vj}, v, {u1,j}, u1, ..., {ud,j}, ud in L+(Cd)

with vj ↑ v, u1,j ↑ u1, ..., ud,j ↑ ud,

lim
j→∞

∫

Cd

(w − vj)dd
cu1,j ∧ · · · ∧ ud,j =

∫

Cd

(w − v)ddcu1 ∧ · · · ∧ ud.

�

We remark that if wj ↓ w ∈ L+(Cd) and vj ↓ v ∈ L+(Cd) then we
still have

(3.12) E(wj, v) → E(w, v) and E(wj, vj) → E(w, v).
The first statement is standard and the second follows from the first by
Proposition 3.3.

Remark 3.6. A nonnegative functional on L+(Cd) bearing a closer
resemblance to a classical “energy” is defined in section 5 of [4]. Fix
v ∈ L+(Cd). For u ∈ L+(Cd), define

(3.13) I(u) = Iv(u) := E(u, v) + (d+ 1)

∫

Cd

(v − u)(ddcu)d



32 BERMAN-BOUCKSOM

=

∫

Cd

(v − u)
(
[(ddcv)d + · · ·+ ddcv ∧ (ddcu)d−1]− d · (ddcu)d

)
.

Note that I(v) = I(v+ c) = 0 for any constant c. It is not immediately
obvious from this definition that I(u) ≥ 0, but this follows trivially
from concavity of E . Indeed, let

f(t) := E(u+ t(v − u), v)

so that f(0) = E(u, v) and f(1) = E(v, v) = 0. Concavity of E implies
that f(1) ≤ f(0) + f ′(0) from (3.10); i.e., using Proposition 3.2,

0 ≤ E(u, v) + (d+ 1)

∫

Cd

(v − u)(ddcu)d = I(u).

4. The Main Theorem.

In this section, we state and prove the main result of Berman and
Boucksom, which relates asymptotics of certain ball-volume ratios with
energies associated with extremal measures. For E ⊂ Cd closed and φ
an admissible weight on E, let

B∞(E, nφ) := {pn ∈ Pn : |pn(z)2e−2nφ(z)| ≤ 1 on E}
be an L∞−ball and, if µ is a measure on E,

B2(E, µ, nφ) := {pn ∈ Pn :

∫

E

|pn|2e−2nφdµ ≤ 1}

be an L2−ball in Pn. The key result is the following.

Theorem 4.1. Given φ, φ′ admissible weights on E,E ′,

1

2nN
[B∞(E, nφ) : B∞(E ′, nφ′)] → 1

(d+ 1)(2π)d
E(V ∗

E,φ, V
∗
E′,φ′).

If µ, µ′ are measures on E,E ′ with (E, µ, φ) and (E ′, µ′, φ′) satisfying
a weighted Bernstein-Markov property, then

1

2nN
[B2(E, µ, nφ) : B2(E ′, µ′, nφ′)] → 1

(d+ 1)(2π)d
E(V ∗

E,φ, V
∗
E′,φ′).

Remark. We will prove the L∞−version and the L2− version follows
as noted in the case of (2.47). From this, we will prove a version of
strong Bergman asymptotics (Corollary 6.4) which says that if (K,µ, w)
satisfies a weighted Bernstein-Markov inequality, then

1

N
Bµ,w

n dµ→ µK,Q weak- ∗ .
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However, the first step in the proof of Theorem 4.1, section 4.1 below,
is the special case of strong Bergman asymptotics in the case K = Cd

(and Q is a sufficiently smooth “strongly admissible” weight). From a
purely logical point of view, it would be interesting to find either

(1) a direct proof of Corollary 6.4 that did not appeal to Theorem
4.1 and/or

(2) a direct proof of Theorem 4.1 which did not require this special
case of Corollary 6.4.

4.1. Bergman asymptotics in C
d. Results on Bergman asymptotics

in the Berman paper [3], which apply to global weights on Cd, form the
basis for an essential step in the proof of Theorem 4.1. The setting in
[3] is this: φ ∈ C1,1(Cd) with

(4.1) φ(z) ≥ (1 + ǫ) log |z| for |z| >> 1 for some ǫ > 0.

We write, following (2.5), P (φ) := VCd,φ. We will call a global admis-
sible weight φ satisfying (4.1) strongly admissible. For pn ∈ Pn, our
notation for the (varying weighted) L2−norm is

||pn||2nφ := ||pn||2ωd,nφ
=

∫

Cd

|pn(z)|2e−2nφ(z)ωd(z)

where ωd(z) = (dd
c|z|2
2π

)d/d! on Cd. Under the growth assumption on
φ, it is easy to see that if n > d/ǫ then for each polynomial pn ∈ Pn,
||pn||nφ < +∞. Next, given an orthonormal basis {q1, ..., qN} of Pn, in
this section we use the notation

Bn(z) := Bn,φ(z) := Kn,φ(z, z)e
−2nφ(z) := [

N∑

j=1

|qj(z)|2]e−2nφ(z)

for the n-th Bergman function; and we recall that

Bn(z) = sup
pn∈Pn\{0}

|pn(z)|2e−2nφ(z)/||pn||2nφ.

Finally, let

P := {z ∈ C
d : ddcφ(z) exists and ddcφ(z) > 0}

and if u is a C1,1 function such that (ddcu)d is absolutely continuous
with respect to Lebesgue measure, we write

det(ddcu)ωd :=
1

(2π)d
(ddcu)d.
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Theorem 4.2. Given φ ∈ C1,1(Cd) with φ(z) ≥ (1 + ǫ) log |z| for |z|
large, P (φ) ∈ C1,1(Cd) ∩ L+(Cd); (ddcP (φ))d is absolutely continuous
with respect to Lebesgue measure;

(ddcP (φ))d = det(ddcP (φ))ωd

as (d, d)−forms with L∞
loc(C

d) coefficients; and a.e. on D := {P (φ) =
φ} we have det(ddcφ) = det(ddcP (φ)). Moreover,

1

N
Bn → χD∩P det(ddcφ) in L1(Cd)

and
1

N
Bnωd →

1

(2π)d
(ddcP (φ))d weak− ∗.

Proof. We give the proof on pp. 6-13 in [3]. First of all, it is easy to
see that P (φ) is Lipschitz. Since P (φ) ∈ L(Cd),

P (φ)(z + h) ≤ log |z + h|+ C ≤ log |z|+ log[1 + |h|/|z|] + C

≤ log |z|+ C + 2|h|/|z| ≤ (1 + ǫ) ln |z|+ 2|h|/|z| ≤ φ(z) + 2|h|/R
for |z| ≥ R sufficiently large; while for |z| < R

P (φ)(z + h) ≤ φ(z + h) ≤ φ(z) + [ sup
|z|≤R

|dφ‖]|h|;

combining these estimates, we get that

P (φ)(z + h)−max[2/R, sup
|z|≤R

|dφ|] · |h| ≤ P (φ)(z)

on Cd as the left-hand-side is a competitor for P (φ). Applying this
inequality with z → z + h and h→ −h gives

|P (φ)(z + h)− P (φ)(z)| ≤ max[2/R, sup
|z|≤R

|dφ|] · |h|.

To verify that the first order partial derivatives of P (φ) exist and
are Lipschitz, we will show that each real second order (weak) partial

derivative ∂2P (φ)
∂xj∂xk

, j, k ∈ {1, ..., 2d} of the real Hessian D2P (φ) is repre-

sentable by an L∞
loc(C

d) function; i.e., for short, we say that D2P (φ) has
an L∞

loc(C
d) density. We first claim that there is a constant C = C(φ)

with

(4.2) [P (φ)(z + h) + P (φ)(z − h)]/2− P (φ)(z) ≤ C|h|2.
To see this, let

g(z) := [P (φ)(z + h) + P (φ)(z − h)]/2 ∈ L(Cd).
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Arguing as above we want to get

g(z) ≤ [φ(z + h) + φ(z − h)]/2 ≤ P (φ)(z) + C|h|2

in order to prove (4.2). Precisely, looking at the first order Taylor
polynomial of φ at z, on the ball BR of radius R centered at 0 we have

[φ(z + h) + φ(z − h)]/2 ≤ φ(z) + C ′|h|2

where C ′ = C ′(R) so that

(4.3) g(z) = [P (φ)(z + h) + P (φ)(z − h)]/2 ≤ φ(z) + C ′|h|2

on this ball. Here,

C ′ = sup
BR

|D2φ|

where D2φ is the real Hessian of φ. Using the growth of φ as in the
previous paragraph we can get an estimate outside a large ball of the
form

(4.4) g(z) = [P (φ)(z + h) + P (φ)(z − h)]/2 ≤ φ(z) + C ′′|h|2.
To see this, recall for |z| large,

P (φ)(z + h) ≤ log |z + h|+ C ≤ log |z| + log[1 + |h|/|z|] + C;

similarly,

P (φ)(z − h) ≤ log(|z| − |h|+ 2|h|) + C

≤ log |z|+ log[1− |h|/|z|+ 2|h|/|z|] + C

≤ log |z|+ log[1− |h|/|z|] + 2ǫ log |z|+ C

for |z| large. Thus
[P (φ)(z + h) + P (φ)(z − h)]/2 ≤ (1 + ǫ) log |z| + C1|h|2/|z|2 + C2

≤ φ(z) + C ′′|h|2
for |z| large; this gives (4.4); together with (4.3), we get (4.2).
To deduce the C1,1 regularity from (4.2), we follow the arguments

of [16]. Taking regularizations (P (φ))ǫ := φ ∗ χǫ of P (φ), we have the
same estimate for (P (φ))ǫ as we have for P (φ) in (4.2):

[(P (φ))ǫ(z + h) + (P (φ))ǫ(z − h)]/2− (P (φ))ǫ(z) ≤ C|h|2.
Forming a Taylor expansion of degree 2 of (P (φ))ǫ around z gives

D2(P (φ))ǫ(z) · h2 ≤ C|h|2.
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We now use the fact that (P (φ))ǫ is psh, so that its complex Hessian is
positive semi-definite. Thus

D2(P (φ))ǫ(z) · h2 +D2(P (φ))ǫ(z) · (ih)2 ≥ 0

so that

D2(P (φ))ǫ(z) · h2 ≥ −D2(P (φ))ǫ(z) · (ih)2 ≥ −C|h|2

and we conclude that

|D2(P (φ))ǫ(z)| ≤ C.

Letting ǫ → 0, we conclude that D2P (φ) has an L∞
loc(C

d) density and
we have a local estimate

|D2P (φ)| ≤ C ′ = C ′(K, φ)

on a compact set K where C ′(K, φ) depends on K, supK |D2φ|, and
the growth of φ. This shows that P (φ) ∈ C1,1(Cd).
Now since, e.g., (P (φ))ǫ ↓ P (φ), we have the Monge-Ampere mea-

sures (ddc(P (φ))ǫ)
d converge weak-* to (ddcP (φ))d and hence

(ddcP (φ))d = det(ddcP (φ))ωd

as forms with L∞
loc(C

d) coefficients. The fact that

det(ddcP (φ))d = det(ddcφ)d a.e. on D = {P (φ) = φ}
will follow by showing that

∂2(P (φ)− φ)

∂zj∂zk
= 0 a.e. on D.

Indeed, we show that for all the real second order derivatives

(4.5)
∂2(P (φ)− φ)

∂xj∂xk
= 0 a.e. on D.

We will use the lemma on p. 53 of [20]. This result implies that if a
real-valued function u is Lipschitz on an open set Ω, then ∂u

∂xj
= 0 a.e on

{x ∈ Ω : u(x) = 0}. Apply this to the C1,1 function P (φ)−φ to conclude
∂(P (φ)−φ)

∂xj
= 0 a.e on D. Since ∂(P (φ)−φ)

∂xj
is Lipschitz, ∂(P (φ)−φ)

∂xj
= 0 on all

of D and we can apply the lemma to ∂(P (φ)−φ)
∂xj

to obtain ∂2(P (φ)−φ)
∂xj∂xk

= 0

a.e on {∂(P (φ)−φ)
∂xj

= 0}; in particular, we obtain (4.5).

We turn to the Bergman asymptotics; i.e., the behavior of { 1
N
Bn}

for n large. The first step is an asymptotic upper bound (the “local
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holomorphic Morse inequality”) which is a general fact about a C1,1

function φ satisfying (4.1) (i.e., independent of (weighted) pluripoten-
tial theory). Recall that

||pn||2nφ :=

∫

Cd

|pn(z)|2e−2nφ(z)ωd(z)

and

Bn(z) = Bn,φ(z) = sup
pn∈Pn\{0}

|pn(z)|2e−2nφ(z)/||pn||2nφ.

We can also consider Bn(z) as the supremum in the class of all weighted
polynomials Qn,φ := pne

−nφ:

Bn,φ(z) = sup
Qn,φ 6≡0

|Qn,φ(z)|2/||Qn,φ||L2(Cd).

If we let φ̃ := φ+Re(g) where g is an entire function and set p̃n := pne
ng,

then

|p̃n(z)|2e−2nφ̃(z) = |pn(z)|2e−2nφ(z) = |Qn,φ(z)|2

so that Bn,φ(z) = Bn,φ̃(z). In particular, to study asymptotic behav-

ior of { 1
N
Bn}, by taking an affine g (g(z) = a +

∑d
j=1 ajzj) we may

assume, working near the origin 0 for convenience, that φ(0) vanishes
and dφ(0) = 0. If the second order partial derivatives exist at 0 then
by taking a quadratic g (g(z) =

∑
i,j aijzizj) and a unitary change of

coordinates, we can assume that, near 0,

(4.6) φ(z) =
d∑

j=1

λj|zj |2 + 0(|z|3).

We verify two estimates which will be useful. First of all, regardless
of the existence of second order partial derivatives at 0, on a fixed ball
BR centered at 0, there is a constant C = C(R, φ) with

(4.7) |φ(z)| ≤ C|z|2 on BR.

This estimate is sufficient to prove local uniform boundedness of { 1
N
Bn}:

(4.8)
1

N
Bn(z) ≤ C = C(K) on a compact set K.



38 BERMAN-BOUCKSOM

More to the point, we show that if the second derivatives of φ do exist
at a point, say 0, then for any R > 0,

(4.9) lim
n→∞

[
sup
z∈BR

∣∣nφ(z/
√
n)−

d∑

j=1

λj|zj |2
∣∣] = 0.

This will be used to prove the pointwise upper bound asymptotics

(4.10) lim sup
n→∞

1

Nd!
Bn(0) ≤ χP (0) det(dd

cφ(0)).

To prove (4.7) and (4.9), define, for 0 ≤ t ≤ 1,

ψ(t) := φ(tz)−
d∑

j=1

λj|tzj |2.

Then ψ(0) = 0 and ψ is of class C1 so that

ψ(1) =

∫ 1

0

ψ′(t)dt = φ(z)−
d∑

j=1

λj |zj|2.

Now

ψ′(t) =
d∑

j=1

[zj
∂φ

∂zj
(tz) + zj

∂φ

∂zj
(tz)]− 2

d∑

j=1

λjt|zj |2.

Since dφ(0) = 0, ∂φ
∂zj

(tz), ∂φ
∂zj

(tz) = 0(|z|) so that

|ψ′(t)| ≤ C|z|2, 0 ≤ t ≤ 1

which gives (4.7):

|φ(z)| = |φ(z)−
d∑

j=1

λj|zj |2 +
d∑

j=1

λj|zj |2|

≤ |φ(z)−
d∑

j=1

λj|zj |2|+ |
d∑

j=1

λj|zj |2| ≤ C|z|2.

For (4.9), if the second derivatives of φ(z) exist at z = 0, then the

second derivatives of φ(z)−∑d
j=1 λj|zj |2 vanish at z = 0. Hence we get

|ψ′(t)| = o(|z|2), 0 ≤ t ≤ 1;
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i.e., given ǫ > 0 there exists δ > 0 such that if |z| < δ then |ψ′(t)| ≤
ǫ · |z|2. This gives

|ψ(1)| = |
∫ 1

0

ψ′(t)dt| = |φ(z)−
d∑

j=1

λj|zj |2| ≤ ǫ · |z|2.

Thus if |z| ≤ R and n is sufficiently large

|nφ(z/√n)−
d∑

j=1

λj |zj|2| = n|φ(z/√n)−
d∑

j=1

λj|zj/
√
n|2|

≤ nǫ|z|2/n ≤ nǫ(R/
√
n)2 = ǫR.

This is true for all ǫ > 0, giving (4.9).
Recall that

(4.11) Bn(z) = sup
pn∈Pn\{0}

|pn(z)|2e−2nφ(z)/||pn||2nφ.

Thus, working near a fixed point which we take to be the origin, 0, and
taking an extremal pn,

1

N
Bn(0) = |pn(0)|2e−2nφ(0)/N ||pn||2nφ = |pn(0)|2/N ||pn||2nφ

=
|pn(0)|2

N
∫
Cd |pn(z)|2e−2nφ(z)ωd(z)

≤ |pn(0)|2
N
∫
|z|≤R/

√
n
|pn(z)|2e−2nφ(z)ωd(z)

for any R > 0. Choosing R as in (4.7), we can replace φ(z) by C|z|2 in
the integrand:

1

N
Bn(0) ≤

|pn(0)|2
N
∫
|z|≤R/

√
n
|pn(z)|2e−2nC|z|2ωd(z)

.

Applying the subaveraging property to the psh function |pn|2 on the
ball {|z| ≤ R/

√
n} with respect to the radial probability measure

e−2nC|z|2ωd(z)/
∫
|z|≤R/

√
n
e−2nC|z|2ωd(z), we obtain

1

N
Bn(0) ≤

1

N
∫
|z|≤R/

√
n
e−2nC|z|2ωd(z)

≤ d!∫
|z′|≤R

e−2C|z′|2ωd(z′)

which is finite. The last inequality comes via the change of variables
z → z′ := z

√
n, noting that ωd(z

′) = ndωd(z) and N =
(
d+n
d

)
≥ nd/d!.
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Letting the point “0” vary over a compact set K, we get a C = C(K)
with

1

N
Bn(z) ≤ C = C(K) for z ∈ K;

i.e., (4.8) holds.
Now start with

1

N
Bn(0) ≤

|pn(0)|2
N
∫
|z|≤R/

√
n
|pn(z)|2e−2nφ(z)ωd(z)

which is valid for any R > 0. Letting z → z′ := z
√
n we have

1

N
Bn(0) ≤

d!|pn(0)|2∫
|z′|≤R

|pn(z′/
√
n)|2e−2nφ(z′/

√
n)ωd(z′)

.

Define

ρn,R := exp
[
2 sup
|z′|≤R

∣∣nφ(z′/
√
n)−

d∑

j=1

λj|z′j |2
∣∣].

Then

1

N
Bn(0) ≤ ρn,R · d!|pn(0)|2∫

|z′|≤R
|pn(z′/

√
n)|2e−2

∑d
j=1 λj |z′j |2ωd(z′)

.

Applying the subaveraging property to the psh function |pn|2 on the
ball {|z′| ≤ R} with respect to the radial probability measure

e−2
∑d

j=1 λj |z′j |2ωd(z)/

∫

|z′|≤R

e−2
∑d

j=1 λj |z′j |2ωd(z
′)

we obtain
1

N
Bn(0) ≤ ρn,R · d!

∫
|z′|≤R

e−2
∑d

j=1 λj |z′j |2ωd(z′)
.

We now assume the second order partial derivatives of φ exist at 0. By
(4.9), ρn,R → 1 as n→ ∞; thus for all R > 0

lim sup
n→∞

1

Nd!
Bn(0) ≤

1
∫
|z′|≤R

e−2
∑d

j=1 λj |z′j |2ωd(z′)
.

Letting R → ∞ the Gaussian integral goes to πd

2dλ1···λd
if all λj > 0 and

to +∞ otherwise. Thus we have verified (4.10); i.e., we have shown:

(4.12) lim sup
n→∞

1

Nd!
Bn(z) = lim sup

n→∞

1

nd
Bn(z) ≤ χP (z) det(dd

cφ(z))
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for a.e. z ∈ Cd.
Finally, we utilize (weighted) pluripotential theory to obtain the final

results. By (4.8),

(4.13)
1

nd
|pn(z)|2e−2nφ(z)/||pn||2nφ ≤ 1

nd
Bn(z) ≤ CD for z ∈ D.

We claim that

(4.14)
1

nd
Bn(z) ≤ CDe

−2n(φ(z)−P (φ)(z)) on C
d.

To see this, note that for any pn ∈ Pn with ||pn||2nφ = n−d, by (4.13)

|pn(z)|2e−2nφ(z) ≤ CD on D.

But then
1

2n
log |pn(z)|2 ≤ φ(z) +

1

2n
logCD on D

so that, from (2.3),

1

2n
log |pn(z)|2 ≤ P (φ)(z) +

1

2n
logCD on C

d.

Thus from (4.11)

1

nd
Bn(z) = sup

||pn||2nφ=n−d

|pn(z)|2e−2nφ(z) ≤ CDe
−2n(φ(z)−P (φ)(z)) on C

d.

In particular,

lim
n→∞

1

nd
Bn(z) = 0 on C

d \D.
Note then (4.12) can be strengthened to

(4.15) lim sup
n→∞

1

Nd!
Bn(z) = lim sup

n→∞

1

nd
Bn(z) ≤ χD∩P (z) det(dd

cφ(z))

for a.e. z ∈ Cd.
From (4.14) and the growth assumption on φ, for a sufficiently large

R, there is a C with

1

nd
Bn(z) ≤ C|z|−2nǫ for |z| > R;

then dominated convergence (recall (4.8)) shows that

(4.16) lim
n→∞

∫

Cd\D

1

nd
Bnωd = 0.
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Next we show

(4.17) lim
n→∞

∫

D

1

nd
Bnωd =

∫

D∩P
(2πddcφ)d/d!.

To prove (4.17), we know that
∫

Cd

Bnωd = N ≍ nd/d!

and using (4.16) we have

1/d! = lim
n→∞

∫

Cd

1

nd
Bnωd = lim

n→∞

∫

D

1

nd
Bnωd.

On the other hand, by (4.12) applied to D and Fatou’s lemma, we have

1/d! = lim
n→∞

∫

D

1

nd
Bnωd ≤

∫

D∩P

(ddcφ)d

(2π)dd!
.

But from the first part of this theorem, we can replace (ddcφ)d by
(ddcP (φ))d which has total mass (2π)d on D ∩ P ; hence

1/d! = lim
n→∞

∫

D

1

nd
Bnωd ≤

∫

D∩P

(ddcP (φ))d

(2π)dd!
= 1/d!.

This gives (4.17). We will use this relation, together with (4.15), to
show that

1

nd
Bn → χD∩P det(ddcφ) in L1(Cd).

First we prove the following measure-theoretic lemma (cf., [2]).

Lemma 4.3. Let (X, µ) be a measure space and let {fn} be a sequence
of uniformly bounded, integrable functions on X. If f is a bounded,
integrable function on X with

(1) limn→∞
∫
X
fndµ =

∫
X
fdµ and

(2) lim supn→∞ fn ≤ f a.e. µ,

then fn → f in L1(X, µ).

Proof. Let χn be the characteristic function of {x ∈ X : fn − f ≥ 0}.
Since ∫

X

|fn − f |dµ =

∫

X

χn(fn − f)dµ+

∫

X

(1− χn)(f − fn)dµ

= 2

∫

X

χn(fn − f)dµ+

∫

X

(f − fn)dµ,
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using (1) we have

lim sup
n→∞

∫

X

|fn − f |dµ = 2 lim sup
n→∞

∫

X

χn(fn − f)dµ.

By Fatou’s lemma,

lim sup
n→∞

∫

X

χn(fn − f)dµ ≤
∫

X

[lim sup
n→∞

χn(fn − f)]dµ.

Now the result follows from (2). �

We set fn := 1
ndBn and f := χD∩P det(ddcφ) then from (4.17) and

(4.15) we get the convergence 1
ndBn → χD∩P det(ddcφ) in L1(Cd). This

implies weak-* convergence of 1
ndBnωd to χD∩P det(ddcφ)ωd and com-

pletes the proof of the theorem. �

We make two important remarks.

(1) The above argument yields, since limn→∞
∫
Cd\D

1
ndBnωd = 0,

that the compactly supported measures

(4.18)
1

N
Bn · χSωd →

1

(2π)d
(ddcP (φ))d weak − ∗

where S is any set containing D.
(2) We have a weighted Bernstein-Markov property:

(4.19) sup
Cd

|pne−nφ| ≤ Cn[

∫

Cd

|pn|2e−2nφωd]
1/2 < +∞

for pn ∈ Pn and n > n0(ǫ, d) = d/ǫ where C
1/n
n → 1. For

sup
Cd

|pne−nφ| = sup
D

|pne−nφ|

≤ Cn[

∫

D

|pn|2e−2nφωd]
1/2 ≤ Cn[

∫

Cd

|pn|2e−2nφωd]
1/2

since (D,ωd|D, φ|D) satisfies a weighted Bernstein-Markov prop-
erty. This follows from Proposition 2.5 or see [9].
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4.2. Differentiability of E◦P . We turn to the main “differentiability”
result. Generally we will fix a function v ∈ L+(Cd) which will be in the
second slot of all energy terms and we simply write, for any ṽ ∈ L+(Cd),

E(ṽ) := E(ṽ, v).
If we take a specific v, we revert to the notation on the right-hand-side
of this equation. For a closed subset E ⊂ Cd and an admissible weight
a on E, we write P (a) (sometimes PE(a)) to denote the regularized
weighted extremal function V ∗

E,a.
We state two versions of differentiability of E ◦ P . One version,

Proposition 4.4, is for a second admissible weight b on E where we
consider the perturbed weight a+ t(b− a) and the associated weighted
extremal function P (a+ t(b− a)) and show the differentiability of

F (t) := E(P (a+ t(b− a))).

If E is unbounded, we will need to make an additional assumption on
u := b − a so that (2.7) below holds; also, in this case, we restrict to
0 ≤ t ≤ 1 so that a+t(b−a) = tb+(1−t)a, being a convex combination
of a, b, is admissible on E. The other version, Proposition 4.5, is for a
compact set E and an arbitrary real t. We take a function u ∈ C(E),
consider the perturbed weight a+ tu, and show the differentiability of

F (t) := E(P (a+ tu)).

Apriori, since t ∈ R, we must assume u is continuous so that a+tu is an
admissible (lowersemicontinuous) weight. However, to rigorously prove
the results, we assume some regularity of a, b and/or u: C2−smoothness
(or at least C1,1−smoothness) will suffice.

Proposition 4.4. Let v ∈ L+(Cd). For admissible weights a, b ∈
C2(E) on a closed set E ⊂ Cd, let u := b− a and let

F (t) := E(P (a+ tu), v))

for t ∈ R. If E is unbounded, we assume (2.9) holds and 0 ≤ t ≤ 1.
Then

(4.20) F ′(t) = (d+ 1)

∫

Cd

u(ddcP (a+ tu))d.

Proposition 4.5. Let v ∈ L+(Cd). For an admissible weight a on a
compact set E ⊂ Cd and u ∈ C2(E), let

F (t) := E(P (a+ tu), v)
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for t ∈ R. Then

(4.21) F ′(t) = (d+ 1)

∫

Cd

u(ddcP (a+ tu))d.

We prove Proposition 4.4 and Proposition 4.5 simultaneously.

Proof. We may take v = P (a). As in the proof of Proposition 3.2 we
prove only the one-sided limit as t→ 0+:

(4.22) F ′(0) := lim
t→0+

F (t)− F (0)

t
= (d+ 1)

∫

Cd

u(ddcP (a))d.

This implies (4.20). For if s is fixed,

G(t) := F (s+ t) = E(P (a+ (s+ t)u), v))

= E(P (a+ su+ tu), v))

and applying (4.22) to G (so a→ a+ su) we get

G′(0) = F ′(s) = (d+ 1)

∫

Cd

u(ddcP (a+ su))d.

Note that F (0) = 0 and to verify (4.22) it suffices to prove

(4.23) E(P (a+ tu), P (a)) = (d+ 1)t

∫

Cd

u(ddcP (a))d + o(t).

We need two ingredients for (4.23):
(4.24)

E(P (a+ tu), P (a)) = (d+ 1)

∫

Cd

[P (a+ tu)− P (a)](ddcP (a))d + o(t)

and

(4.25) lim
t→0

∫

D(0)−D(t)

(ddcP (a))d = 0

where
D(t) := {z ∈ C

d : P (a+ tu)(z) = (a+ tu)(z)}.
We will state and prove (4.24) and (4.25) as separate lemmas.
Given (4.24) and (4.25), and observing from (2.2) that

(4.26) supp(ddcP (a))d ⊂ D(0),

(4.23) follows as in [4], p. 28:

E(P (a+ tu), P (a)) = (d+ 1)

∫

Cd

[P (a+ tu)− P (a)](ddcP (a))d + o(t)
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= (d+ 1)

∫

D(0)−D(t)

[P (a+ tu)− P (a)](ddcP (a))d

+(d+ 1)

∫

D(0)∩D(t)

[P (a+ tu)− P (a)](ddcP (a))d + o(t)

= (d+ 1)

∫

D(0)−D(t)

[P (a+ tu)− P (a)](ddcP (a))d

+(d+ 1)t

∫

D(0)∩D(t)

u(ddcP (a))d + o(t)

= (d+ 1)

∫

D(0)−D(t)

[P (a+ tu)− P (a)− tu](ddcP (a))d

+(d+ 1)t

∫

D(0)

u(ddcP (a))d + o(t)

since P (a+ tu)−P (a) = tu on D(0)∩D(t). Now (2.7) or (2.8) implies

|P (a+ tu)− P (a)− tu| = 0(t)

on the bounded set D(0) − D(t) (recall if E is unbounded we assume
(2.9) holds in the setting of Proposition 4.4) and this fact, combined
with (4.25) and (4.26), finishes the proof. �

In (4.24), since (ddcP (a))d is supported in D(0),
∫

Cd

[P (a+ tu)− P (a)](ddcP (a))d =

∫

D(0)

[P (a+ tu)− P (a)](ddcP (a))d;

and, on D(t)∩D(0), we have P (a+ tu)−P (a) = tu. Then the content
of (4.25) is that the contribution to this integral on D(0) − D(t) is
negligible. It is in proving (4.25) that the C2−smoothness (or at least
C1,1−smoothness) is needed.

Lemma 4.6. Let a be an admissible weight on a compact set E and let
u ∈ C2(E). Then

(4.27) lim
t→0

∫

D(0)−D(t)

(ddcP (a))d = 0

where D(t) = {P (a+ tu) = a + tu} for t ∈ R.
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Proof. The hypothesis u ∈ C2(E) means that u is the restriction to E
of a C∞ function (which we also denote by u) on Cd; clearly we can
take this function to have compact support. We prove the result for
t > 0; i.e t → 0+. We can find M > 0 sufficiently large depending on
u and its support so that u+Mψ is psh where ψ(z) = 1

2
log(1 + |z|2).

Observing that

D(0) \D(t) ⊂ S

where

S := {P (a+tu) < P (a)+tu} = {P (a+tu)+tMψ < P (a)+t(u+Mψ)}
and

D(t) ∩ {P (a+ tu) < P (a) + tu} = ∅,
we have ∫

D(0)−D(t)

(ddcP (a))d ≤
∫

S

(ddcP (a))d

≤
∫

S

[ddc(P (a) + t(u+Mψ)]d ≤
∫

S

[ddc(P (a+ tu) + tMψ)]d

=

∫

S

[ddc(P (a+ tu))]d + 0(t) = 0(t).

Here, the inequality in the second line comes from the L+−comparison
principle, Proposition 2.2, since each of ( 1

1+tM
)[P (a + tu) + tMψ] and

( 1
1+tM

)[P (a) + t(u+Mψ)] belong to L+(Cd). �

Corollary 4.7. Let a, b ∈ C2(E) be admissible weights on a closed,
unbounded set E. If (2.9) holds then

(4.28) lim
t→0

∫

D(0)−D(t)

(ddcP (a))d = 0

where D(t) = {P (a+ t(b− a)) = a+ t(b− a)} for 0 ≤ t ≤ 1.

Proof. First of all, (ddcP (a))d has compact support. Also, by (2.9), the
extremal functions P (a+ t(b− a)) for all 0 ≤ t ≤ 1 are independent of
the values of a, b outside a large ball. Thus we may assume that a = b
outside a fixed ball. In other words, this case is reduced to the case of
Lemma 4.6 where u = b− a. �

The content of (4.24), Lemma 4.8 below, is that the contribution of
each of the d + 1 terms in the energy E(P (a + tu), P (a)) is the same,
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up to o(t), as that involving the pure Monge-Ampere term (ddcP (a))d.
Again we write

F (t) := E(P (a+ tu)) = E(P (a+ tu), P (a))

=

∫
[P (a+ tu)− P (a)][(ddcP (a+ tu))d + ... + (ddcP (a))d].

Another interpretation of (4.24) is that to prove the differentiability of
E◦P , we can replace E by its “linearization” at P (a). As in the previous
arguments, we only give the proof at t = 0 and for the one-sided limit in
(4.21) as t→ 0+. Note in this next result we don’t require smoothness
of the perturbation u.

Lemma 4.8. For an admissible weight a on E and u ∈ C(E), let

F (t) = E(P (a+ tu))

=

∫
[P (a+ tu)− P (a)][(ddcP (a+ tu))d + ...+ (ddcP (a))d]

and

G(t) := (d+ 1)

∫
[P (a+ tu)− P (a)](ddcP (a))d.

Then

lim
t→0+

F (t)− F (0)

t
= lim

t→0+

G(t)−G(0)

t
=

∫
u(ddcP (a))d.

Proof. Note that F (0) = E(P (a)) = 0 and G(0) = 0. Next, by concav-
ity of P (recall (2.6)) and linearity of f →

∫
f(ddcP (a))d, the function

G(t) is concave so that

A := lim
t→0+

G(t)−G(0)

t

exists. By concavity of E , we have (recall (3.9))

E(P (a+ tu)) ≤ E(P (a))+ < E ′(P (a)), P (a+ tu)− P (a) >;

i.e., from (3.11) with u1 = P (a), u2 = P (a+ tu) and v = P (a),

E(P (a+ tu)) ≤ E(P (a)) + (d+ 1)

∫
[P (a+ tu)− P (a)](ddcP (a))d].

Thus

lim sup
t→0+

F (t)− F (0)

t
≤ A.
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We prove

lim inf
t→0+

F (t)− F (0)

t
≥ A.

Since A := limt→0+
G(t)−G(0)

t
exists, given ǫ > 0 we can choose δ > 0

sufficiently small so that

G(δ)−G(0)

δ
=
d+ 1

δ

∫
[P (a+ δu)− P (a)](ddcP (a))d ≥ A− ǫ;

i.e.,

(d+ 1)

∫
[P (a+ δu)− P (a)](ddcP (a))d ≥ δ(A− ǫ).

From Proposition 3.2, for t > 0 sufficiently small we have

E(P (a) + t[P (a+ δu)− P (a)])− E(P (a))
t

≥ (d+ 1)

∫
[P (a+ δu)− P (a)](ddcP (a))d − δǫ;

i.e.,

E((1− t)P (a) + tP (a+ δu)) = E(P (a) + t[P (a+ δu)− P (a)])

≥ E(P (a)) + t(d+ 1)

∫
[P (a+ δu)− P (a)](ddcP (a))d − tδǫ.

Combining these last two inequalities, we have

E((1− t)P (a) + tP (a+ δu)) ≥ E(P (a)) + tδA− 2tδǫ.

By concavity of P ,

P (a+ tδu) = P ((1− t)a+ t(a + δu)) ≥ (1− t)P (a) + tP (a+ δu)

so that, by monotonicity of E ,
E(P (a+ tδu)) ≥ E((1− t)P (a) + tP (a+ δu)) ≥ E(P (a)) + tδA− 2tδǫ

for t > 0 sufficiently small. Thus,

lim inf
t→0+

F (t)− F (0)

t
≥ A− 2ǫ

for all ǫ > 0, yielding the result.
We now finish the proof of Proposition 4.4 and Proposition 4.5 by

verifying that A =
∫
u(ddcP (a))d. The proof was essentially given in

the verification of (4.23) assuming (4.24) and (4.25); for the reader’s
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convenience, we recall the details. We write Sa :=supp(ddcP (a))d. For
each t, set

D(t) := {z ∈ C
d : P (a+ tu)(z) = a(z) + tu(z)}.

This is a bounded set. Since P (a) = a (ddcP (a))d a.e. on Sa ⊂ D(0),
∫

[P (a+ tu)− P (a)](ddcP (a))d =

∫

Sa

[P (a+ tu)− P (a)](ddcP (a))d

=

∫

D(t)∩Sa

[P (a+ tu)− P (a)](ddcP (a))d

+

∫

Sa\D(t)

[P (a+ tu)− P (a)](ddcP (a))d

=

∫

D(t)∩Sa

[a+ tu− a](ddcP (a))d+

∫

Sa\D(t)

[P (a+ tu)−P (a)](ddcP (a))d

=

∫

D(t)∩Sa

tu(ddcP (a))d +

∫

Sa\D(t)

[P (a+ tu)− P (a)](ddcP (a))d

=

∫

Sa

tu(ddcP (a))d +

∫

Sa\D(t)

[P (a+ tu)− P (a)− tu](ddcP (a))d.

Now we use the observation (2.7) (or (2.8)) to see that

|P (a+ tu)− P (a)− tu| = 0(t)

on the bounded set Sa \D(t); then the conclusion of the lemma follows
from Lemma 4.6. �

Remark 4.9. There is a nice interpretation of the differentiabilty of
E◦P in one dimension (see section 9.3 of [4]). Indeed, if d = 1 andK is a
closed subset of the unit disc in C with admissible weight Q = − logw,
then, for T = {z ∈ C : |z| = 1} we have VT (z) = log+ |z| so that VT = 0
on K ∪ T . Taking v = VT , we have

(E ◦ P )(Q) = E(V ∗
K,Q, VT ) =

∫

C

(V ∗
K,Q − VT )dd

c(V ∗
K,Q + VT )

=

∫

C

V ∗
K,Qdd

c(V ∗
K,Q) +

∫

C

V ∗
K,Qdd

cVT

=

∫

C

Qddc(V ∗
K,Q) + ρK,Q

where
ρK,Q = lim

|z|→∞
[V ∗

K,Q(z)− log |z|]
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is the Robin constant of V ∗
K,Q. Let M(K) denote the probability mea-

sures supported in K. It is classical that E(V ∗
K,Q, VT ) coincides with the

minimal weighted logarithmic energy

inf
µ∈M(K)

∫

K

∫

K

log
1

|x− y|w(x)w(y)dµ(x)dµ(y)

= inf
µ∈M(K)

[
I(µ) + 2

∫

K

Qdµ
]

over µ ∈ M(K) where I(µ) =
∫
K

∫
K
log 1

|x−y|dµ(x)dµ(y) is the (un-

weighted) logarithmic energy of µ. It is also classical that

µ ∈ M(K) → I(µ) ∈ R

is strictly convex on M(K); i.e., if 0 < t < 1, then

I(tµ1 + (1− t)µ2) < tI(µ1) + (1− t)I(µ2)

for µ1, µ2 ∈ M(K). In a sense that can be made precise, the strict
convexity of µ → I(µ) on M(K) is related to the differentiability of
the Legendre transform I∗ of I on C(K), where, for p ∈ C(K),

I∗(p) := sup
µ∈M(K)

[

∫

K

pdµ− I(µ)] = − inf
µ∈M(K)

[I(µ)−
∫

K

pdµ].

Setting p = −2Q, we have

I∗(−2Q) = − inf
µ∈M(K)

[I(µ)+2

∫

K

Qdµ] = −E(V ∗
K,Q, VT ) = −(E ◦P )(Q).

We record an integrated version of Proposition 4.4 and Proposition
4.5 which we will use.

Proposition 4.10. For admissible weights a, b ∈ C2(E) on an un-
bounded closed set E satisfying (2.9),

(4.29) E(P (b), P (a)) = (d+1)

∫ 1

t=0

dt

∫

Cd

(b− a)(ddcP (a+ t(b− a)))d;

and for a compact set E with admissible weight a and u ∈ C2(E),

(4.30) E(P (a+ u), P (a)) = (d+ 1)

∫ 1

t=0

dt

∫

Cd

u(ddcP (a+ tu))d.
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Proof. We prove (4.29) as (4.30) is similar. We begin with Proposition
4.4 using v = P (a) so that F (t) = E(P (a+ t(b− a)), P (a))) and (4.20)
becomes

F ′(t) = (d+ 1)

∫

Cd

(b− a)(ddcP (a+ t(b− a)))d.

Integrating this expression from t = 0 to t = 1 gives (4.29) since F (1)−
F (0) = E(P (b), P (a)). �

4.3. Proof of the Main Theorem. Following the ideas in [4], [5],
[6] and [7], given a closed set K, an admissible weight w on K, and a
function u ∈ C(K), we consider the weight wt(z) := w(z) exp(−tu(z)),
t ∈ R, and let {µn} be a sequence of measures on K. Fixing a basis
βn := {p1, ..., pN} of Pn, we set

(4.31) fn(t) := −(d+ 1)

2dnN
log det(Gµn,wt

n )

where Gµn,wt
n = Gµn,wt

n (βn) and we begin with the following general
result (see Lemma 6.4 in [BB]).

Lemma 4.11. We have

f ′
n(t) =

d+ 1

dN

∫

K

u(z)Bµn,wt
n (z)dµn.

Proof. Recall that Gµn,wt
n is a positive definite Hermitian matrix; hence

it can be diagonalized by a unitary matrix and we can define log(Gµn,wt
n ).

Using log det(Gµn,wt
n ) = trace log(Gµn,wt

n ), we calculate

2dnN

d+ 1
f ′
n(t) = − d

dt
trace (log(Gµn,wt

n ))

= −trace

(
d

dt
log(Gµn,wt

n )

)

= −trace

(
(Gµn,wt

n )−1 d

dt
Gµn,wt

n

)

= 2n trace

(
(Gµn,wt

n )−1

[∫

K

pi(z)pj(z)u(z)w(z)
2n exp(−2ntu(z))dµn

])
.

As in the proof of Proposition 2.7 we use

trace(ABC) = trace(CAB) = CAB
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to write the previous line as

= 2n

∫

K

P ∗(z)(Gµn,wt
n )−1P (z)u(z)w(z)2n exp(−2ntu(z))dµn

= 2n

∫

K

u(z)P ∗(z)(Gµn,wt
n )−1P (z)wt(z)

2ndµn

= 2n

∫

K

u(z)Bµn,wt
n (z)dµn

where the last equality follows from the remark (2.39):

w2nP ∗(Gµn,wt
n )−1P = Bµn,wt

n .

�

We are ready for the proof of Theorem 4.1.

Proof. We begin in the L2−case E = E ′ = Cd and φ, φ′ ∈ C2(Cd)
strongly admissible. We note that (2.9) holds for then all of the weights
φ+t(φ′−φ) are strongly admissible with a uniform ǫ (recall (4.1)). Here,
we are using dµ = dµ′ = ωd; i.e., Lebesgue measure; recall from (4.19)
that we have a weighted Bernstein-Markov property in this setting.
Take u = φ′ − φ which is, in particular, continuous. We first assume
that φ′ = φ outside a ball BR for some R; i.e., u has compact support.
For 0 ≤ t ≤ 1 let

φt := φ+ tu = φ+ t(φ′ − φ) = (1− t)φ+ tφ′

so that φ0 = φ and φ1 = φ′; equivalently, wt(z) := w(z) exp(−tu(z))
(note w0 = w = e−φ and w1 = w′ = e−φ′

). Then from Theorem 4.2 and
remark (4.18), for each t,

1

N
Bn,φ+tu · ωd →

1

(2π)d
(ddcP (φ+ tu))d weak− ∗.

Now set

fn(t) := −(d+ 1)

2dnN
log det(Gµ,wt

n (βn))

where µ = µn := ωd for all n and the basis βn := {p1, ..., pN} of Pn

is chosen to be an orthonormal basis with respect to the weighted
L2−norm p→ ||wnp||L2(µ). Then G

µ,w
n (βn) is the N×N identity matrix

so that we have fn(0) = 0; and, using Lemma 4.11 and the fact that u
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has compact support,

lim
n→∞

d

d+ 1
f ′
n(t) =

∫
u

1

(2π)d
(ddcP (φ+ tu))d

(recall our notation for the n−th Bergman function in using Lebesgue
measure and a global, admissible weight φ + tu on Cd is Bn,φ+tu). We
now integrate the corresponding expression for f ′

n(t) from t = 0 to
t = 1:

d

d+ 1
[fn(1)− fn(0)] =

d

d+ 1
[fn(1)] =

−1

2nN
log det(Gµ,w′

n (βn))

=
−1

2nN
[B2(Cd, µ, nφ) : B2(Cd, µ, nφ′)] (from (2.46))

=
1

N

∫ 1

t=0

dt

∫
Bn,φ+tu(φ− φ′)ωd

→
∫ 1

t=0

dt

∫
(φ− φ′)

1

(2π)d
(ddcP (φ+ tu))d.

But by (4.29), since (2.9) holds,

(d+ 1)

∫ 1

t=0

dt

∫
(φ− φ′)

1

(2π)d
(ddcP (φ+ tu))d =

1

(2π)d
E(P (φ′), P (φ))

which proves Theorem 4.1 in the L2−case when E = E ′ = Cd with
φ, φ′ ∈ C2(Cd) strongly admissible, φ′ = φ outside a ball BR, and
dµ = dµ′ = ωd. By the weighted Bernstein-Markov property this also
proves the L∞−case when E = E ′ = Cd and φ, φ′ ∈ C2(Cd) are strongly
admissible with φ′ = φ outside a ball BR.
Next, we claim that the L∞−case when E = E ′ = C

d and φ, φ′ ∈
C2(Cd) are strongly admissible follows, without the assumption that
φ′ = φ outside a ball BR. For recall from (2.3) that

P (φ) = PSw(φ|Sw) = sup{ 1

degp
log |p| : p ∈ ∪nPn, ||pe−degpφ||Sw ≤ 1}

where Sw = supp(ddcP (φ))d is compact; moreover, for pn ∈ Pn,

||pne−nφ||Sw = ||pne−nφ||Cd

so that

B∞(Sw, nφ|Sw) = B∞(Cd, nφ).
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Thus modifyiing φ, φ′ outside a large ball in such a way to make them
equal outside a perhaps larger ball, we don’t change the L∞−ball vol-
ume ratios nor the extremal functions P (φ), P (φ′). By the weighted
Bernstein-Markov property (4.19) this also proves the L∞−case when
E = E ′ = Cd and φ, φ′ ∈ C2(Cd) are strongly admissible, without the
assumption that φ′ = φ outside a ball BR.
To prove Theorem 4.1 in the general case when E,E ′ ⊂ Cd are closed

with admissible weights φ, φ′, we consider the L∞ situation only; the
L2−case follows from the definition of the weighted Bernstein-Markov
property. We claim that by the cocycle property for the ball volume
ratios [A : B] and energies E(u1, u2), we may assume that one of the

sets is Cd with a strongly admissible C2(Cd) weight φ̂. For, using the
notation PE(φ) := V ∗

E,φ, we have

E(PE(φ), PE′(φ′)) + E(PE′(φ′), PCd(φ̂)) + E(PCd(φ̂), PE(φ)) = 0

so that

E(PE(φ), PE′(φ′)) = −E(PE′(φ′), PCd(φ̂)) + E(PE(φ), PCd(φ̂)).

Both terms on the right have the second term being PCd(φ̂). Similarly,
with respect to the ball volume ratios, for each n we have

[B∞(E, nφ) : B∞(E ′, nφ′)]

= −[B∞(E ′, nφ′) : B∞(Cd, nφ̂)] + [B∞(E, nφ) : B∞(Cd, nφ̂)].

Now to deduce the case where one of the sets is Cd with a strongly

admissible C2(Cd) weight φ̂ and the other is a general closed set E with
admissible weight φ from the case where both sets are Cd with strongly

admissible C2(Cd) weights φ̂, ψ, we first observe that we may assume E
is compact (i.e., bounded). For recall again from (2.3) that if w = e−φ,

PE(φ) = PSw(φ|Sw) = sup{ 1

degp
log |p| : p ∈ ∪nPn, ||pe−degpφ||Sw ≤ 1}

where Sw = supp(ddcPE(φ))
d is compact; moreover, for pn ∈ Pn,

||pne−nφ||Sw = ||pne−nφ||E
so that

B∞(Sw, nφ|Sw) = B∞(E, nφ).
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Thus we assume E is compact; since V ∗
E,φ ∈ L+(Cd), we can also

assume φ is bounded above on E. We take a large ball BR containing

E and extend φ from E to ψ̂ on Cd:

ψ̂ := φ on E; ψ̂ = 2 logR on BR − E; ψ̂ = 2 log |z| on C
d − BR

We have ψ̂ is lsc and by taking R sufficiently big PCd(ψ̂) = PE(φ); then
we take a sequence of strongly admissible C2(Cd) weights {φj} with

φj ↑ ψ̂. We can apply the first case of Theorem 3.1 to (Cd, φj) and

(Cd, φ̂) to conclude

1

2nN
[B∞(Cd, nφj) : B∞(Cd, nφ̂)] → 1

(d+ 1)(2π)d
E(PCd(φj), PCd(φ̂))

as n→ ∞. But φj ↑ ψ̂ implies PCd(φj) ↑ PCd(ψ̂) = PE(φ) and hence

(4.32) E(PCd(φj), PCd(φ̂)) converges to E(PE(φ), PCd(φ̂))

as j → ∞ by Lemma 3.5. We want to conclude that
(4.33)

1

2nN
[B∞(E, nφ) : B∞(Cd, nφ̂)] → 1

(d+ 1)(2π)d
E(PE(φ), PCd(φ̂))

as n→ ∞. To make this precise, first observe that

1

(d+ 1)(2π)d
E(PCd(φj), PCd(φ̂))

= lim
n→∞

1

2nN
[B∞(Cd, nφj) : B∞(Cd, nφ̂)]

≤ lim inf
n→∞

1

2nN
[B∞(E, nφ) : B∞(Cd, nφ̂)]

≤ lim sup
n→∞

1

2nN
[B∞(E, nφ) : B∞(Cd, nφ̂)]

since PCd(φj) ↑ PE(φ) implies from (2.48) that

[B∞(Cd, nφj) : B∞(Cd, nφ̂)] ≤ [B∞(E, nφ) : B∞(Cd, nφ̂)].

But if we take a sequence of smooth, admissible weights {ψj} on Cd

with ψj ↓ PE(φ) – for example, we may take ψj = (1 + ǫj)[(PE(φ))ǫj ]
where (PE(φ))ǫj is a smoothing of PE(φ) – then PCd(ψj) ↓ PE(φ) and

lim sup
n→∞

1

2nN
[B∞(E, nφ) : B∞(Cd, nφ̂)]
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≤ lim
n→∞

1

2nN
[B∞(Cd, nψj) : B∞(Cd, nφ̂)]

again by (2.48); this limit equals

1

(d+ 1)(2π)d
E(PCd(ψj), PCd(φ̂))

by applying the first case of Theorem 3.1 this time to (Cd, ψj) and

(Cd, φ̂). Now

(4.34) E(PCd(ψj), PCd(φ̂)) converges to E(PE(φ), PCd(φ̂))

as j → ∞ by (3.12). Then (4.32) and (4.34) imply (4.33) which com-
pletes the proof of Theorem 4.1. �

5. Proof of Rumely.

We use Proposition 2.9, in conjunction with Theorem 4.1 and the
observation (2.46), to prove an “energy version” of Rumely’s formula.

Theorem 5.1. Let K ⊂ Cd be compact and w an admissible weight on
K. Then

(5.1) − log δw(K) =
1

d(2π)d
E(V ∗

K,Q, VT ).

Proof. Note that for the unit torus T ,

VT (z1, ..., zd) = max
j=1,...,d

log+ |zj|

and that the standard basis monomials e1, ..., eN form an orthonormal
basis βn for Pn with respect to µT := 1

(2π)d
(ddcVT )

d, which is the stan-

dard Haar measure on T .
We first assume that there exists a measure ν onK such that (K, ν,Q)

satisfies a weighted Bernstein-Markov property. Now from (2.46),

log detGν,w
n (βn) = [B2(T, µT , n · 0) : B2(K, ν,−n logw)]

so that, on the one hand, by Proposition 2.9,

lim
n→∞

d+ 1

2dnN
· log detGν,w

n (βn) = log δw(K);

while on the other hand, by Theorem 4.1,

lim
n→∞

1

2nN
[B2(T, µT , n · 0) : B2(K, ν,−n logw)]
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=
1

(d+ 1)(2π)d
E(VT , V ∗

K,Q)

so that, since E(VT , V ∗
K,Q) = −E(V ∗

K,Q, VT ), we obtain

− log δw(K) =
1

d(2π)d
E(V ∗

K,Q, VT )

as desired.
In the general case, we can find a sequence of locally regular com-

pacta {Kj} decreasing to K and a sequence of weights {wj} with wj

continuous and admissible on Kj such that wj+1 ≤ wj|Kj+1
and wj ↓ w

on K. Then by (2.4) we have

VKj ,Qj
↑ VK,Q

so that from Lemma 3.5 we have

lim
j→∞

E(V ∗
Kj,Qj

, VT ) = E(V ∗
K,Q, VT )

where Qj := − logwj. Thus to verify (5.1), it suffices to prove that

(5.2) lim
j→∞

δwj(Kj) = δw(K).

We defer the proof of (5.2) to Appendix 1 (Proposition 7.9). �

6. Asymptotic weighted Fekete measures, weighted

optimal measures and strong Bergman asymptotics.

We will apply the following calculus lemma to an appropriate se-
quence of real-valued functions {fn} in order to prove the main appli-
cations of the differentiability result, Proposition 4.5.

Lemma 6.1. Let fn be a sequence of concave functions on R and let g
be a function on R. Suppose

lim inf fn(t) ≥ g(t) for all t and lim fn(0) = g(0)

and that fn and g are differentiable at 0. Then lim f ′
n(0) = g′(0).

Proof. By concavity of fn, we have

fn(0) + tf ′
n(0) ≥ fn(t).

From the hypotheses, we see that

lim inf
n→∞

tf ′
n(0) ≥ g(t)− g(0).
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For t > 0, we get

lim inf
n→∞

f ′
n(0) ≥ lim

t→0+

g(t)− g(0)

t
= g′(0);

for t < 0, we observe first that

lim sup
n→∞

tf ′
n(0) ≥ lim inf

n→∞
tf ′

n(0) ≥ g(t)− g(0)

so

lim sup
n→∞

f ′
n(0) ≤ lim

t→0−

g(t)− g(0)

t
= g′(0).

�

Note that here “differentiable at the origin” means the usual (two-sided)
limit of the difference quotients exists; the conclusion is not true with
one-sided limits.
As in Lemma 4.11 in section 4.3, given a closed set K, an admissi-

ble weight w on K, and a function u ∈ C(K), we consider the weight
wt(z) := w(z) exp(−tu(z)), t ∈ R, and let {µn} be a sequence of mea-
sures on K. Fixing a basis βn := {p1, ..., pN} of Pn, define (see (4.31))

fn(t) = −(d+ 1)

2dnN
log det(Gµn,wt

n )

where Gµn,wt
n = Gµn,wt

n (βn). Then fn(0) = − (d+1)
2dnN

log det(Gµn,w
n ). The

next result was proved in a different way in [BN], Lemma 2.2. The
proof we present is in [10].

Lemma 6.2. The functions fn(t) are concave, i.e., f ′′
n(t) ≤ 0.

Proof. First, let

gn(h) :=
2dnN

d+ 1
fn(t+ h)

so that f ′′
n(t) =

(d+ 1)

2dnN
g′′n(0). Also, note that if we change the basis

Bn = {p1, · · · , pN} to Cn := {q1, · · · , qN} by pi =
∑N

j=1 aijqj , then the

Gram matrices transform (recall (2.28) by

Gµn,wt
n (Bn) = AGµn,wt

n (Cn)A
∗

where A = [aij ] ∈ CN×N . Hence,

gn(h) = − log(det(Gµn,wt+h
n (Bn)))

= − log(det(Gµn,wt+h
n (Cn)))− log(|det(A)|2)

and we see that the derivatives of gn are independent of the basis chosen.
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Let us choose Cn to be an orthonormal basis for Pn with respect to
the inner-product 〈·, ·〉µn,nwt (recall (2.35)).
Now, for convenience, writeG(h) = G

µn,wt+h
n and set F (h) = log(G(h))

so that G(h) = exp(F (h)). By our choice of basis Cn we have G(0) =
I ∈ C

N×N , the identity matrix, and F (0) = [0] ∈ C
N×N , the zero

matrix. Then, (see e.g. [Bh, p. 311]),

dG

dh
=

d

dh
exp(F (h)) =

∫ 1

0

e(1−s)F (h)dF

dh
esF (h)ds.

In particular
dG

dh
(0) =

dF

dh
(0).

Further,

d2G

dh2
=

∫ 1

0

{[
d

dh
e(1−s)F (h)

]
dF

dh
esF (h) + e(1−s)F (h)d

2F

dh2
esF (h)

+e(1−s)F (h)dF

dh

[
d

dh
esF (h)

]}
ds.

Evaluating at h = 0, using the fact that F (0) = [0], we obtain

d2G

dh2
(0) =

∫ 1

0

{
(1− s)

dF

dh
(0)× dF

dh
(0)× I + I × d2F

dh2
(0)× I

+I × dF

dh
(0)× s

dF

dh
(0)

}
ds

=

∫ 1

0

{
(1− s+ s)

(
dF

dh
(0)

)2

+
d2F

dh2
(0)

}
ds

=

(
dF

dh
(0)

)2

+
d2F

dh2
(0).

Hence,

d2F

dh2
(0)

d2G

dh2
(0)− (

dF

dh
(0))2

= [

∫

K

qi(z)qj(z)(−2nu(z))2wt(z)
2ndµn]

−[

∫

K

qi(z)qj(z)(−2nu(z))wt(z)
2ndµn]

2.
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Since g′n(h) =
d
dh
[− log(det(G(h))] and

log(det(G(h)) = trace(log(G(h))) = trace(F (h))

it follows that

g′′n(0) = −trace

([∫

K

qi(z)qj(z)(−2nu(z))2wt(z)
2ndµn

])

+trace

([∫

K

qi(z)qj(z)(−2nu(z))wt(z)
2ndµn

]2)

= −
N∑

i=1

∫

K

|qi(z)|2wt(z)
2n(2nu(z))2dµn

+
N∑

i=1

N∑

j=1

∣∣∣∣
∫

K

qi(z)qj(z)wt(z)
2n(2nu(z))dµn

∣∣∣∣
2

= −
N∑

i=1

{∫

K

|qi(z)|2wt(z)
2n(2nu(z))2dµn−

N∑

j=1

∣∣∣∣
∫

K

qi(z)qj(z)wt(z)
2n(2nu(z))dµn

∣∣∣∣
2
}
.

But notice that

∫

K

qi(z)qj(z)wt(z)
2n(2nu(z))dµn is the jth Fourier coef-

ficient of the function 2nu(z)qi(z) with respect to the orthonormal basis

Cn, and also that

∫

K

|qi(z)|2wt(z)
2n(2nu(z))2dµn is the L

2 norm squared

of this same function. Hence, by Parseval’s inequality, g′′n(0) ≤ 0. �

Now let µ be a probability measure on K and let u ∈ C2(K). Define

g(t) = − log(δwt(K))

so that g(0) = − log(δw(K)) From Proposition 4.5 and Theorem 5.1,

g′(0) =
d+ 1

d(2π)d

∫

K

u(z)(ddcV ∗
K,Q)

d.

Note that for each n, µn is a candidate to be an optimal measure of
order n for K and wt. For the rest of this section, in computing Gram
matrices, we fix the standard monomial basis βn = {e1, ..., eN} of Pn.
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Thus, if µt
n is an optimal measure of order n for K and wt, we have

detGµn,wt
n ≤ detGµt

n,wt
n

and, from Proposition 2.10,

lim
n→∞

d+ 1

2dnN
· log detGµt

n,wt
n = log δwt(K).

Thus with

fn(t) := −(d+ 1)

2dnN
log det(Gµn,wt

n )

as in (4.31),

lim inf fn(t) ≥ g(t) for all t.

From Lemma 4.11, we have

f ′
n(0) =

d+ 1

dN

∫

K

u(z)Bµn,w
n (z)dµn.

Using Lemma 6.1, we have the following general result.

Proposition 6.3. Let K ⊂ Cd be compact with admissible weight w.
Let {µn} be a sequence of probability measures on K with the property
that

(6.1) lim
n→∞

(d+ 1)

2dnN
log det(Gµn,w

n ) = log(δw(K))

i.e., limn→∞ fn(0) = g(0). Then

(6.2)
1

N
Bµn,w

n dµn → µK,Q =
1

(2π)d
(ddcV ∗

K,Q)
d weak- ∗ .

Note that since all µn are probability measures onK, to verify weak-*
convergence, it suffices to test with C2−functions on K. In particular,
from Proposition 2.9 we have the general strong Bergman asymptotic
result.

Corollary 6.4. [Strong Bergman Asymptotics] If (K,µ, w) satis-
fies a weighted Bernstein-Markov inequality, then

1

N
Bµ,w

n dµ→ µK,Q weak- ∗ .

Next, suppose µn is an optimal measure of order n for K and w.
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Corollary 6.5. [Weighted Optimal Measures] Let K ⊂ Cd be com-
pact with admissible weight w. Let {µn} be a sequence of optimal mea-
sures for K,w. Then

µn → µK,Q weak- ∗ .
Proof. We have Bµn,w

n = N a.e. µn on K from Lemma 2.8 so that the
result follows immediately from Proposition 6.3, specifically, equation
(6.2). Equivalently, using results from subsection 2.4,

f ′
n(0) =

d+ 1

dN

∫

K

u(z)Bµn,w
n (z)dµn =

d+ 1

d

∫

K

u(z)dµn.

Again, if µt
n is an optimal measure of order n for K and wt, we have

detGµn,wt
n ≤ detGµt

n,wt
n

and hence
lim inf fn(t) ≥ g(t) for all t;

and for t = 0 by Proposition 2.10

lim
n→∞

fn(0) = − log(δw(K)) = g(0).

By Theorem 5.1,

(6.3) − log(δw(K)) =
1

d(2π)d
E(V ∗

K,Q, VT ).

Thus from Lemma 6.1 and Proposition 4.5

lim
n→∞

f ′
n(0) = g′(0) =

d+ 1

d(2π)d

∫

K

u(z)(ddcV ∗
K,Q)

d

which says that µn → µK,Q weak-*. �

Finally, we prove a strengthened version of the weighted Fekete con-
jecture.

Corollary 6.6. [Asymptotic Weighted Fekete Points] Let K ⊂
C

d be compact with admissible weight w. For each n, take points

x
(n)
1 , x

(n)
2 , · · · , x(n)N ∈ K for which

(6.4)

lim
n→∞

[
|V DM(x

(n)
1 , · · · , x(n)N )|w(x(n)1 )nw(x

(n)
2 )n · · ·w(x(n)N )n

] (d+1)
dnN = δw(K)

(asymptotically weighted Fekete points) and let µn := 1
N

∑N
j=1 δx(n)

j
.

Then
µn → µK,Q weak− ∗.
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Proof. By direct calculation, we have Bµn,w
n (x

(n)
j ) = N for j = 1, ..., N

and hence a.e. µn on K. Indeed, this property holds for any discrete,
equally weighted measure µn := 1

N

∑N
j=1 δx(n)

j
with

|V DM(x
(n)
1 , · · · , x(n)N )|w(x(n)1 )nw(x

(n)
2 )n · · ·w(x(n)N )n 6= 0.

Again, the result follows immediately from Proposition 6.3, specifically,
equation (6.2). Alternately, if µt

n is an optimal measure of order n for
K and wt, we have

detGµn,wt
n ≤ detGµt

n,wt
n

and hence

lim inf fn(t) ≥ g(t) for all t;

finally, by definition of asymptotically weighted Fekete points,

lim
n→∞

fn(0) = − log(δw(K)) = g(0).

Thus the same proof as in the previous proposition is valid to show
µn → µK,Q weak-*. Indeed, in this case, the reader should note that
the functions fn(t) are affine in t so that f ′′

n(t) = 0 is immediate. �

7. Appendix 1: Transfinite diameter notions in Cd.

This section is adapted from [13]. We begin by considering a function
Y from the set of multiindices α ∈ Nd to the nonnegative real numbers
satisfying:

(7.1) Y (α + β) ≤ Y (α) · Y (β) for all α, β ∈ Nd.

We call a function Y satisfying (7.1) submultiplicative; we have three
main examples below. Let e1(z), ..., ej(z), ... be a listing of the mono-
mials {ei(z) = zα(i) = zα1

1 · · · zαd
d } in Cd indexed using a lexicographic

ordering on the multiindices α = α(i) = (α1, ..., αd) ∈ Nd, but with

degei = |α(i)| nondecreasing. We write |α| :=∑d
j=1 αj .

We define the following integers:

(1) m
(d)
n = mn := the number of monomials ei(z) of degree at most

n in d variables;

(2) h
(d)
n = hn := the number of monomials ei(z) of degree exactly n

in d variables;

(3) l
(d)
n = ln := the sum of the degrees of the mn monomials ei(z)
of degree at most n in d variables.
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Note that m
(d)
n =

(
d+n
n

)
and ln = d+1

dnN
. We will also need

r(d)n = rn := nh(d)n = n(m(d)
n −m

(d)
n−1)

which is the sum of the degrees of the hn monomials ei(z) of degree
exactly n in d variables.
We have the following relations:

(7.2) m(d)
n =

(
d+ n

n

)
; h(d)n = m(d)

n −m
(d)
n−1 =

(
d− 1 + n

n

)
;

(7.3) h(d+1)
n =

(
d+ n

n

)
= m(d)

n ; l(d)n = d

(
d+ n

d+ 1

)
= (

d

d+ 1
) · nm(d)

n ;

and

(7.4) l(d)n =
n∑

k=1

r
(d)
k =

n∑

k=1

kh
(d)
k .

The elementary fact that the dimension of the space of homogeneous
polynomials of degree n in d + 1 variables equals the dimension of the
space of polynomials of degree at most n in d variables will be crucial.
Let K ⊂ Cd be compact. Here are three natural constructions asso-

ciated to K:

(1) Chebyshev constants: Define the class of polynomials

Pi = P (α(i)) := {ei(z) +
∑

j<i

cjej(z)};

and the Chebyshev constants

Y1(α) := inf{||p||K : p ∈ Pi}.
We write tα,K := tα(i),K for a Chebyshev polynomial; i.e., tα,K ∈
P (α(i)) and ||tα,K ||K = Y1(α).

(2) Homogeneous Chebyshev constants: Define the class of homoge-
neous polynomials

P
(H)
i = P (H)(α(i)) := {ei(z) +

∑

j<i, deg(ej)=deg(ei)

cjej(z)};

and the homogeneous Chebyshev constants

Y2(α) := inf{||p||K : p ∈ P
(H)
i }.



66 BERMAN-BOUCKSOM

We write t
(H)
α,K := t

(H)
α(i),K for a homogeneous Chebyshev polyno-

mial; i.e., t
(H)
α,K ∈ P (H)(α(i)) and ||t(H)

α,K ||K = Y2(α).
(3) Weighted Chebyshev constants: Let w be an admissible weight

function on K and let

Y3(α) := inf{||w|α(i)|p||K : p ∈ Pi}
be the weighted Chebyshev constants. Note we use the polyno-
mial classes Pi as in (1). We write twα,K for a weighted Chebyshev

polynomial; i.e., twα,K is of the form wα(i)p with p ∈ P (α(i)) and
||twα,K ||K = Y3(α).

Let Σ denote the standard (d− 1)−simplex in Rd; i.e.,

Σ = {θ = (θ1, ..., θd) ∈ R
d :

d∑

j=1

θj = 1, θj ≥ 0, j = 1, ..., d},

and let

Σ0 := {θ ∈ Σ : θj > 0, j = 1, ..., d}.
Given a submultiplicative function Y (α), define, as with the above
examples, a new function

(7.5) τ(α) := Y (α)1/|α|.

An examination of lemmas 1, 2, 3, 5, and 6 in [32] shows that (7.1) is the
only property of the numbers Y (α) needed to establish those lemmas.
That is, we have the following results for Y : Nd → R

+ satisfying (7.1)
and the associated function τ(α) in (7.5).

Lemma 7.1. For all θ ∈ Σ0, the limit

T (Y, θ) := lim
α/|α|→θ

Y (α)1/|α| = lim
α/|α|→θ

τ(α)

exists.

Lemma 7.2. The function θ → T (Y, θ) is log-convex on Σ0 (and hence
continuous).

Lemma 7.3. Given b ∈ ∂Σ,

lim inf
θ→b, θ∈Σ0

T (Y, θ) = lim inf
i→∞, α(i)/|α(i)|→b

τ(α(i)).
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Lemma 7.4. Let θ(k) := α(k)/|α(k)| for k = 1, 2, ... and let Q be a
compact subset of Σ0. Then

lim sup
|α|→∞

{log τ(α(k))− log T (Y (θ(k))) : |α(k)| = α, θ(k) ∈ Q} = 0.

Lemma 7.5. Define

τ(Y ) := exp
[ 1

meas(Σ)

∫

Σ

log T (Y, θ)dθ
]

Then

lim
d→∞

1

hn

∑

|α|=d

log τ(α) = log τ(Y );

i.e., using (7.5),

lim
d→∞

[∏

|α|=d

Y (α)
]1/dhn

= τ(Y ).

One can incorporate all of the Y (α)′s for |α| ≤ d; this is the content
of the next result.

Theorem 7.6. We have

lim
d→∞

[∏

|α|≤d

Y (α)
]1/ln

exists and equals τ(Y ).

Proof. Define the geometric means

τ 0d :=
(∏

|α|=d

τ(α)
)1/hn

, d = 1, 2, ...

The sequence

log τ 01 , log τ
0
1 , ...(r1 times), ..., log τ 0d , log τ

0
d , ...(rd times), ...

converges to log τ(Y ) by the previous lemma; hence the arithmetic

mean of the first ln =
∑d

k=1 rk terms (see (7.4)) converges to log τ(Y )
as well. Exponentiating this arithmetic mean gives

(7.6)
( d∏

k=1

(τ 0k )
rk
)1/ln

=
( d∏

k=1

∏

|α|=k

τ(α)k
)1/ln

=
(∏

|α|≤d

Y (α)
)1/ln

and the result follows. �
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Returning to our examples (1)-(3), example (1) was the original set-
ting of Zaharjuta [32] which he utilized to prove the existence of the
limit in the definition of the transfinite diameter δ(K) of a compact set
K ⊂ Cd. Recall the notation

Vn = Vn(K) := max
ζ1,...,ζn∈K

|V DM(ζ1, ..., ζn)|

and

(7.7) δ(K) = lim
d→∞

V 1/ln
mn

.

Zaharjuta [32] showed that the limit exists by showing that one has

(7.8) δ(K) = exp
[ 1

meas(Σ)

∫

Σ0

log τ(K, θ)dθ
]

where τ(K, θ) = T (Y1, θ) from (1); i.e., the right-hand-side of (7.8) is
τ(Y1). This follows from Theorem 7.6 for Y = Y1 and the estimate

( d∏

k=1

(τ 0k )
rk
)1/ln ≤ V 1/ln

mn
≤ (mn!)

1/ln
( d∏

k=1

(τ 0k )
rk
)1/ln

in [32] (compare (7.6)).
For a compact circled set K ⊂ C

d; i.e., z ∈ K if and only if eiφz ∈
K, φ ∈ [0, 2π], one need only consider homogeneous polynomials in
the definition of the directional Chebyshev constants τ(K, θ). In other
words, in the notation of (1) and (2), Y1(α) = Y2(α) for all α so that

T (Y1, θ) = T (Y2, θ) for circled sets K.

This is because for such a set, if we write a polynomial p of degree d as
p =

∑d
j=0Hj where Hj is a homogeneous polynomial of degree j, then,

from the Cauchy integral formula, ||Hj||K ≤ ||p||K, j = 0, ..., d. More-
over, a slight modification of Zaharjuta’s arguments prove the existence
of the limit of appropriate roots of maximal homogeneous Vandermonde
determinants; i.e., the homogeneous transfinite diameter d(H)(K) of a
compact set (cf., [19]). From the above remarks, it follows that

(7.9) for circled sets K, δ(K) = d(H)(K).

Since we will be using the homogeneous transfinite diameter, we amplify

the discussion. We relabel the standard basis monomials {e(H,d)
i (z) =
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zα(i) = zα1
1 · · · zαd

d } where |α(i)| = d, i = 1, ..., hn, we define the
d−homogeneous Vandermonde determinant

(7.10) V DMHd((ζ1, ..., ζhn) := det
[
e
(H,d)
i (ζj)

]
i,j=1,...,hn

.

Then

(7.11) d(H)(K) = lim
d→∞

[
max

ζ1,...,ζhn∈K
|V DMHd(ζ1, ..., ζhn)|

]1/dhn

is the homogeneous transfinite diameter of K; the limit exists and
equals

exp
[ 1

meas(Σ)

∫

Σ0

log T (Y2, θ)dθ
]

where T (Y2, θ) comes from (2).
Finally, related to example (3), there are similar properties for the

weighted version of directional Chebyshev constants and transfinite di-
ameter. To define weighted notions, let K ⊂ Cd be closed and let w be
an admissible weight function on K. We define a weighted transfinite
diameter

dw(K) := exp
[ 1

meas(Σ)

∫

Σ0

log τw(K, θ)dθ
]

as in [12] where τw(K, θ) = T (Y3, θ) from (3); i.e., the right-hand-side
of this equation is the quantity τ(Y3).
We remark that if {Kj} is a decreasing sequence of locally regular

compacta with Kj ↓ K, and if wj is a continuous admissible weight
function on Kj with wj ↓ w on K where w is an admissible weight
function on K, then the argument in Proposition 7.5 of [12] shows that
limj→∞ τwj (Kj , θ) = τw(K, θ) for all θ ∈ Σ0 and hence

(7.12) lim
j→∞

dwj(Kj) = dw(K).

In particular, (7.12) holds in the unweighted case (w ≡ 1) for any
decreasing sequence {Kj} of compacta with Kj ↓ K; i.e.,

(7.13) lim
j→∞

δ(Kj) = δ(K)

(cf., [12] equation (1.13)). Another useful fact is that

(7.14) δ(K) = δ(K̂) and d(H)(K) = d(H)(K̂)

for K compact where

K̂ := {z ∈ C
d : |p(z)| ≤ ||p||K, all polynomials p}

is the polynomial hull of K.
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Another natural definition of a weighted transfinite diameter has
been described using weighted Vandermonde determinants. Let K ⊂
C

d be compact and let w be an admissible weight function on K. We
write

(7.15) Wn := max
ζ1,...,ζn∈K

|W (ζ1, ..., ζn)|

and, apriori,

(7.16) δw(K) := lim sup
d→∞

W 1/ln
mn

.

To illustrate a useful technique, we give another proof of the existence
of this limit.

Proposition 7.7. Let K ⊂ Cd be a compact set with an admissible
weight function w. The limit

lim
d→∞

[
max
λ(i)∈K

|V DM(λ(1), ..., λ(m
(d)
n ))| · w(λ(1))d · · ·w(λ(m

(d)
n ))d

]1/l(d)n

exists and equals δw(K).

Proof. Following [9], we define the circled set

F = F (K,w) := {(t, z) = (t, tλ) ∈ C
d+1 : λ ∈ K, |t| = w(λ)}.

We first relate weighted Vandermonde determinants for K with homo-
geneous Vandermonde determinants for the compact set

(7.17) F (D) := {(t, z) = (t, tλ) ∈ C
d+1 : λ ∈ K, |t| ≤ w(λ)}.

Note that F ⊂ F ⊂ F (D) ⊂ F̂ (cf., [9], (2.4)) where F̂ is the polyno-
mial hull of F (recall (7.14)); thus

(7.18) d(H)(F ) = d(H)(F (D)).

To this end, for each positive integer d, choose

m(d)
n =

(
n+ d

d

)

(recall (7.2)) points {(ti, z(i))}i=1,...,m
(d)
n

= {(ti, tiλ(i))}i=1,...,m
(d)
n

in F (D)

and form the d−homogeneous Vandermonde determinant

V DMHd((t1, z
(1)), ..., (t

m
(d)
n
, z(m

(d)
n ))).
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We extend the lexicographical order of the monomials in Cd to Cd+1 by
letting t precede any of z1, ..., zd. Writing the standard basis monomials
of degree d in C

d+1 as

{td−je
(H,d)
k (z) : j = 0, ..., d; k = 1, ..., hj};

i.e., for each power d− j of t, we multiply by the standard basis mono-

mials of degree j in Cd, and dropping the superscript (d) in m
(d)
n , we

have the d−homogeneous Vandermonde matrix



td1 td2 . . . tdmn

td−1
1 e2(z

(1)) td−1
2 e2(z

(2)) . . . td−1
mn

e2(z
(mn))

...
...

. . .
...

emn(z
(1)) emn(z

(2)) . . . emn(z
(mn))




=




td1 td2 . . . tdmn

td−1
1 z

(1)
1 td−1

2 z
(2)
1 . . . td−1

mn
z
(mn)
1

...
...

. . .
...

(z
(1)
d )d (z

(2)
d )d . . . (z

(mn)
d )d


 .

Factoring tdi out of the i−th column, we obtain

V DMHd((t1, z
(1)), ..., (tmn , z

(mn))) = td1 · · · tdmn
· V DM(λ(1), ..., λ(mn));

thus, writing |A| := | detA| for a square matrix A,
∣∣∣∣∣∣∣∣∣

td1 td2 . . . tdmn

td−1
1 z

(1)
1 td−1

2 z
(2)
1 . . . td−1

mn
z
(mn)
1

...
...

. . .
...

(z
(1)
d )d (z

(2)
d )d . . . (z

(mn)
d )d

∣∣∣∣∣∣∣∣∣
(7.19)

= |t1|d · · · |tmn |d

∣∣∣∣∣∣∣∣∣

1 1 . . . 1

λ
(1)
1 λ

(2)
1 . . . λ

(mn)
1

...
...

. . .
...

(λ
(1)
d )d (λ

(2)
d )d . . . (λ

(mn)
d )d

∣∣∣∣∣∣∣∣∣
,

where λ
(j)
k = z

(j)
k /tj provided tj 6= 0. By definition of F (D), since

(ti, z
(i)) = (ti, tiλ

(i)) ∈ F (D), we have |ti| ≤ w(λ(i)). Clearly the maxi-
mum of

|V DMHd((t1, z
(1)), ..., (tmn , z

(mn)))|
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over points in F (D) will occur when all |tj | = w(λ(j)) > 0 (recall w is
an admissible weight) so that from (7.19)

max
(ti,z(i))∈F (D)

|V DMHd((t1, z
(1)), ..., (tmn, z

(mn)))| =

max
λ(i)∈K

|V DM(λ(1), ..., λ(mn))| · w(λ(1))d · · ·w(λ(mn))d.

As mentioned in the discussion of (7.11) the limit

lim
d→∞

[
max

(ti,z(i))∈F (D)
|V DMHd((t1, z

(1)), ..., (tmn , z
(mn)))|

]1/dh(d+1)
n

exists [19] and equals d(H)(F (D)); thus the limit

lim
d→∞

[
max
λ(i)∈K

|V DM(λ(1), ..., λ(mn))| · w(λ(1))d · · ·w(λ(mn))d
]1/l(d)n

exists and equals δw(K). �

Corollary 7.8. For K ⊂ Cd a nonpluripolar compact set with an ad-
missible weight function w and

F = F (K,w) := {(t, z) = (t, tλ) ∈ C
d+1 : λ ∈ K, |t| = w(λ)},

(7.20) δw(K) = d(H)(F )
d+1
d = δ(F )

d+1
d .

Proof. The first equality follows from the proof of Proposition 7.7 using
(7.18) and the relation

l(d)n = (
d

d+ 1
) · dh(d+1)

n

(see (7.3)). The second equality is (7.9). �

We use this corollary to prove (5.2).

Proposition 7.9. Let K ⊂ Cd be compact and let w be an admissible
weight on K. There exist a sequence of locally regular compacta {Kj}
decreasing to K and a sequence of weights {wj} with wj continuous and
admissible on Kj such that wj+1 ≤ wj|Kj+1

and wj ↓ w on K, and we
have

(7.21) lim
j→∞

δwj(Kj) = δw(K).
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Proof. If K is polynomially convex, we can take the {Kj} to be poly-
nomial polyhedra; it is known (cf., [26]) that any nonempty analytic
polyhedron P in C

d is locally regular at every point in P . Note that
the extension of w by 0 on K1 \K is usc on K1 so that we can find a
sequence of continuous functions {φj} on K1 which decrease to w on
K and to 0 on K1 \K. Define wj := φj|Kj

so that wj is a continuous,
admissible weight function on the locally regular set Kj (when neces-
sary, we consider wj as an admissible weight on K1 by setting wj = 0
on K1 \Kj). Writing Qj := − logwj , we have VKj ,Qj

is continuous [29].
If K is not necessarily polynomially convex, a recent result of N.

Q. Dieu [23] can be used to show that the closure D of any bounded
domain D ⊂ Cd with C1−boundary is locally regular at each point of
D. (We remark that the weaker result that D is regular follows from
arguments in [26]; cf., [22] p. 202). Thus we take a decreasing sequence
{Kj} with each Kj being a finite union of closures of bounded domains
with C1−boundary and repeat the construction of {wj}.
Since wj+1 ≤ wj|Kj+1

the circled sets

Fj(D) := {(t, z) = (t, tλ) ∈ C
d+1 : λ ∈ Kj , |t| ≤ wj(λ)}

are decreasing and the result follows from (7.20) and (7.13). �

8. Appendix 2: Relations between Rumely formulas, and

dw(K) vs. δw(K).

As mentioned, the Rumely formulas which we proved are symmetrized
versions of Rumely’s original formulas, due to Demarco and Rumely
[17]. We begin by proving the equivalence of these formulas. First,
recall for u ∈ L+(Cd), we defined

ρu(z) := lim sup
|λ|→∞

[u(λz)− log |λ|]

and

ρ̃u(z) := lim sup
|λ|→∞

[u(λz)− log |λz|];

the latter we can consider as a function on Pd−1. We make the conven-
tion in this section, until Corollary 8.3, that ddc = 1

2π
(2i∂∂) so that in

any dimension d = 1, 2, ...,
∫

Cd

(ddcu)d = 1
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for any u ∈ L+(Cd). In terms of the Robin function ρK , Rumely’s
original formula (cf., [27]) takes the form

− log δ(K) =
1

d

[∫

Cd−1

ρK(1, t2, ..., td)(dd
cρK(1, t2, ..., td))

d−1(8.1)

+

∫

Cd−2

ρK(0, 1, t3, ..., td)(dd
cρK(0, 1, t3, ..., td))

d−2

+ · · ·+
∫

C

ρK(0, .., 0, 1, td)(dd
cρK(0, .., 0, 1, td) + ρK(0, .., 0, 1)

]
.

To relate this with (2.14), we prove a generalization of this equivalence.
Taking u = V ∗

K and v = VT in (8.2) below (recall T is the unit torus
so that ρT (z1, ..., zd) = max[log |z1|, ..., log |zd|]) proves that (2.14), with
“2π” replaced by “1,” equals (8.1).

Proposition 8.1. Let u, v ∈ L+(Cd). Then

(8.2)

∫

Pd−1

[ρ̃u − ρ̃v]
d−1∑

j=0

(ddcρ̃u + ω)j ∧ (ddcρ̃v + ω)d−j−1

=

∫

Cd−1

ρu(1, t2, ..., td)(dd
cρu(1, t2, ..., td))

d−1

+

∫

Cd−2

ρu(0, 1, t3, ..., td)(dd
cρu(0, 1, t3, ..., td))

d−2

+ · · ·+ ρu(0, 0, ..., 0, 1)

−
∫

Cd−1

ρv(1, t2, ..., td)(dd
cρv(1, t2, ..., td))

d−1

−
∫

Cd−2

ρv(0, 1, t3, ..., td)(dd
cρv(0, 1, t3, ..., td))

d−2

− · · · − ρv(0, 0, ..., 0, 1).

Proof. We first relate the Cd integrals in (8.2) to Pd−1 integrals. We
consider Pd = Cd ∪ Pd−1 where, if [Z0 : · · · : Zd] are homogeneous
coordinates on P

d, we identify C
d with U0 := {Z0 6= 0} and P

d−1 with
the hyperplane {Z0 = 0}. On U0 we have local coordinates

z := (z1, ..., zd) := (Z1/Z0, ..., Zd/Z0).

With a slight abuse of notation, we write

ρ̃u([z1 : · · · : zd]) = ρu(z1, ..., zd);

we give a local coordinate relationship in equation (8.3) below.
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Writing Uj := {Zj 6= 0}, on U0 ∩ U1, for example, by letting

t0 = Z0/Z1, t2 = Z2/Z1 = (Z2/Z0)t0, ..., td = Zd/Z1 = (Zd/Z0)t0,

we have

(z1, ..., zd) = (1/t0, t2/t0, ..., td/t0).

Thus we see that for u ∈ L+(Cd),

u(1/t0, t2/t0, ..., td/t0) + log |t0| = u(z1, ..., zd)− log |z1|
which extends (since u ∈ L+(Cd)) across t0 = 0 via

lim sup
t0→0

[u(1/t0, t2/t0, ..., td/t0) + log |t0|]

= lim sup
|z1|→∞

[u(z1, ..., zd)− log |z1|] = ρu(1, t2, ..., td).

In particular, in local coordinates t2, ..., td on Pd−1 ∩ U1 with |t|2 =
|t2|2 + · · · |td|2, we have

(8.3) ρ̃u([1 : t2 : · · · : td]) = ρu(1, t2, ..., td)−
1

2
log(1 + |t|2)

so that

ddcρ̃u + ω = ddcρu(1, t2, ..., td).

We can use this to rewrite

(8.4)

∫

Cd−1

ρu(1, t2, ..., td)(dd
cρu(1, t2, ..., td))

d−1

+

∫

Cd−2

ρu(0, 1, t3, ..., td)(dd
cρu(0, 1, t3, ..., td))

d−2

+ · · ·+ ρu(0, 0, ..., 0, 1)

as integrals over Pd−1. Following [17], we introduce coordinate-wise
Robin functions on P

d−1. We write the projectivized Robin function as

gu([z1 : · · · : zd]) := ρ̃u([z1 : · · · : zd]) = lim sup
|λ|→∞

[u(λz)− log |λz|]

and, for j = 1, ..., d we define the coordinate-wise Robin functions

gj([z1 : · · · : zd]) = gu,j([z1 : · · · : zd]) := lim sup
|λ|→∞

[u(λz)− log |λzj|].

Clearly on Pd−1 ∩ Uj , we have

gu = gj − φ
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where φ is a potential for ω; i.e., ddcφ = ω. This relation, together with
(8.3), shows that on Pd−1 ∩ U1, we have

g1 = ρu(1, t2, ..., td).

We write Tj := [Zj = 0] for the current of integration over the
hyperplane {Zj = 0}. It is straightforward to see that

ddcgj + Tj

is a globally defined (1, 1)−current on Pd−1; indeed, writing

Tu := ddcgu + ω,

we have
ddcgj + Tj = Tu.

In particular,
Tu = ddcgj on P

d−1 ∩ Uj .

We leave it as an exercise to show that (8.4) can be rewritten as

(8.5)

∫

Pd−1

[
g1T

d−1
u + g2T

d−2
u ∧ T1 + · · ·+ gdT1 ∧ · · · ∧ Td−1

]
.

We give the proof in the case d = 2. We want to show

(8.6)

∫

C

ρu(1, t)dd
cρu(1, t) + ρu(0, 1) =

∫

P

(g1Tu + g2T1).

We saw that on C = P ∩ U1, g1 = ρu(1, t) and

Tu = ddcgu + ω = ddcg1 = ddcρu(1, t)

so that ∫

C

ρu(1, t)dd
cρu(1, t) =

∫

P

g1Tu.

In a similar fashion, we can write g2 in local coordinates on C = P∩U2

as g2 = ρu(t, 1) so that g2T1 = ρu(0, 1), yielding (8.6).
Next, using the identities

ddcgj = Tu − Tj, j = 1, ..., d,

for any n = 0, 1, ..., d we can rewrite

ωn ∧ T d−n−1
u − ωn ∧ T1 ∧ · · · ∧ Td−n−1

as
ωn ∧

[
ddcg1 ∧ T d−n−2

u + ddcg2 ∧ T d−n−3
u ∧ T1+

· · ·+ ddcgd−n−1 ∧ T1 ∧ · · · ∧ Td−n−2

]
.
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Integrate gu with respect to this (d− 1, d− 1) current over Pd−1:
∫

Pd−1

gu[ω
n ∧ T d−n−1

u − ωn ∧ T1 ∧ · · · ∧ Td−n−1];

the integral is finite as it is a difference; then using the identity and
integrating by parts to move ddc from gj to gu and using ddcgu = Tu−ω,
we get

∫

Pd−1

d−1∑

j=0

gj+1(Tu − ω) ∧ ωn ∧ T d−n−j−2
u ∧ T1 ∧ · · · ∧ Tj .

Now we leave it as an exercise, using this calculation, to show that (8.5)
can be rewritten as

∫

Pd−1

d−1∑

j=0

gj+1T
d−1−j
u ∧ T1 ∧ · · · ∧ Tj

=

∫

Pd−1

d−1∑

j=0

guω
j ∧ T d−j−1

u

+

∫

Pd−1

d−1∑

j=0

(gd−j − gu)ω
j ∧ T1 ∧ · · · ∧ Td−j−1

(see [17], p. 149). But since gk − gu = log |z| − log |zk| this last sum
is independent of u. Thus if we apply this rewriting of (8.5) to two
functions u and v in L+(Cd), the difference becomes

∫

Pd−1

d−1∑

j=0

guω
j ∧ T d−j−1

u −
∫

Pd−1

d−1∑

j=0

gvω
j ∧ T d−j−1

v .

However, using ω = Tv−ddcgv in the first sum, and using ω = Tu−ddcgu
in the second sum, it is straightforward to rewrite this difference as

∫

Pd−1

d−1∑

j=0

(gu − gv)T
d−j−1
u ∧ T j

v

which gives (8.2). �

We next prove (2.19), the relationship between the two weighted
transfinite diameters dw(K) and δw(K), following [13]. We use the
version of Rumely’s formula in (8.1). We begin by rewriting (8.1) for
regular circled sets K using an observation of Sione Ma’u. Note that
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for such sets, V ∗
K = ρ+K := max(ρK , 0) (cf., [14], Lemma 5.1). If we

intersect K with a hyperplane H through the origin, e.g., by rotating
coordinates, we take H = {z = (z1, ..., zd) ∈ C

d : z1 = 0}, then K ∩ H
is a regular, compact, circled set in Cd−1 (which we identify with H).
Moreover, we have

ρH∩K(z2, ..., zd) = ρK(0, z2, ..., zd)

since each side is logarithmically homogeneous and vanishes for all
points (z2, ..., zd) ∈ ∂(H ∩K). Thus the terms

∫

Cd−2

ρK(0, 1, t3, ..., td)(dd
cρK(0, 1, t3, ..., td))

d−2

+ · · ·+
∫

C

ρK(0, .., 0, 1, td)(dd
cρK(0, .., 0, 1, td) + ρK(0, .., 0, 1)

in (8.1) are seen to equal

(d− 1)δC
d−1

(H ∩K)

(where we temporarily write δC
d−1

to denote the transfinite diameter in
Cd−1 for emphasis) by applying (8.1) in Cd−1 to the set H∩K. Hence
we have

− log δ(K) =
1

d

∫

Cd−1

ρK(1, t2, ..., td)(dd
cρK(1, t2, ..., td))

d−1(8.7)

+
(d− 1

d

)
[− log δC

d−1

(H ∩K)].

Theorem 8.2. For K ⊂ Cd a nonpluripolar compact set with an ad-
missible weight function w,

(8.8) δw(K) = [exp (−
∫

K

Q(ddcV ∗
K,Q)

d)]1/d · dw(K).

Proof. We first assume that K is locally regular and Q is continuous so
that VK,Q = V ∗

K,Q. As before, we define the circled set

F = F (K,w) := {(t, z) = (t, tλ) ∈ C
d+1 : λ ∈ K, |t| = w(λ)}.

We claim this is a regular compact set; i.e., VF is continuous. First
of all, V ∗

F (t, z) = max[ρF (t, z), 0] (cf., Proposition 2.2 of [9]) so that it
suffices to verify that ρF (t, z) is continuous. From Theorem 2.1 and
Corollary 2.1 of [9],

(8.9) VK,Q(λ) = ρF (1, λ) on C
d
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which implies, by the logarithmic homogeneity of ρF , that ρF (t, z) is
continuous on Cd+1 \ {t = 0}. Corollary 2.1 and equation (2.6) in [9]
give that

(8.10) ρF (0, λ) = ρK,Q(λ) for λ ∈ C
d

and ρK,Q is continuous by Theorem 2.5 of [12]. Moreover, the limit
exists in the definition of ρK,Q:

ρK,Q(λ) := lim sup
|t|→∞

[VK,Q(tλ)− log |t|] = lim
|t|→∞

[VK,Q(tλ)− log |t|];

and the limit is uniform in λ (cf., Corollary 4.4 of [14]) which implies,
from (8.9) and (8.10), that limt→0 ρF (t, λ) = ρF (0, λ) so that ρF (t, z) is
continuous. In particular, from Theorem 2.5 in Appendix B of [28],

VK,Q(λ) = Q(λ) = ρF (1, λ) on the support of (ddcVK,Q)
d

so that

(8.11)

∫

K

Q(λ)(ddcVK,Q(λ))
d =

∫

Cd

ρF (1, λ)(dd
cρF (1, λ))

d.

On the other hand, Kw
ρ := {λ ∈ Cd : ρK,Q(λ) ≤ 0} is a circled set, and,

according to eqn. (3.14) in [12],

(8.12) dw(K) = δ(Kw
ρ ).

We remark that (8.12) is highly nontrivial; however, as Theorem 8.2 is
not our main objective in these notes, we omit the proof. But

ρK,Q(λ) = lim sup
|t|→∞

[VK,Q(tλ)− log |t|]

= lim sup
|t|→∞

[ρF (1, tλ)− log |t|] = lim sup
|t|→∞

ρF (1/t, λ) = ρF (0, λ).

Thus
Kw

ρ = {λ ∈ C
d : ρF (0, λ) ≤ 0} = F ∩ H

where H = {(t, z) ∈ Cd+1 : t = 0} and hence

(8.13) dw(K) = δ(Kw
ρ ) = δ(F ∩H).

From (8.7) applied to F ⊂ Cd+1,

(8.14) − log δ(F ) =
1

d+ 1

∫

Cd

ρF (1, λ)(dd
cρF (1, λ))

d

+(
d

d+ 1
)[− log δ(F ∩ H)].
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Finally, from (7.20) (note F = F since w is continuous),

(8.15) δw(K) = δ(F )
d+1
d ;

putting together (8.11), (8.13), (8.14) and (8.15) gives the result if K
is locally regular and Q is continuous.
The general case follows from approximation. Using Proposition 7.9

we can take a sequence of locally regular compacta {Kj} decreasing
to K and a sequence of weight functions {wj} with wj continuous and
admissible on Kj and wj ↓ w on K and by (7.21) we have

lim
j→∞

δwj(Kj) = δw(K).

From (7.12) we have

lim
j→∞

dwj(Kj) = dw(K).

Applying (8.8) to Kj, wj, Qj and using these facts, we conclude that

lim
j→∞

∫

Kj

Qj(dd
cVKj ,Qj

)d = lim
j→∞

∫

Kj

VKj ,Qj
(ddcVKj ,Qj

)d

exists. Since VKj ,Qj
↑ V ∗

K,Q a.e., by Lemma 3.6.2 of [22], the measures

VKj ,Qj
(ddcVKj ,Qj

)d converge weak-* to V ∗
K,Q(dd

cV ∗
K,Q)

d so that

lim
j→∞

∫

Kj

Qj(dd
cVKj ,Qj

)d =

∫

K

Q(ddcV ∗
K,Q)

d,

completing the proof of (8.8). �

As an immediate corollary, we obtain the symmetrized version of
Rumely’s original weighted formula, equation (2.18). Here we revert to
the convention used prior to this appendix that ddc = 2i∂∂.

Corollary 8.3. Let K ⊂ Cd be compact and w be an admissible weight.
Then

− log dw(K) =
1

d(2π)d−1

∫

Pd−1

[ρ̃K,Q−ρ̃T ]
d−1∑

j=0

(ddcρ̃K,Q+ω)
j∧(ddcρ̃T+ω)d−j−1.

Another proof of Theorem 8.2 has been given by Nystrom in [25].
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