
1. Mass and trace measure for positive currents

Let {αj} be a collection of (p, q) forms on Ω giving a basis for (p, q) forms at each point.
Then for any test form Φ =

∑

φj(z)αj ∈ D(p,q)(Ω) and relatively compact E ⊂ Ω, we define
the L∞ by

‖Φ‖∞,E = max
j

‖φj‖∞,E .

A different choice of basis will result in an equivalent norm with comparability constant
depending on E. A current T is said to be of order zero if it is continuous with respect
to the topology induced by these norms. That is, for any relatively compact open U ⊂ Ω,
there is a constant CU such that | 〈T,Φ〉 | ≤ CU ‖Φ‖∞ for all test forms Φ supported on U .
Hence currents of order 0 extend to continuous linear functionals on test forms with merely
continuous coefficients.

Now suppose that T is a (p, p) current and let ωE = i
2

∑n
j=1 dzj ∧ dz̄j be the Euclidean

Kähler form on Cn. Since T is of order zero, the product T ∧
ωn−p
E

(n−p)!
is also of order zero and

therefore equal to a complex Borel measure. This is the trace measure of T . The origin of
the name can be seen by considering a (1, 1) current T = i

2

∑

tij dzi ∧ dz̄j. In this case, the
trace measure of T is just

∑

tjj . If T is (also) positive, then the trace measure is positive

and we set ‖T‖K :=
∫

K
T ∧

ωn−p
E

(n−p)!
. for any compact K ⊂ Ω.

Theorem 1.1. Let T be a positive (p, p) current on a domain Ω ⊂ Cn. Then T is of order
zero. Moreover, for any compact K there exists a constant C (depending only on the above
choice of basis) such that for all continuous (n− p, n− p) forms supported on U ,

| 〈T,Φ〉 | ≤ C ‖Φ‖∞ ‖T‖K .

The final assertion says that the mass of T on K is controlled by ‖T‖K . For this reason,
we will often refer to ‖T‖K as the mass of T on K when T is a positive closed currents. Be
warned that this is non-standard and for non-positive T just plain wrong.

Proof. Let us begin by fixing constant coefficient (n− p, n− p) forms αj and (p, p)-forms βj
that form dual bases for the corresponding spaces of test forms at each point in Ω. We may
assume that αj has constant coefficients and is simple positive for each j. Duality means
that αj ∧ βk is the Euclidean volume form if j = k and zero otherwise.

Writing T =
∑

tjβj , we have for any non-negative test function ϕ ∈ C∞
0 (Ω), that 〈tj , ϕ〉 =

〈T, ϕαj〉 ≥ 0 by positivity of T . Hence tj is a non-negative distribution and therefore a Borel
measure acting continuously by integration even on continuous test functions. It follows that
T has order zero.

For the final conclusion of the proof, note that if ω = i
2

∑

ωjkdzj ∧ dz̄k is any constant
real (1, 1) form, then CωE −ω is positive for C large enough simply because if A is an n×n
Hermitian matrix, then CI − A is positive for C > 0 large enough. Suppose inductively
that for any collection ω1, . . . , ωk of constant coefficient (1, 1) forms, we have C such that
Ck−1ωk−1

E − ω1 ∧ · · · ∧ ωk−1 is strongly positive. Then writing

Ckωk
E − ω1 ∧ · · · ∧ ωk = CωE ∧ (Ck−1ωk−1

E − ω2 ∧ · · · ∧ ωk) + (CωE − ω1) ∧ ω2 ∧ · · · ∧ ωk,

shows that Ckωk
E − ω1 ∧ · · · ∧ ωk is also strongly positive.

So if Φ =
∑

ϕjαj is a test form, then we have by positivity of T (i.e. of tj) that

| 〈tj , ϕj〉 | ≤ 〈tj, |ϕj|〉 = 〈T, |ϕ|αj〉 ≤ Cn−p
〈

T, |ϕj|ω
n−p
〉

= Cn−p

∫

|ϕj|T ∧ ωn−p.
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Thus up to multiplicative constants | 〈T,Φ〉 | ≤
∑

| 〈tj , φj〉 | ≤
∑
∫

|ϕj| T∧ω
n−p ≤ ‖ϕj‖∞ ‖T‖K .

�

2. Integration by parts and the localization trick

Since we are concerned with the operator ddc on non-smooth functions, it will be useful to
know that under some circumstances, we can still integrate by parts relative to this operator.
Proving that this is possible is suprisingly tricky.

Proposition 2.1. Suppose u, v are negative and bounded plurisubharmonic functions on
a bounded domain Ω ⊂ Cn and that T is a positive closed (n − 1, n − 1) current. If
limz→bΩ u(z) = 0, then

∫

v ddcu ∧ T ≤

∫

u ddcv ∧ T.

Hence if in addition limz→bΩ v(z) = 0, we have equality.

Proof. Let us first consider the alternative situation in which u is replaced by a function
h ∈ C∞

0 (Ω). Then by definition of ddcv ∧ T , we have
∫

h ddcv ∧ T = −〈dh, dc(vT )〉 = − lim
j→∞

∫

dh ∧ dcSj ,

where Sj is a sequence regularizing vT . Now since Sj is an (n− 1, n− 1) form, we have

dh ∧ dcSj =
1

2πi
(∂̄h ∧ ∂Sj − ∂h ∧ ∂̄Sj) = −dch ∧ dSj,

the other terms being zero since they have bidegrees (n+ 1, n− 1) and (n− 1, n+ 1). Thus
∫

h ddcv ∧ T = lim
j→∞

∫

dch ∧ dSj = 〈dch, d(vT )〉 = 〈ddch, vT 〉 =

∫

v ddch ∧ T.

So the proposition is true with h in place of u.
Going back to u, we set uǫ = max{u,−ǫ} and note that u − uǫ = min{0, u + ǫ} is a

compactly supported function decreasing uniformly to u as ǫ→ 0. Hence
∫

u ddcv = lim
ǫ→0

∫

(u− uǫ) dd
cv ∧ T.

Compact support of u−uǫ allows us to regularize and apply the result of the first paragraph
in the proof.
∫

(u− uǫ) dd
cv ∧ T = lim

j→∞

∫

(u− uǫ) ∗ ρ1/j dd
cv ∧ T = lim

j→∞

∫

v ddc(u− uǫ) ∗ ρ1/j ∧ T.

If we fix an open set Ω′ ⊂⊂ Ω such that {u < −ǫ} ⊂⊂ Ω′, then for j large enough the last
integrand is supported entirely on Ω′. Thus

∫

(u− uǫ) dd
cv ∧ T = lim

j→∞

∫

Ω′

v ddc(u− uǫ) ∗ ρ1/j ∧ T ≥ lim
j→∞

∫

Ω′

v ddcu ∗ ρ1/j ∧ T.

The last inequality follows from the facts that v ≤ 0 and ddcuǫ ∧ T ≥ 0. Since v is upper-
semicontinuous, there are functions vk ∈ C0(Ω′) decreasing to v. So for any k, we can



continue our previous estimate as follows
∫

Ω

(u− uǫ) dd
cv ∧ T ≥ lim

j→∞

∫

Ω′

vk dd
cu ∗ ρ1/j ∧ T =

∫

Ω′

vk dd
cu ∧ T

−→
k→∞

∫

Ω′

v ddcu ∧ T −→
Ω′րΩ

∫

Ω

v ddcu ∧ T.

Letting ǫ→ 0 in the first integral concludes the proof. �

In order to employ Proposition 2.1 and to simplify arguments in other ways, we observe in
advance that many assertions that we will seek to prove (e.g. weak convergence of currents,
mass bounds on compact sets) are ‘local’ in nature and can be reduced to the following
situation via finite covers, partitions of unity, translation and scaling, etc.

(1) The domain of all objects in question is the unit ball B1(0), and the assertions concern
only the restrictions of these objects to a smaller ball, e.g. B1/2(0).

(2) All plurisubharmonic functions involved are bounded above by −1 near B1/2(0), and
any bounded plurisubharmonic function is bounded below by −2 on the same set.

(3) Replacing each bounded psh u in (2) with max{u, 100(‖z‖2 − 1)}, all bounded psh
functions are smooth and equal near bB1(0) and tend to 0 as ‖z‖ → 1.

Following Kolodziej, we will refer to these assumptions collectively as ‘the localization trick’.
Combining this trick with Proposition 2.1, we can now show that the definition of Monge-
Ampere is independent of order.

Corollary 2.2. If u, v are locally bounded plurisubharmonic functions on a domain Ω and
T is a positive closed current, then ddcu ∧ ddcv ∧ T = ddcv ∧ ddcu ∧ T .

Proof. The assertion is local, so we employ the localization trick. In particular, the previous
proposition applies. For any smooth test form β, we have.

〈β, v ddcu ∧ T 〉 = 〈ddcβ, v ddcu ∧ T 〉 =

∫

v ddcu ∧ ddcβ ∧ T

Since β is smooth, we can choose A >> 0 and express ddcβ ∧ T = (ddc(β + A ‖z‖2) ∧ T −

Addc ‖z‖2 ∧ T as a difference of positive closed currents. So the previous proposition allows
us to continue evaluating

〈β, v ddcu ∧ T 〉 =

∫

u ddcv ∧ ddcβ ∧ T = 〈β, u ddcv ∧ T 〉

as asserted. �

Theorem 2.3 (Chern-Levine-Nirenberg inequality). . Let Ω ⊂ Cn be a domain, and K ⊂
Ω be compact and U ⊂ Ω a relatively compact neighborhood of K. Then there exists a
constant C = C(K,U) such that for any positive closed (p, p) current T and locally bounded
plurisubharmonic u0, u1, . . . , uk on Ω, we have

‖u0 dd
cu1 ∧ · · · ∧ ddcuk ∧ T‖K ≤ C ‖u0‖L∞,U ‖u1‖L∞,U . . . ‖uk‖L∞,U ‖T‖U .

The L∞ norm of u0 can be replaced by the L1 norm of u0 on U with respect to the trace
measure of T , i.e. by

∫

U

|u0|ω
n−p
E ∧ T.



Proof. The case k = 0 holds more or less tautologically. To establish the result for k > 0, it
suffices to prove and iterate the case k = 1. For this, we employ the localization trick, taking
K ⊂ B = B1/2(0) ⊂⊂ U ⊂⊂ B1(0). We let χ be a smooth cutoff function for B supported
on U and estimate
∫

K

|u0| dd
cu1 ∧ T ∧ ωn−p−1

E ≤ −

∫

B

u0 dd
cu1 ∧ T ∧ ωn−p−1

E = −

∫

B

u1 dd
cu0 ∧ T ∧ ωn−p−1

E

≤

∫

U

χddcu0 ∧ T ∧ ωn−p−1
E =

∫

U

u0 dd
cχ ∧ T ≤ C

∫

U

|u0| T ∧ ωn−p
E .

The last inequality uses that CωE − ddcχ is strongly positive for C >> 0 depending only on
χ (i.e. on U and K). �

The proof of the CLN inequality shows that one can use the L∞ norms of uj, 1 ≤ j ≤ k
on just U \ K (since that is where the second derivative ddcχ is supported) in bounding
‖u0 dd

cu1 ∧ · · · ∧ ddcuk ∧ T‖K . This is very useful when one wants to relax the local bound-
edness restriction to allow e.g. uj = log ‖z‖.

Corollary 2.4. If u1, . . . , un are locally bounded plurisubharmonic functions on a domain
Ω ⊂ Cn, then any u ∈ PSH(Ω) is locally integrable with respect to the measure µ := ddcu1 ∧
· · ·∧ddcun. Hence µ does not charge pluripolar sets. In particular µ does not charge analytic
subvarieties.

Proof. Given u ∈ PSH(Ω) and compact K ⊂ Ω, we may assume that u < 0 on a relatively
compact neighborhood U of K. Usc functions are Borel measureable, so the integral of u
against µ is well-defined. We must show it is not −∞. Applying the CLN estimate with
k = n, u0 = max{u,−M} and T = 1 we find that

−

∫

K

u dµ = − lim
M→∞

∫

K

max{u,−M} dµ

≤ −C ‖u1‖L∞,U . . . ‖un‖L∞,U lim
M→∞

∫

U

max{u,−M} dλ

≤ C ‖u1‖L∞,U . . . ‖un‖L∞,U

∫

U

u dλ.

The last quantity is finite because plurisubharmonic functions are always locally integrable
with respect to Lebesgue measure. So u is integrable with respect to µ.

Now if S is a pluripolar set and p ∈ S is any point, we can choose a neighborhood U of p
and a plurisubharmonic u on U such that S ⊂ {u = −∞}. As u is integrable with respect
to µ, it follows that µ does not charge S ∩ U . This and the fact that analytic varieties are
pluripolar justify the final two assertions. �

It is worth pointing out that the proof does not show that µ is absolutely continuous with
respect to Lebesgue measure. This will be borne out by examples in later sections.

3. Continuity along decreasing sequences

Now we arrive at the most important continuity property for the Monge-Ampere operator.

Theorem 3.1. Let T ≥ 0 be a positive closed (p, p) current on a domain Ω ⊂ Cn. For each
0 ≤ j ≤ k, let (uℓj)ℓ∈N ⊂ (Ω) be a sequence of uniformly locally bounded functions decreasing



to uj. Then we have the weak convergence of Monge-Ampere measures

uℓ0 dd
cuℓ1 ∧ · · · ∧ ddcuℓk ∧ T −→

ℓ→∞
u0 dd

cu1 ∧ · · · ∧ ddcuk ∧ T.

Proof. The assertion is local, so we employ the localization trick throughout. For k = 0, the
assertion follows from the monotone convergence theorem. Given the assertion for k − 1 in
place of k, weak continuity of ddc implies that

Sℓ := ddcuℓ1 ∧ · · · ∧ ddcuℓk ∧ T −→
ℓ→∞

S := ddcu1 ∧ · · · ∧ ddcuk ∧ T.

That is, the assertion holds for k = k when uℓ0 ≡ u0 ≡ 1. It remains to show that uℓ0Sℓ → u0S.
The CLN estimate and the uniform local boundedness assumption imply that the mass of
uℓ0Sℓ is uniformly bounded on any compact K ⊂ Ω. Hence the sequence {uℓ0Sℓ} is relatively
compact in the weak topology on currents, we need to show that uS is the only possible
limit point. So refining the sequence, we assume uj0Sj → Θ ≤ 0 and seek to show Θ = uS.

First we show Θ ≤ u0S. Note that

uj0Sj ≤ uℓ0Sj ≤ uSj

for any j ≤ ℓ and any continuous u ≥ uℓ0 with compact support on Ω. Letting j → ∞
shows Θ ≤ uS. Now letting u decrease to uℓ and then ℓ→ ∞, monotone convergence gives
Θ ≤ u0S, as desired.

Now we know that u0S − Θ is actually positive. To see that the difference vanishes, it
suffices to show that ‖u0S −Θ‖K = 0 for any compact K ⊂ Ω. But by positivity,

‖u0S −Θ‖K ≤ C

∫

Ω

(u0S −Θ) ∧ ωn−p−k
E ,

so it suffices to show that the right side is non-positive. To this end, we estimate
∫

Ω

uℓ0Sℓ ∧ ω
n−p
E =

∫

uℓ0 dd
cuℓ1 ∧ · · · ∧ ddcuℓk ∧ Tω

n−p
E

≥

∫

u0 dd
cuℓ1 ∧ · · · ∧ ddcuℓk ∧ Tω

n−p
E

=

∫

uℓ1 dd
cu0 ∧ · · · ∧ ddcuℓk ∧ Tω

n−p
E

≥ u1 dd
cu0 ∧ · · · ∧ ddcuℓk ∧ Tω

n−p
E

≥ · · · ≥ u0 dd
cu1 ∧ · · · ∧ ddcuk ∧ Tω

n−p
E =

∫

u0S ∧ ωn−p−k
E .

Letting ℓ → ∞ in the first integrand (and using the fact that all functions are the same

outside a compact subset of Ω), we see that
∫

Θ ∧ ωn−p−k
E ≥

∫

u0S ∧ ωn−p−k
E as desired. �

4. Monge-Ampere of radially symmetric functions

Proposition 4.1. Let Ω ⊂ Cn be a smoothly bounded domain and f, g : Ω → R be C2

functions. If df ≡ dg on bΩ, then
∫

Ω
(ddcf)n =

∫

Ω
(ddcg)n.

Proof. By Stokes Theorem
∫

Ω

(ddcf)n =

∫

bΩ

dcf ∧ (ddcf)n−1 =

∫

bΩ

dcg ∧ (ddcf)n−1 =

∫

Ω

ddcg ∧ (ddcf)n−1.



Repeating this argument gives
∫

Ω

ddcg ∧ (ddcf)n−1 =

∫

Ω

(ddcg)2 ∧ (ddcf)n−2 = · · · =

∫

Ω

(ddcg)n.

�

The proposition permits us to compute the Monge-Ampere of certain plurisubharmonic
functions by replacing them with simpler functions.

Theorem 4.2. Let u : Cn → [−∞,∞) be a smooth radially symmetric function. Then
∫

Br

(ddcu)n = Cu′(r)nrn

for some constant C > 0 depending only on n.

Under the hypotheses of the theorem, we certainly have that (ddcu)n = f dλ for some
radially symmetric, non-negative function f . Hence one can differentiate the formula in the
theorem with respect to r to find a formula for f in terms of u. We leave it to the reader to
do this.

Proof. Let v(z) = A ‖z‖2, where A = u′(r)/2r. Then dv = du on bBr. Hence
∫

Br

(ddcu)n =

∫

Br

(ddcv)n = CAn

∫

Br

dλ = CAnr2n = Cu′(r)nrn.

�

The conclusion of the theorem remains true for bounded psh u if we require smoothness
only near bBr. One can see this by regularizing u on B2r and invoking continuity of Monge-
Ampere along decreasing sequences. In fact, such u are necessarily continuous, so we only
need continuity along uniformly convergent sequences.

Let us consider more closely u(z) = max{log ‖z‖ , 0}. Clearly (ddcu)n = 0 inside B1.

Outside B1, we still have that (ddcu)L vanishes along any complex line through 0. That is,
the complex hessian matrix (uij̄) has zero as an eigenvalue. From this we see that (ddcu)n

also vanishes for ‖z‖ > 1. The measure (ddcu)n is certainly radially symmetric, so it follows
that (ddcu)n is a non-negative multiple of Lebesgue measure on the unit 2n− 1 sphere. To
see that the multiple is positive, it suffices to apply the previous theorem on a ball of radius
larger than 1. For instance

∫

bB0

(ddcu)n =

∫

B2

(ddcu)n = Cu′(2)2n = C > 0,

where the last constant C is precisely the one in the theorem. We leave it as an exercise to
find the exact value of C. Note in particular, that (ddcu)n is not absolutely continuous with
respect to Lebesgue measure dλ on Cn.

Theorem 4.2 can sometimes be applied to help compute Monge-Ampere for non-radially
symmetric plurisubharmonic functions u. For instance if u(z) = logmax{|zj|} on Cn, thenthere’s a problem

here–since (ddc)n

is non-linear,
one doesn’t have
that the spherical
verage of (ddcu)n

is equal to (ddc)n

applied to the
spherical average of
.

it is not hard to see that (ddcu)n is a non-negative multiple of Lebesgue measure on the unit
n-torus {|z1| = · · · = |zn| = 1}. Replacing u by its average over spheres centered at the
origin, one obtains a radially symmetric plurisubharmonic function û such that û(z)−log ‖z‖
is constant for ‖z‖ large enough. The total mass of (ddcû)n on a large ball will be the same
as that of (ddcu)n, so it then follows from Theorem 4.2 applied to û that (ddcu)n is a positive
multiple of Lebesgue measure on the unit n-torus.



5. Discontinuity of the Monge-Ampere operator: an example

The following example is essentially taken from Klimek’s book, which attributes it to??
Let u : C2 → R be the psh function u(z1, z2) = logmax{|z1|, |z2|, 1}. In the last section
we showed that the Monge-Ampere measure (ddcu)2 has strictly positive total mass. Nev-
ertheless, we will see here that there is a sequence of non-negative psh functions uk ≤ 2u
converging to u in Lp

loc(C
2) for every p < ∞ and such that (ddcuk)

2 = 0 for every k. In
particular, we do not have corresponding weak convergence (ddcuk)

2 → (ddcu)2 of Monge-
Ampere measures. So the Monge-Ampere operator is discontinuous in the Lp topology on
bounded psh functions.

For any t ∈ R, let log+ t = max{log t, 0}. Let uk(z) =
1
k
log+ |zk1 + zk2 |. Then

0 ≤ uk(z) ≤ log+ |z1|+ log+ |z2| ≤ 2 log+ max{|z1|, |z2|} = 2u

for all k and z. Moreover, we have that |zk1 + zk2 |
1/k → max{|z1|, |z2|} uniformly on compact

subsets of C2 − {|z1| = |z2|}. Since {|z1| = |z2|} has measure 0, it follows from domintated
convergence that uk → u in Lp

loc for all p <∞.
To complete the example, we observe that each approximant uk has the form h+ :=

max{h, 0} for some pluriharmonic function h. Then we show

Proposition 5.1. If h is pluriharmonic on Ω, then (ddch+)
2 ≡ 0.

Proof. Let K ⊂⊂ Ω be given and χ ∈ C∞
0 (Ω) be a cutoff for K. Thne

∫

K

(ddch+)
2 ≤ χ (ddch+)

2 ≤ h+ dd
cχ∧ddch+ ≤ C

∫

suppχ

h+ωE∧dd
ch+ ≤ Cǫ

∫

suppχ

ωE∧dd
ch+,

for any ǫ > 0, since ddch+ = ddch = 0 on {h+ > ǫ}. The last integral is finite, so letting
ǫ→ 0 concludes the proof. �

This example readily generalizes to any non-negative plurisubharmonic u of the form
max{h1, . . . , hk, 0} where hj are pluriharmonic. Indeed, it can be shown that any continuous
plurisubharmonic function is (after translation) a uniform local limit of such u, so if (ddcu)2 6≡
0, we can manufacture a sequence uj → u in Lp

loc converging to u such that (ddcuk)
2 ≡ 0 6→

(ddcu)2. In the case of strictly convex functions u the approximation can be accomplished
via maxima of affine pluriharmonic functions.

6. Capacity and quasicontinuity

Definition 6.1. Let E be a Borel subset of a domain Ω ⊂ Cn. The relative capacity of E
in Ω is

cap(E,Ω) := sup{

∫

E

(ddcu)n : u ∈ PSH(Ω), −1 ≤ u ≤ 0}.

So capacity (a general notion; the definition above is only a particular case) determines
the size of set relative to an entire collection of measures. The result is a set-valued function
that in many ways resembles a measure but which tends to exaggerate the size of smaller
sets. It follows quickly from the definition that

• E ⊂ F ⊂ Ω implies that cap(E,Ω) ≤ cap(F,Ω).
• cap(∪∞

j=1Ej ,Ω) ≤
∑

cap(Ej,Ω).



However, the (first) subadditivity property of capacity cannot be sharpened to additivity
cap(E ∪ F,Ω) = cap(E,Ω) + cap(F,Ω) for disjoint Borel sets E and F . In particular, if
U ⊂ Ω is any open set and M is any given positive number, it is possible to find disjoint
compact sets K1, . . . , KN such that

∑

cap(Kj ,Ω) > M . The Wikipedia entry on capacity
makes the nice comment that capacity measures the ability of set to hold charge.

The CLN estimate implies that cap(E,Ω) is finite for any relatively compact E. If Ω ⊂
Br(p) is bounded, then u(z) =

1
r2
‖z − p‖2 shows that cap(E,Ω) ≥ C

r2
λ(E) for some dimen-

sional constant C > 0. That is, relative capacity dominates (a multiple of) Lebesgue measure.
We remark in passing that relative capacity can be made ‘outer regular’ with respect to open
sets by fiat, modifying the above definition to cap∗(E,Ω) := infE⊂Uopen⊂Ω cap(U,Ω), one can
even force cap∗ to be outer regular. It follows from a theorem of Choquet that cap∗ is also
inner regular–i.e. that cap∗(E,Ω) = supKcpct⊂E cap∗(K,Ω).

Definition 6.2. A sequence of Borel measureable functions uj on Ω is said to converge to
u in capacity if

lim
j→∞

cap(K ∩ {|uj − u| > ǫ},Ω) = 0

for any K ⊂⊂ Ω and ǫ > 0.

Though more restrictive, convergence in capacity is quite similar in spirit to convergence
in measure. For instance, the proof of one of Littlewood’s principles carries over directly
from measure theory to give

Proposition 6.3. Suppose that uj → u in capacity on Ω. Then for any ǫ > 0, there is a
Borel set E ⊂ Ω such that uj → u uniformly on Ω− E.

The next two theorems place continuity of Monge-Ampere under decreasing limits in a
new light.

Theorem 6.4. Suppose for 1 ≤ j ≤ n that (ukj )k∈N are sequences of locally uniformly
bounded plurisubharmonic functions on Ω converging in measure to uj ∈ PSH(Ω). Then

ddcuk1 ∧ · · · ∧ ddcukn → ddcu1 ∧ · · · ∧ ddcun

weakly.

Proof. Observe that

ddcuk1∧· · ·∧dd
cukn−dd

cu1∧· · ·∧dd
cun =

n
∑

j=1

ddcuk1∧· · ·∧dd
c(ukj−uj)∧· · ·∧dd

cun =
∑

ddc(ukj−uj)∧Tj ,

where the last equality defines Tj . Given any test function ϕ and any ǫ, t > 0, we have that
E = E(j, k, t) := suppϕ∩{|ukj −uj | ≥ t} has capacity smaller than ǫ for k large enough and
all j. Since ddcϕ ≤ CωE , we may estimate

|
〈

ϕ, ddc(ukj − uj) ∧ Tj
〉

| = |
〈

ddcϕ, (ukj − uj)Tj
〉

|

=

∫

E

(ukj − uj)dd
cϕ ∧ T +

∫

suppϕ−E

(ukj − uj)dd
cϕ ∧ Tj

≤ C

∫

E

|ukj − uj|ωE ∧ Tj + Ct ‖Tj‖suppϕ .



We bound the last integral as follows. The psh function v := ‖z‖2+
∑

j u
k
j +
∑

j uj ∈ PSH(Ω)

is locally bounded and satisfies (ddcv)n ≥ ddcψi ∧ Tj for 1 ≤ j ≤ n. Hence
∫

E

|ukj − uj|ωE ∧ T ≤

∫

E

|ukj − uj| (dd
cv)n ≤ C

∥

∥ukj − uj
∥

∥

∞,E
‖v‖n∞,E cap(E,Ω) = Cǫ.

Similarly,

‖Tj‖suppϕ ≤ C

∫

suppϕ

(ddcv)n ≤ Ccap(suppϕ,Ω).

Altogether then
|
〈

ϕ, ddc(ukj − uj) ∧ Tj
〉

| ≤ C(ǫ+ t)

for all j, all k ≥ K(ǫ, t) large enough. Letting ǫ, t→ 0 concludes the proof. �

Theorem 6.5. Any decreasing, uniformly locally bounded sequence (uj) ⊂ PSH(Ω) converges
in capacity.

Before proving this theorem, we establish some important consequences. If the functions
uj in Theorem 6.5 are continuous, then {uj − u > t} is open for any t ∈ R. Hence the sets
E in Proposition 6.3 may be taken to be open. Taking (uj) to be regularizations of some
fixed u ∈ PSH(Ω), we get more or less immediately that

Corollary 6.6. Any u ∈ PSH(Ω) is quasicontinuous. That is, for any ǫ > 0 there is an
open set U ⊂ Ω and v ∈ C(Ω) such that cap(U,Ω) < ǫ and u ≡ v on Ω− U .

This allows us to strengthen an assertion used in proving Theorem 3.1.

Corollary 6.7. Let Tj, T be mixed Monge-Ampere currents associated to uniformly locally
bounded psh functions on Ω. Suppose Tj → T weakly. Then for any locally bounded psh
function u on Ω, we have uTj → uT

Proof. The result is local, so we may assume that u is bounded and that Tj = ddcuj1 ∧ · · · ∧

ddcujp for u
j
k ∈ PSH(Ω) that are uniformly bounded in all Ω. Note that Tj ∧ω

n−p
E ≤ (ddcψj)

n

where ψj = ‖z‖2 +
∑n

k=1 u
j
k ∈ PSH(Ω) has L∞ norm bounded uniformly in j. Hence for any

compact K ⊂ Ω, we have cap(K,Ω) ≥ C ‖Tj‖K for all j. The same observation applies with
T in place of Tj .

Given ǫ > 0, let v ∈ C(Ω) be such that v ≡ u off an open set U ⊂ Ω of capacity less than
ǫ. Observe that vTj → vT since Tj , T are currents of order zero. Now fix a test form Φ.
Then

| 〈Φ, u(Tj − T )〉 | ≤ | 〈Φ, v(Tj − T )〉 |+ | 〈Φ, (u− v)(Tj − T )〉 |.

The first term tends to 0 as j → ∞. We control the second term as follows.

| 〈Φ, (u− v)(Tj − T )〉 | =

∣

∣

∣

∣

∫

U

(u− v) Φ ∧ (Tj − T )

∣

∣

∣

∣

≤ C

∫

U

ωn−p
E ∧ (T + Tj) < Ccap(U,Ω) < Cǫ,

for C > 0 independent of j. All told, we have

lim
j→∞

| 〈Φ, u(Tj − T )〉 | < Cǫ,

and since ǫ > 0 is arbitrary, the proof is complete. �



Corollary 6.7 together with the rest of the proof of Theorem 3.1 give continuity of Monge-
Ampere under increasing limits.

Theorem 6.8. Suppose for 0 ≤ j ≤ p that (ukj )k∈N are increasing sequences of locally
uniformly bounded plurisubharmonic functions on Ω ⊂ Cn with a.e. limits uj ∈ PSH(Ω).
Then

uk0 dd
cuk1 ∧ · · · ∧ u0 dd

cukp → u0 dd
cu1 ∧ · · · ∧ ddcup

weakly.

Proof. As in the proof of continuity for Monge-Ampere along decreasing sequences, we pro-
ceed by induction on p. The key point is the same as before: given positive closed (p, p)
currents Tk converging weakly to T , one must show that uk0Tk → u0T . The CLN estimate
tells us that the sequence (uk0Tk) is relatively compact in the weak topology, so by refining
our sequence we may assume that uk0Tk converges to some current Θ and complete the proof
by showing that Θ = u0T .

By monotonicity we have uk0Tk ≤ u0Tk for all k ∈ N. It follows from Corollary 6.7 that
Θ ≤ u0T . Fixing j, we also have uk0Tk ≥ uj0Tk for all k large enough. Hence Θ ≥ uj0T . The
monotone convergence theorem allows us to let j → ∞ here, so we conclude that Θ ≥ u0T .
�

Finally we attend to the proof of Theorem 6.5. First we introduce some new wedge
products that will help us control locally bounded psh functions in terms of their gradients.
Note that if u is a smooth function and T is a positive closed current, then

du ∧ dcu ∧ T = ddcu2 ∧ T − 2u ddcu ∧ T.

The right side makes sense (and is positive) even for locally bounded psh functions so for
such functions we take the above equation as the definition of du ∧ dcu ∧ T . In fact, if v is
a second locally bounded psh function then we further define

du ∧ dcv ∧ T :=
1

2
(d(u+ v) ∧ dc(u+ v) ∧ T − du ∧ dcu ∧ T − dv ∧ dcv ∧ T,

which is also consistent with the case of smooth functions. We then extend linearly to
the vector space consisting of all differences of locally bounded psh functions. From these
definitions and Theorem 3.1, it follows that du ∧ dcv ∧ T is continuous under regularization
of u and v. In particular du ∧ dcu ∧ T is positive even when u is only a difference of locally
bounded psh functions. Hence Schwarz’ inequality applies. That is, for any Borel set E ⊂ Ω

∣

∣

∣

∣

∫

E

du ∧ dcv ∧ T

∣

∣

∣

∣

≤

(
∫

E

du ∧ dcu ∧ T

)1/2(∫

E

dv ∧ dcv ∧ T

)1/2

.

For u smooth, this follows from positivity of T and the fact that du∧ dc is a simple positive
(1, 1) form. For a difference u − v of locally bounded psh functions, the inequality then
follows from regularizing u and v

To prove Theorem 6.5 we may employ the localization trick. Thus the sets E = E(t, j) =
{uj−u > t} lie in a fixed compact K ⊂ Ω independent of t and j. Expanding K if necessary,
we may assume that uj ≡ u are all smooth on Ω−K. We must show limj→∞ cap(E(t, j),Ω) =
0 for each t > 0. Let F denote the set of all v ∈ PSH(Ω) such that 0 ≤ v ≤ 1. Then

cap(E(t, j),Ω) ≤ sup
v∈F

t

∫

K

(uj − u)(ddcv)n.



Let χ ∈ C∞
0 (Ω) be a cutoff function equal to 1 in a neighborhood of K. Since uj − u ≡ 0 on

supp dχ, we have
∫

K

(uj − u) (ddcv)n ≤

∫

Ω

χ(uj − u) (ddcv)n = −

∫

Ω

χ d(uj − u) ∧ dcv ∧ (ddcv)n−1

=

∫

K

d(uj − u) ∧ dcv ∧ (ddcv)n−1

≤

(
∫

K

d(uj − u) ∧ d(uj − u) ∧ (ddcv)n−1

)1/2(∫

K

dv ∧ dcv ∧ (ddcv)n−1

)1/2

.

Since v ∈ F , the right integral is controlled by cap(K,Ω). We estimate the left integral by
reversing the previous integration by parts.

0 ≤

∫

K

d(uj−u)∧d
c(uj−u)∧(dd

cv)n−1 =

∫

K

(uj−u) dd
c(u−uj)∧(dd

cv)n−1 ≤

∫

K

(uj−u) dd
cu∧(ddcv)n−1.

Repeating this process n− 1 more times, we arrive at
∫

K

(uj − u)(ddcv)n ≤ C

(
∫

K

(uj − u) (ddcu)n
)1/2n

.

This bound is independent of v and tends to 0 as j → ∞ by the monotone convergence
theorem. Hence limj→∞ cap(E(t, j),Ω) = 0. �

7. Monge-Ampere and sums of psh functions

Proposition 7.1. Let A be an n× n Hermitian non-negative matrix. Then

det1/nA =
1

n
inf

detB=1
trB A

where trB A := tr B̄TAB.

Proof. Fix B with determinant 1 and let λ1, . . . , λn ≥ 0 be the eigenvalues of B̄TAB. Then
from the arithmetic-geometric mean inequality, we obtain

det1/nA = det1/nB
T
AB = (λ1 . . . λn)

1/n ≤
1

n

∑

λj =
1

n
trB A

with equality when all the eigenvalues are the same.
Hence det1/nA ≤ 1

n
infdetB=1 trB A. If A is positive, the Gram-Schmit process gives us B

so that all eigenvalues of trB A are the same. This gives us the reverse inequality. Hence the
proposition holds and the infimum is actually achieved in this case. If A is indefinite, then
we can still choose B so that B̄TAB is diagonal. One of the diagonal entries, say the first,
of B̄TAB will be zero. So if we let D be the diagonal matrix with 11 entry equal to t >> 0

and all other diagonal entries equal to t
1

1−n , we can make the non-zero diagonal entries of

BD
T
A(BD) as small as we want. Thus det1/nA = 0 = limt→∞ trDB A. �

Since trB A is linear in A and linear functions are concave, we immediate infer

Proposition 7.2. The function det1/n is 1-homogeneous and concave on the closed convex
cone of n× n non-negative Hermitian matrices. Specifically,

• det1/n(λA) = λ det1/nA; and

• det1/n(A+B) ≥ det1/nA+ det1/nB



for any λ > 0 and non-negative Hermitian A and B.

In what follows, we let DD̄u denote the (non-negative Hermitian) matrix
(

∂2u
∂zj∂z̄k

)

of

(possibly distributional) mixed second partial derivatives of a given function u. Recall that
if u is smooth, then (ddcu)n = Cn det(DD̄u) dλ where Cn = n!/πn. Given A ∈ SL(n,C),
we let ∆Au = 1

n
trA(DD̄u). Note that the operator ∆A is (up to positive multiple) just

the usual laplacian relative to the coordinate w = Az on Cn. Proposition 7.1 tells us that
det1/nDD̄u = inf ∆Bu for all smooth u.

Proposition 7.3. Given a smoothly bounded domain Ω ⊂⊂ Cn and f ∈ C(Ω), suppose that
v ∈ C2(Ω) ∩ C(Ω) satisfies ∆v = f 1/n. Suppose u ∈ PSH(Ω) ∩ C(Ω̄) satisfies (ddcu)n ≥
Cnf dλ. If u ≤ v on bΩ then u ≤ v on Ω.

Proof. Suppose the assertion is false for some u and v. Then it remains false if we replace
u with u + ǫ(‖z‖2 − R2) for R > 0 large enough and ǫ > 0 small enough. That is, we
may assume that u is strictly plurisubharmonic on Ω. Let K ⊂ Ω be the compact set of
points where u− v > 0 is maximal. Let U ⊂ Ω be the open set of points where v is strictly
plurisubharmonic. Then by Proposition 7.1 (ddcv)n ≤ Cn(∆v)

n dλ = Cnfdλ ≤ (ddcu)n on
U . If K ⊂ U , we contradict the comparison principle for the Monge-Ampere operator. So
we can choose z0 ∈ K where v is not strictly plurisubharmonic. That is, there is a linear
disk D centered at z0 where u− v is strictly subharmonic. But this contradicts maximality
of u− v at z0. �

Proposition 7.4. Suppose u ∈ C(Ω) ∩ PSH(Ω) satisfies (ddcu)n ≥ Cnf dλ for some f ∈
C(Ω), and let u ∗ ρ be a standard smoothing of u. Then det1/n(DD̄(u ∗ ρ)) ≥ f 1/n ∗ ρ.

Proof. We claim for any A ∈ SL(n,C), that (the Borel measure) ∆Au ≥ f 1/n dλ on Ω.
Granting this we have that

det1/n(DD̄(u ∗ ρ)) = inf
A

∆A(u ∗ ρ) ≥ f 1/n ∗ ρ

by linearity of ∆A.
To prove the claim, we may change coordinates so that ∆A = ∆ is the standard Laplacian.

We fix z ∈ Ω and r > 0 small enough and choose v ∈ C(Br(z)) to satisfy ∆v = f 1/n and
v|bBr(z) = u|bBr(z). Then u ≤ v by Proposition 7.3. Since (u − v)|bBr(z) ≡ 0, it follows from

Green’s identity (
∫

bΩ
dh
dn

=
∫

Ω
∆h) that

∫

Br(z)
∆(u − v) ≥ 0. Thus

∫

Br(z)
∆u ≥

∫

Br(z)
f 1/n dλ.

Since z and r were arbitrary, we have ∆u ≥ f 1/n(z) dλ, as asserted. �

Theorem 7.5. Suppose that u, v ∈ PSH(Ω) satisfy (ddcu)n ≥ f dλ and (ddcv)n ≥ g dλ,
where f, g ∈ C(Ω). Then

(ddc(u+ v))n ≥ (f 1/n + g1/n)n dλ.

Proof. If u and v are smooth, then (ddcu)n = Cn det(DD̄u) dλ, so the Theorem follows
directly from Proposition 7.2. In general we apply Propositions 7.2 and 7.4 to the standard
regularizations uj, vj of u, v, obtaining

(ddc(uj + vj))
n ≥ (f 1/n ∗ ρ1/j + g1/n ∗ ρ1/j)

n dλ.

The left side tends weakly to (ddc(u+ v))n) and the right tends uniformly to (f 1/n + g1/n)n

as j → ∞, so the theorem follows. �



8. The dirichlet problem

We concern ourselves with the following situation. Let Ω ⊂ Cn be a bounded and strictly
pseudoconvex domain. That is, Ω = {ρ < 0}, where ρ is a smooth real-valued function on a
neighborhood U ⊃⊃ Ω satisfying ddcρ ≥ ωE (and therefore (ddcρ)n ≥ dλ). Let ψ ∈ C(bΩ)
and f ∈ C(Ω) be real-valued functions and assume f is non-negative. Bedford and Taylor
proved

Theorem 8.1. There exists a unique function u ∈ C(Ω) ∩ PSH(Ω) satisfying u|bΩ = ψ and
(ddcu)n = f dλ.

Here we present the proof of this theorem, which is rooted in the classical Perron method
for constructing solutions of the Laplace equation. Before beginning to elaborate the ar-
gument, we make two comments. While the proof is somewhat involved, it only requires
pluripotential theory results for continuous functions and in particular continuity of Monge-
Ampere along uniformly convergent sequences. These things are much easier to prove and
digest than the more delicate analogues for bounded psh functions and monotone conver-
gence. Moreover, the original proof given by Bedford and Taylor used a construction due
to Goffman and Perrin and rooted in Proposition 7.2 to give an alternative definition of the
complex Monge-Ampere operator. Subsequent simplifications of the proof allow us to do
without the Goffman-Perrin construction and rely completely on the definition of Monge-
Ampere (initiated by Bedford-Taylor) that we have discussed above.

Definition 8.2. We say that v ∈ C(Ω) ∩ PSH(Ω) is a subsolution for the data ψ, f if
v|bΩ ≤ ψ and (ddcv)n ≥ f dλ.

We let F denote the family of all subsolutions and define u(z) = supv∈F v(z) to be the
upper envelope of F . The first thing to note is

Proposition 8.3. F is non-empty and uniformly bounded above. Hence the upper envelope
u is well-defined at every point.

Proof. Observe that Aρ + minψ ∈ F for A >> 0. So F 6= ∅. We also have v −maxψ ≤ 0
on bΩ for all v ∈ F , so by the maximum principle v ≤ maxψ on all of Ω. �

Lemma 8.4. Given v1, v2 ∈ F , we have v1+v2
2

∈ F and max{v1, v2} ∈ F .

Proof. In both cases, the condition on boundary values is clearly satisfied. The correct bound
on Monge-Ampere for max{v1, v2} follows from

(ddcmax{v1, v2})
n ≥ (ddcv1)

n|{v1≥v2} + (ddcv2)
n|{v1<v2},

which we proved in class. The Monge-Ampere bound for 1
2
(v1 + v2) follows from Theorem

7.5. �

Lemma 8.5. If (ψj) ⊂ C(bΩ) and (fj) ⊂ C(Ω) are sequences converging uniformly to ψ, f ,
then the corresponding upper envelopes uj converge uniformly to u.

Proof. Observe that there is a constant C > 0 such that if ‖ψ − ψj‖ , ‖f − fj‖ < ǫ, then

v ∈ Fj implies ṽ := v+Cǫ1/n(ρ−1) ∈ F . Indeed (ddṽ)n ≥ (ddcv)n+Cǫ(ddcρ)n ≥ (fj+ǫ) dλ.
Thus uj ≤ u+C ′ǫ1/n. The reverse inequality holds for the same reason. So uj → u uniformly.
�



In light of Lemma 8.5 and continuity of Monge-Ampere along uniformly convergent se-
quences, we can proceed under the assumption that f and ψ are smooth functions. Taking
advantage of this, we extend our given data and assume in what follows that f, ψ, ρ are all
smooth and well-defined on an open set U ⊃⊃ Ω. This allows us to extend subsolutions to
U , too.

Proposition 8.6. There exists A > 0 such that for all v ∈ F , the function

ṽ(z) :=

{

max{Aρ(z) + ψ(z), v(z)} if z ∈ Ω,
Aρ(z) + ψ(z) if z /∈ Ω

belongs to F ∩ PSH(U) and satisfies (ddcṽ)n ≥ f on all of U .

Proof. The main thing is to see that ṽ is plurisubharmonic at points z0 ∈ bΩ, i.e. that ṽ
satisfies the subaveraging property on linear disks centered at z0. But subaveraging on such
disks already holds for v. Since ṽ(z) ≥ v(z) with equality at z0, subaveraging for ṽ follows
immediately. �

Lemma 8.7. For all z0 ∈ bΩ we have limz→z0 u(z) = ψ(z0).

Proof. We already know u ≥ Aρ + ψ for A >> 0. Taking any v ∈ F and applying the
maximum principle to the plurisubharmonic function v + Aρ − ψ, we see that u ≤ ψ − Aρ
also holds. �

Lemma 8.8. u is continuous on Ω. In particular u ∈ PSH(Ω). If f 1/n is Lipschitz, so is u.

Proof. Given ǫ > 0, choose δ small enough that ‖z1 − z2‖ < δ implies |ψ(z1)−ψ(z2)| < ǫ and

|f 1/n(z1)− f 1/n(z2)| < ǫ for all z1 ∈ Ω. If v = ṽ ∈ F satisfies the conclusions of Proposition
8.6, then for any w ∈ Bδ(0), we claim that

vw(z) := v(z + w) + ǫ(ρ− 1).

belongs to F . That vw ≤ ψ on bΩ is clear. From Theorem 7.5, we have (ddcvw)
n ≥

(f 1/n(z + w) + ǫ)n dλ ≥ f(z) dλ, which verifies our claim.
Now pick two points z1, z2 = z1−w ∈ Ω within distance δ of each other, and choose v ∈ F

to satisfy v(z1) > u(z1)− ǫ. Then if M = minΩ ρ, we have

u(z2) ≥ vw(z2) = v(z1) + ǫ(ρ(z2)− 1) ≥ v(z1)−Mǫ ≥ u(z1)− (M + 1)ǫ.

Reversing the roles of z1 and z2, we infer |u(z1) − u(z2)| ≤ (M + 1)ǫ and continuity of u
follows.

The second statement in the lemma follows from observing that if f 1/n (and ψ) are Lips-
chitz, then we can take δ = Cǫ in the argument above. �

Lemma 8.9. There is a sequence (uj) ⊂ F converging uniformly to u.

Proof. Given j > 0, we note that the sets Uv := {u − v < 1/j}, v ∈ F form an open cover
of Ω. By compactness Ω is covered by finitely many such sets Uv1 , . . . , Uvk . Then in fact
Ω ⊂ Uuj

where uj = max{v1, . . . , vk}. This proves the lemma. �

Corollary 8.10. u ∈ F .



Proof. The fact that (ddcu)n ≥ f dλ follows from the preceding lemma and continuity of
Monge-Ampere under uniformly convergent sequences. All the other necessary properties of
u have already been noted. �

Corollary 8.11. Theorem 8.1 holds in general provided it holds in the case where Ω = B1(0)
is the unit ball.

Proof. For more general domains Ω, we complete the proof of Theorem 8.1 as follows. We
already know that the upper envelope u is a subsolution agreeing with ψ on bΩ. Given any
ball Br(z0) ⊂ Ω we let v solve the Dirichlet problem on Br(z0) with boundary values given by
u and Monge-Ampere given by f . The function ũ equal to u on Ω−Br(z0) and v on Br(z0)
is then a subsolution (see the proof of Proposition 8.6). Since (ddcũ)n = f dλ ≤ (ddcu)n

on Br(z0), it follows that ũ ≥ u on Br(z0). But u is the upper envelope of subsolutions, so
equality holds, and (ddcu)n = f dλ as desired. �

For the remainder of the argument, we assume implicitly that ψ and f 1/n are smooth
functions and that Ω is the unit ball. Note that if f vanishes somewhere, then smoothness
of f 1/n is stronger assumption than smoothness of f . The next step is arguably the central
one in the argument. Refining the proof of continuity for u gives a one-sided bound for
approximations of the second derivatives of u.

Lemma 8.12. For any r < 1, there exists C > 0 (depending on r and on the C2 norms of
ψ and f 1/n) such that

u(z + h) + u(z − h)− 2u(z) ≤ C ‖h‖2 .

for all ‖z‖ < r and ‖h‖ < 1−r
2
.

Proof. We first claim that it suffices to assume that z = 0. To see this, suppose the lemma
holds for z = 0 and consider some other point z ∈ B1(0). Since AutB1(0) is transitive, we

can find T ∈ AutB1 such that T (0) = z. We have h = T ′(0)h̃ for some h̃ ∈ B1. Clearly
u ◦ T is the upper envelope of subsolutions for the boundary data ψ ◦ T and inhomogeneity
term | detT ′|2f dλ. Since u is Lipschitz on B1, our assumption gives us

u(z + h) + u(z − h)− 2u(z) = u ◦ T (h̃) + u ◦ T (−h̃)− 2u ◦ T (0) +O(
∥

∥

∥
h̃
∥

∥

∥

2

) ≤ C
∥

∥

∥
h̃
∥

∥

∥

2

, .

where C depends only on the C2 norms of ψ ◦ T and | detT ′|2f 1/n. But for z ∈ Br, r < 1,
these are uniformly comparable to the C2 norms of ψ and f , because the C2 norms of T

and T−1 are uniformly bounded above on B1(0) indepedent of z ∈ Br. Likewise
∥

∥

∥
h̃
∥

∥

∥
is

comparable to ‖h‖, so our claim is proved. From now on we assume z = 0.
Note that by composing with a unitary transformation, we can further assume h =

(h1, 0, . . . , 0) for some δ > h1 ≥ 0. Let Th ∈ AutB1 be given by

Th(z) = Th(z1, z
′) =

(

z1 + h1
1 + z1h̄1

,

√

1− |h1|2

1 + z1h̄1

)

,

Then Th(0) = h, and one can verify the following estimates on Th and its derivative.

• Th(z) = (1− h̄1z1)z + h+O(|h|2);
• | detT ′

h(z)|
2 = 1− 2(n+ 1)Re z1h̄1 +O(‖h‖2).



The error terms are uniform for z ∈ B1. We then consider v(z) = 1
2
(u(z + h) + u(z − h)).

For ‖z‖ = 1, we have

v(z) =
1

2
(ψ ◦ Th(z) + ψ ◦ T−h(z))

= ψ(z) + ψ′(z)(Th(z)− z) + ψ′(z)(T−h(z)− z) +O(‖T (z)− z‖2)

= ψ(z) +O(‖h‖2).

Note that in the last equality we are using our estimate above to infer that Th(z)+T−h(z)−2z
vanishes to second order in h. At any rate, our estimate shows that in terms of boundary
values, v is within multiple of ‖h‖2 of being a subsolution.

To check the Monge-Ampere of v, we observe that approximating u with smooth psh
functions gives

(ddc(u ◦ Th))
n ≥ (f ◦ Th)| det T

′
h|

2n dλ.

Hence by Theorem 7.5

(ddcv)n ≥ ((f 1/n ◦ Th)| detT
′
h|

2 + (f 1/n ◦ T−h)| det T
′
−h|

2)n

= (f 1/n(z) + O(‖h‖2))n = f(z) +O(‖h‖2).

In light of these estimates, we may slightly modify v to get an actual subsolution

v(z) + C ‖h‖2 (2− ‖z‖2)

for our Dirichlet problem. Thus

v(z)− u(z) ≤ C ‖h‖2

which, on setting z = 0, gives the bound we seek. �

Lemma 8.13. The upper envelope u is C1,1. The second partial derivatives of u there-
fore exist pointwise a.e. and are locally bounded functions agreeing with the corresponding
distributional derivatives of u.

Proof. Let uj = u ⋆ ρ1/j ∈ PSH(B1−1/j) be a standard regularizing sequence for u. The
inequality in Lemma 8.12 is preserved by convolution (with perhaps weaker constants) and
therefore holds uniformly for uj. Given z ∈ B1(0) and a unit vector h ∈ Cn, we consider the
subharmonic function g(t) = uj(z + th) for small t = x+ iy ∈ C.

g(t) + g(−t)− 2g(0) ≤ C|t|2.

for small enough t ∈ C. Letting t → 0 along real and imaginary directions gives us that
gxx(0), gyy(0) ≤ C, where the constant C is uniform in h and also for z in any compact subset
of B0(1). But gxx + gyy ≥ 0 by subharmonicity, so in fact |gxx(0)|, |gyy(0)| ≤ C.

This implies that any second partial derivative of uj is locally uniformly bounded in j. It
follows that if Dk is any first partial derivative, then the sequence (Dkuj) is uniformly (in j)
Lipschitz and therefore equicontinuous on compact sets. Since Dkuj → Dku distributionally,
we may refine our regularizing sequence so that Dkuj → Dku uniformly locally. Hence Dku
is Lipschitz. By the Rademacher theorem, the first partial derivatives of u are themselves
differentiable a.e. and their derivatives are equal to the distributional second partial deriva-
tives of u. Since uj, Dkuj → u,Dku uniformly locally, we have uj → u in C1. Hence u is
C1,1. �

Thus the final step in establishing that u solves the Dirichlet problem is accomplished by



Lemma 8.14. We have

(ddcu)n =
n!

πn
det

(

∂2u

∂zk∂z̄ℓ
(z)

)

dλ ≤ f(z) dλ,

the (first) equality holding in the sense of measures and the (second) inequality holding point-
wise a.e.

Proof. The first equality certainly holds for the regularizing sequence uj. Since second par-
tial derivatives of u are L∞

loc functions, it follows (general facts about regularizing by con-
volution) that any second partial derivative of uj converges pointwise a.e. to that of u.

Hence det
(

∂2uj

∂zk∂z̄ℓ
(z)
)

is a uniformly locally bounded sequence converging pointwise a.e. to

det
(

∂2u
∂zk∂z̄ℓ

(z)
)

. By the bounded convergence theorem, the convergence takes place in L1.

Since we also have (ddcuj)
n → (ddcu)n weakly, the first equality in the Lemma holds for u.

Now suppose to obtain a contradiction that (ddcu)k(z) > f(z) dλ at some point z ∈ Ω
where the first equality holds. By continuity of f , there exist δ > 0 and t < 1 such that
t(ddcu)k(z) > f(z + h) dλ for all h < |δ|. Taylor’s theorem tells us that also

u(z + h) = u(z) + ReP (h) +
∑

k,ℓ

∂2u

∂zk∂z̄ℓ
hkh̄ℓ + o(‖h‖2),

where P is a holomorphic polynomial of degree two and, by supposition,
(

∂2u
∂zk∂z̄ℓ

(z)
)

is

positive definite. Thus we further have, on shrinking δ, that

u(z + h) > v(z + h) := u(z) + ReP (h) + t
∑

j,k

ujk̄hjh̄k + ǫ

for some ǫ > 0 and all |h| = δ. It follows that the function

ũ(w) :=

{

u(w) if |w − z| > δ
max{u(w), v(w) + ǫ} if |w − z| ≤ δ

is a subsolution. Since ũ(z) = u(z) + ǫ > u(z), we have our contradiction. We conclude that
(ddcu)k(z) ≤ f(z) dλ for a.e. z ∈ Ω. �

9. Maximal plurisubharmonic functions

Definition 9.1. We call u ∈ PSH(Ω) maximal if for any open U ⊂ Ω, compact K ⊂ U , and
v ∈ PSH(U) we have that v ≤ u on U −K implies v ≤ u on U .

Note that if u is maximal in Ω, U ⊂⊂ Ω is open and v ∈ PSH(U) satisfies lim supz→z0 v(z) ≤
u(z) for all z0 ∈ bU , then v ≤ u on U . This follows from the fact that v is upper semicon-
tinuous and therefore u+ ǫ− v > 0 near bU for all ǫ > 0.

We remark that pluriharmonic functions are maximal but not vice versa. In fact maximal
plurisubharmonic functions are not necessarily even continuous. Nevertheless Theorem 8.1
allows us to characterize maximality for bounded psh functions in PDE terms.

Theorem 9.2. u ∈ PSH(Ω) ∩ L∞
loc(Ω) is maximal if and only if (ddcu)n ≡ 0.



Proof. Suppose (ddcu)n ≡ 0 on Ω. Let U ⊂ Ω, K ⊂⊂ U and v ∈ PSH(U) be as in the
definition of maximality. Shrinking U so that U ⊂ Ω, we can replace v with max{v,−M}
where −M is a lower bound for u on U . So without loss of generality v is locally bounded
on U . It follows immediately from the comparison principle that v ≤ u on all of U . So u is
maximal.

Now begin again, suppposing u is maximal. Let U be a ball with U ⊂ Ω. By upper
semicontinuity of u, we can choose a sequence of smooth functions ψj decreasing to u|bU .
From Theorem 8.1 we have uj ∈ C(U)∩PSH(U) satisfying (ddcuj)

n ≡ 0 on U and uj|bU ≡ ψj .
Then v := lim uj is plurisubharmonic and locally bounded on U . By continuity of Monge-
Ampere along decreasing sequences (ddcv)n ≡ 0. So from the previous paragraph we infer
that v is maximal on U . Finally, we have limz→z0 v(z)− u(z) = 0 for all z0 ∈ bU . So in fact
v ≡ u on U , since both functions are maximal. In particular (ddcu)n ≡ 0. �


