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We have seen through our discussion of Russell’s theory of descriptions, and Moore’s
distinction between internal and external relations, one of the roles that Russell and
Moore thought that analysis could play: the role of dispelling paradox, and avoiding
commitment to the existence of unwanted entities, like Pegasus and the golden mountain.

Another traditional source of philosophical puzzlement that Russell sought to dispel was
mathematics. The truths of mathematics have seemed puzzling to philosophers for at
least the following two reasons:

• Epistemology. Even if experience can provide justification for our beliefs about the
external world, this does not help us to explain why our beliefs about mathemat-
ics are justified. We seem to be able to know things about the relations between
numbers just by thinking about them. How is this possible?

• Metaphysics. The truths of mathematics seem to require the existence of a great
variety of mathematical objects — how can we account for the truth of claims like
‘2 + 2 = 4’ without positing the existence of such mysterious entities as the number
2? But the existence of the number 2 can seem as difficult to understand as the
existence of Pegasus, or the golden mountain.
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Russell’s answer to these problems was that, just as claims about negative existentials
are disguised claims about whether certain propositional functions are sometimes true, so
claims about mathematics are disguised claims about logic. This helps with the episte-
mological problem, since presumably our knowledge of logical truths is unproblematic. It
helps with the metaphysical problem, since it allows us to avoid positing the existence of
any distinctively mathematical objects.

Our aim will be to understand and evaluate Russell’s claim that truths of mathematics
are disguised truths of logic. In your reading, you may want to utilize not only the
assigned Chapter 2 of Russell’s Introduction to Mathematical Philosophy, but also the
chapter from Scott Soames’s history of analytic philosophy which is in the coursepack.
We will be covering some material which Soames discusses, but which goes beyond the
material in Russell’s Chapter 2. (I will cite some of the other relevant primary sources as
we go.)

1 Russell’s definition of number

A first step in seeing how Russell aimed to show that mathematical truths are disguised
versions of logical ones is to see what he thought numbers to be.

Russell thinks that the first step is getting clear on the ‘grammar’ of numbers:

“Many philosophers, when attempting to define number, are really setting to
work to define plurality, which is quite a different thing. Number is what is
characteristic of numbers, as man is what is characteristic of men. A plurality
is not an instance of number, but of some particular number. A trio of men,
for example, is an instance of the number 3, and the number 3 is an instance
of number; but the trio is not an instance of number. This point may seem
elementary and scarcely worth mentioning; yet it has proved too subtle for
the philosophers, with few exceptions.” (11)

The basic idea here is that we need to distinguish between giving definitions of particular
numbers, like the number 3, and giving a definition of number itself. Russell’s basic idea
here is that both the number 3 and number are ‘characteristics’, which you can think of as
being kind of like properties. The number 3 is a property of a trio of men; number-hood
is a property of the number 3. But these two properties are properties of different kinds
of things. Russell is saying that the number 3 is a property of trios, whereas number is a
property of the number 2, the number 3, and the other numbers. (12)

(Compare: redness, and color. My sweater is red, and redness is a color, but my sweater
is not a color.)

It is at this stage in the discussion that Russell introduces the topic of collections, or sets.
It is important to see what role sets are playing here. For many purposes, we can replace
talk of properties, or characteristics, of things with talk of the set of things with that
characteristic. For example, for some purposes we can replace the property of redness
with the set of red things. This is sort of like what Russell is doing here. He began by
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talking about the number 3, and number in general, as properties or characteristics. Now
he is moving from this to talking about the number 3, and number in general, as sets.

The next question is, what sets are they? Russell says:

“Reurning now to the definition of number, it is clear that number is a way of
bringing together certain collections, namely, those that have a given number
of terms. We can suppose all couples in one bundle, all trios in another,
and so on. In this way we obtain various bundles of collections, each bundle
consisting of all the collections that have a certain number of terms. Each
bundle is a class whose members are collections, i.e. classes; thus each is a
class of classes.” (14)

Thus the number two is the set of all sets with two members, the number three is the set
of all three-membered sets, and so on.

How this fits the ‘grammar’ of the inquiry. ‘Being an instance of the number 3’ and ‘being
a member of the set which is the number 3.’

This is not a successful definition of the numbers, however; it uses the notion of a ‘set
with two members’. But ‘two’ is just what we are trying to define. So at this stage we
know what kind of things Russell takes numbers to be – they are sets of sets – but we do
not yet have a definition of the numbers.

A first step in doing this is to say when two sets have the same number of members.
Russell says,

“In actual fact, it is simpler logically to find out whether two collections have
the same number of terms than it is to define what that number is. An
illustration will make this clear. If there were no polygamy or polyandry
anywhere in the world, it is clear that the number of husbands living at any
moment would be exactly the same as the number of wives. We do not need a
census to assure us of this, nor do we need to know what is the actual numbers
of husbands and wives. We know that the number must be the same in both
collections, because each husband has one wife and each wife has one husband.
The relation of husband and wife is what is called “one-one.”” (15)

As Russell goes on to point out, we can define the relation of ‘having the same number
of members’ in terms of a one-to-one relation:

S and S′ have the same number of members ≡df there is some one-one relation
between S and S′

Russell says that when two sets have a one-one relation between them, they are similar.
Why it is plausible to think that the idea of a one-to-one relation does not presuppose
any mathematical facts, and therefore is not circular in the present context. ‘Matching’
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objects to see if two groups have the same number of members as an intuitive example of
a one-one relation.

Given any set S, we can define the number of that classas follows:

N is the number of a class S ≡df N is the set of all sets similar to S.

or, as Russell puts it,

“The number of a class is the class of all those classes that are similar to it.”
(18)

This allows us to give a definition of what it is for something to be a number, which
Russell expresses as follows:

“A number is anything which is the number of some class.” (18)

As Russell notes, this sounds circular, but isn’t. To see that it is not circular, note that
we can express it as follows:

N is a number ≡df there is some set S such that N is the set of all sets similar
to S.

This gives us a noncircular definition of number.

There is a sense in which we still have not given a noncircular definition of specific numbers,
like the number 2. That will come a bit later, when we present the details of Russell’s
logical system, and the axioms of arithmetic. For now, the important thing is that you
get the basic idea behind what kinds of things Russell thinks numbers are. Now we’ll
move on to try to say why he thinks that numbers are these kinds of things.

2 The idea of reducing one theory to another

The basic claim of logicism is that mathematics is really a branch of logic. This is
sometimes expressed by saying that mathematics (in this case, arithmetic) is reducible to
logic.

What must someone show in order to show that one theory is, in this sense, reducible to
another?
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2.1 Axioms and theories

To make this clear, we’ll first have to get clearer on what kinds of things theories are.

We will take ‘theories’ to bet sets of sentences, which include a set of basic axioms. The
axioms are expressed in terms of concepts which are undefined, and basic (so far as the
theory is concerned).

Other sentences will follow from the axioms of the theory. These are called theorems of
the theory.

There may also be another class of sentences, definitions, which define new expressions in
terms of the vocabulary in the axioms. If a theory contains definitions as well as axioms,
the theorems of the theory will include all sentences which follow from the axioms, together
with the definitions.

2.2 Bridging definitions

Suppose that we have two theories, T1 and T2, each of which include a set of axioms. Sup-
pose further, as is usually the case, that the axioms contain different privileged vocabulary.
What must be the case for us to be able to say that T2 is reducible to T1?

A natural thought is that T2 is reducible to T1 just in case every theorem of T2 follows from
the axioms of T1. This would mean, in effect, that everything which T2 says is provable
from the resources of T1. Since all the theorems of a theory follow from its axioms, to
show that T2 is reducible to T1 in this sense, all that is required is to show that the axioms
of T2 follow from the axioms of T1.

But at this point, we reach a problem. Typically, the axioms of the theory to be reduced
are given in different vocabulary from the axioms of the reducing theory. But then there
is no obvious way to prove the axioms of one from the axioms of the other. The case
we are interested in — the reduction of arithmetic to logic — is a case in point. As we
will see, the axioms of arithmetic say things about numbers, such as zero, and relations
between numbers, such as the relation of one number being the successor of another (i.e.,
the number after another). But the axioms of logical theories say nothing at all about
such things. So how could we prove the axioms of arithmetic from the axioms of logic?

The answer is that we will need bridging definitions, which translate the vocabulary of
the theory to be reduced into the vocabulary of the reducing theory. We can now see that
Russell’s definition of numbers in terms of sets might play this role. If the axioms of some
logical theory mention sets, and sets are numbers, then maybe we can prove arithmetical
truths from logical axioms after all.

One important question here is: how can we tell whether a bridging definition is a good
one? This is a question to which we will return.
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3 Russell’s reduction of arithmetic to logic

We have have some grasp of Russell’s definitions of the numbers, and have some grasp of
what it means for one theory to be reducible to another. We want to get into position
to be able to evaluate the claim that arithmetic is reducible to logic. To do this, we will
have to get clearer on what the ‘theories’ of arithmetic and logic are like. And to do this,
we will have to say what the axioms of arithmetic and logic are.

3.1 Peano’s five axioms of arithmetic

In Chapter 1, Russell gives the following statement of Peano’s axioms of arithmetic:

“(P1) 0 is a number.

(P2) The successor of any number is a number.

(P3) No two numbers have the same successor.

(P4) 0 is not the successor of any number.

(P5) Any property which belongs to 0, and also to the successor of every
number which has the property, belongs to all numbers.” (5-6)

We will follow Russell in taking these as the five axioms of arithmetic, and we will assume
that we have a reduction of arithmetic to logic if we have a logical system which offers
proofs of these five axioms.

3.2 Addition

To get a handle on why it is plausible to regard (P1-P5) as the axioms of arithmetic, it
may be useful to see how simple arithmetic operations can be explained using them. We
will use the example of addition. The question is: how can facts about addition be proved
using these five axioms?

Addition can be defined using the following two claims:

(A1) for any natural number x, x + 0 = x

(A2) for any natural numbers x and y, x + y′ = (x + y)′

plus definitions of the numbers as successors of 0. We write ‘the successor of x’ as x′.

How can these two claims be used to show that, e.g., 1+2=3? We can write what has to
be proved as:

0′ + 0′′ = 0′′′
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and we can give the following proof:

1. 0′ + 0′′ = (0′ + 0′)′ (A2)
2. 0′ + 0′ = (0′ + 0)′ (A2)
3. (0′ + 0) = 0′ (A1)
4. 0′ + 0′ = 0′′ (2,3, substitution of equals for equals)
C. 0′ + 0′′ = 0′′′ (1,4, substitution of equals for equals)

How does this proof rely on axioms (P1) and (P2) above? How do we know that, for
example, 0′′ is a natural number?

Why, intuitively, are axioms (P3)-(P5) needed?

To show that arithmetic is reducible to logic, we will have to show that these five axioms
are provable on the basis of logical truths. So our next step is to examine the logical
system that Russell is working with.

3.3 Russell’s logical system

We will follow Soames (p. 140 ff.) in presenting first a simplified version of Russell’s
system, and then adding complications in response to problems with it.

Russell’s logical system extends usual systems of logic by adding the primitive symbol ‘∈’,
which intuitively means ‘is an element of’ or ‘is a member of.’ Russell’s logical system
contains three axioms which include this symbol:

1. The axiom schema of comprehension.

∃y∀x (Fx ≡ x ∈ y)

Informally, this says that for every predicate in the language, there is a set of things
which satisfy that predicate. As Soames puts it (141), “To think of this as a logical
principle is, in effect, to think that talk about an individual x’s being so and so is
interchangeable with talk about x’s being in the set of things which are so and so.”

2. The axiom of extensionality.

∀a∀b [∀x (x ∈ a ≡ x ∈ b) → a = b]

If a and b are sets with the same members, they are the same set.

3. The axiom of infinity.

∅ /∈ N

This axiom is meant to guarantee that an infinite number of objects exist; what
it says is that the empty set is not a member of the set of natural numbers. Soon
we will see why Russell needs an axiom of infinity, and why he expresses it in this
counter-intuitive way.
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It is worth noting, by the way, that the null set is not a new primitive in Russell’s system.
It is definable as the set which is such that everything is not a member of it. (∅ = the S:
∀x (x /∈ S))

3.4 Definitions of arithmetical terms

As noted earlier in our discussion of reductions of one theory to another, what we want is
a proof of the axioms of arithmetic on the basis of the axioms of Russell’s logical system.
But, since the two have different primitive vocabularies, we will need a translation of the
vocabulary of one into the vocabulary of the other. We will now see how the kind of
definition of the numbers described by Russell in the chapter we read can be adapted to
do this.

The main arithmetical concepts involved in the Peano axioms are zero , successor, and
natural number. These can be defined as follows:

Definition of zero

0 = {∅}

Zero is the set whose only member is the empty set.

Definition of successor

The successor of a set a is that set which contains every set which contains a member x
such that, if x is eliminated from that set, what is left is a set which is a member of a.

So the successor of zero is the set which contains every set with the following character-
istic: it contains a member such that, when that member is eliminated from the set, the
remaining set is a member of zero. But there is only one member of zero: the empty
set. So the successor of zero is a set which contains all sets which contains a member
which, when eliminated from the set, yields the empty set. But this just is the set of all
one-membered sets; one-membered sets are the ones which have a member which, when
eliminated, yields the empty set. So the successor of zero – i.e., the number 1 – is the set
of all one-membered sets. The number 2 is defined as the successor of 1, and so on.

It is important to note that this definition is not circular. All that we used were the
definitions of zero and successor, and neither of these presuppose arithmetic concepts. To
see this, note first the following three notions from set theory:

Complement. The complement of a set S is the set of all things which are not
members of S. ‘The complement of S’ is written ‘Comp(S).’

Union. The union of two sets is the set of all things in either set. ‘The union
of S and T ’ is written ‘S ∪ T .’

Intersection. The intersection of two sets is the set of all things which are
members of both sets. ‘The intersection of S and T ’ is written ‘S ∩ T .’

Given these, we can give the following definition of the successor of 0 (i.e., 1):
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0’ = the set of all sets S which meet the following condition: ∃x (x ∈ S & [S
∩ Comp({x}) ∈ 0])

i.e., given our definition of zero as the set whose only member is the empty set,

0’ = the set of all sets S which meet the following condition: ∃x (x ∈ S & [S
∩ Comp({x}) ∈ {∅}])

(The ‘trick’ here is that the set obtained by removing a term x from a set S is the
intersection of S with the complement of the set whose only member is x (i.e, {x}.)

Definition of natural number

N = the smallest set containing zero and closed under successor.

3.5 A proof of the axioms of arithmetic in Russell’s logical system

So far, we have laid out the axioms of Russell’s system, and have shown how, within
that system, we can give definitions of the primitive terms used in the axiomatization of
arithmetic. We are now in a position to test those definitions by trying to prove the five
axioms of arithmetic on the basis of Russell’s three logical axioms, plus the definitions of
zero, successor, and natural number.

(A more in depth version of these proofs is provided in Soames, pp. 146 ff.)

Proof that zero is a natural number

Given the definition of natural number above, this is trivially true.

Proof that the successor any number is a number

This is also trivial, given the definitional claim that the set of natural numbers is closed
under successor.

Proof that zero is not the successor of any number

We can prove this by reductio ad absurdum. (To prove some proposition p by reductio
ad absurdum is to show that p is true by reducing the negation of p to absurdity — i.e.,
to show that ¬p implies a contradiction.)

1. Suppose that for some x, x′=0.
2. Then, by the definition of 0, for some x, x′ = {∅}.
3. Then, by the definition of successor, every member m of {∅} is

such that it has a member such that, when removed from m, the
remaining set is a member of x.

4. So every member of {∅} has a member.
5. So ∅ has a member.
6. But ∅ is the set with no members.
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Proof that no two different numbers have the same successor

To prove this, we show that whenever x, y have the same successor, x = y. This can be
proved in two stages.

1. First, suppose that the successor x, y is not the empty set. Then it – call it S – is a
set with members. The definition of successor tells us that if S is the successor of x, then
if we take any member m of S and eliminate one of its members, the resultant set m′ is
a member of x. Parallel reasoning shows that m′ is a member of y. But we know from
the definition of the numbers that if x, are numbers and have a member in common, then
x = y.

2. How about the other possibility – that the successor of x, y is the empty set? To see
why this is worth considering, it is important to see what would have to be true for the
successor of some number to be the empty set. Recall that, e.g., the number 23 is the
set of all 23-membered sets. (This is not the definition of the number – which is given
in terms of successor – but it is equivalent to what the definition says.) Now suppose
that there were only 23 objects in the universe. What would the successor of 23 be?
The set of all 24-membered sets. But, if there are only 23 objects in the universe, there
are no 24-membered sets. That means that the successor of 23, i.e. 24, would be the
empty set. Then what would the success of 24 be? The set of all 25-membered sets. But,
again, in the scenario being considered, there are none. So 25 would be the empty set,
just like 24. So in this scenario, 23′ = 24′, even though 23 6= 24. But this conflicts with
the axiom of arithmetic which we are trying to prove. Hence this scenario is one which
must be ruled out by some axiom of Russell’s logical system. And it is: by axiom 3,
the Axiom of Infinity. This axiom says that the empty set is not a member of the set of
natural numbers. Now you can see why this strange-sounding axiom is called the Axiom
of Infinity: it in effect guarantees that there are infinitely many objects in the universe.

Proof of the validity of mathematical induction

(We will not be discussing the proof of this in class. A brief discussion may be found in
Soames, pp. 147-148.)

4 The axiom of infinity and iterated sets

We have shown that the axioms of arithmetic are provable in Russell’s logical system;
given what we said above about the relations between the axioms and theorems of a
theory, this suffices to show that the theorems of arithmetic are also provable in this
system.

But you might still have the following doubt about the reduction: is Russell’s system of
logic really just a system of logic? This doubt is connected with the Axiom of Infinity.
Perhaps it is true that there are infinitely many objects; but it does not seem to be a
truth of logic that there are. How could we know on the basis of knowledge of logic alone
how many things there are?

A response to this problem comes from the axiom schema of comprehension. We can talk
about the set with no members (or, equivalently, the set of things which are both F and
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not-F); but we can also talk about the set containing only the set with no members, the
set containing only the set whose only member is the set with no members, and so on
indefinitely. By the axiom schema of comprehension, all of these sets exist. So it seems
that logic alone guarantees us an infinity of objects:

∅, {∅}, {{∅}}, {{{∅}}}, {{{{∅}}}}, . . .

This seems to make the axiom of infinity, and our knowledge of it, unproblematic.

5 Russell’s paradox and the axiom schema of comprehension

But there is a further problem, which Russell was the first to discover, with another of
the axioms of the logical systems presented above. This problem is known as Russell’s
paradox.

Consider axiom 1, the Axiom Schema of Comprehension. Intuitively, this says that for
any way which an object can be (i.e., for any condition which an object can satisfy), there
is a set of those objects which are that way (i.e., there is a set of just those objects which
satisfy that condition).

Consider first ‘being a member of oneself’. Intuitively, this is a property which some sets
have, and some sets do not have. The set of all abstract objects, for example, is a member
of itself, since sets are abstract objects and the set of all abstract objects is a set. But
the set of red things is not a member of itself, since it is not red. So far, so good; there
is this property of being a member of oneself which some sets have and some do not; so
presumably there is a set of all those sets which are a member of themselves.

Now consider the opposite property: the property of not being a member of oneself. Since
this too appears to be a way that some sets are and some are not, we should be able to
talk about the set of all sets which are not a member of themselves. Call this set S:

S = the set of all sets which are not members of themselves.

But now consider the question: is S a member of itself? Suppose first that it is. If it is,
then S must not be a member of itself, since this is what it takes to be a member of S.
But this is a contradiction. So it must be the case that S is not a member of itself. But
then it must be a member of itself, since everything which is not a mmber of itself is in S.
But this too is a contradiction. So S cannot exist. But this is shows that the unrestricted
axiom schema of comprehension is false.

We can give the same argument more formally as follows.

1. ∃y∀x ((x ∈ y) ≡ (x /∈ x))

2. Let ‘S’ be a name for the set whose existence is stated by (1). Then ∀x ((x ∈S) ≡
(x /∈ x))
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3. (S ∈S) ≡ (S /∈ S)

Since (3) follows from (1), and (3) is a contradiction, (1) is false.

Russell’s solution to this problem was the theory of logical types. Discussion of the theory
of types gets extremely complicated, so here we will only discuss some simple aspects of
the theory. The idea is basically this: we need a way of saying which sets exist which does
not lead to contradiction. Clearly, Russell’s paradox has something to do with the idea
of things being members of themselves. So maybe we should find some way of blocking
sets from ever being members of themselves. One way to do this would be to begin with
‘first-level’ objects: objects which are not sets. We could then let sets of level 2 contain
only first-level objects; sets of level 3 contain only sets of level 2; and so on. This blocks
the construction of the set which leads to Russell’s paradox. There are various ways of
restricting the axiom scheme of comprehension to deliver this result.

6 Does Russell’s logicism achieve its aims?

Above I suggested that Russell had the dual aims of resolving metaphysical and episte-
mological puzzles about mathematical truths. How well does his attempted reduction of
logic to mathematics fare in achieving these aims?

A serious problem here is posed by the axiom of infinity, which guarantees the existence
of infinitely many things. This is both a metaphysical commitment of the theory, and
a problem for explaining the epistemology of mathematical statements — for if to know
them we have to know Russell’s axioms to be true, and if to know Russell’s axioms to be
true we have to know that there are infinitely many things, and if (as seems plausible) we
can only know how many things there are on the basis of experience, this poses a problem
for the very datum we were trying to explain: that mathematical truths are knowable a
priori, independent of experience.

Above I suggested that we could get around these problems by noting that logic alone
seems to provide for the existence of infinitely many sets, when we consider the series

∅, {∅}, {{∅}}, {{{∅}}}, {{{{∅}}}}, . . .

but consideration of this series shows that it cannot play its intended role, if we adopt
the theory of logical types. We were imagining that this series guarantees the existence
of infinitely many natural numbers because we were imagining the following sort of iden-
tification of numbers with sets:

0 = {∅}
1 = {{∅} . . . (filled out with whatever other 1-membered sets might

exist) . . . }
2 = {{{∅}} . . . (filled out with whatever other 2-membered sets might

exist) . . . }

Remember: natural numbers are sets of equinumerous sets; and the set of natural numbers
is the set of these sets.

12



But this way of viewing the numbers runs contrary to the strictures on the existence of
sets given by the theory of types. For one thing, consider the number 1. It is a set of sets;
and one of its members is {∅}, which is a set of level 3. So the number 1 must itself be a
set of level 4. By parallel reasoning, the number 2 will be a set of level 5. So no set can
contain both the numbers 1 and 2; but the set of natural numbers has to contain these.
(A further way of seeing the problem is by noting that other 1-membered sets might be
sets of level 2 if they contained only a single first-level individual; but then, contrary to
the definition of the number 1, they could not be a member of the same set as {∅}.

A result of this way of thinking about the theory of types is that numbers must all be at
the same level. A natural thought here is that numbers should be sets of level 3 — they
should be sets of sets of first-level objects. So, since there are infinitely many numbers,
there have to be infinitely many sets of level 3. If you think about it, you will see that
there can be infinitely many sets of level 3 only if they are infinitely many sets of level 2.
(Suppose that there were, say, 500 sets of level 2. There would then be one 500-member
set of level 3; 500 499-member sets of level 3; and so on. We would end up with lots of
level 3 sets; but we would not end up with infinitely many.)

But the problem is that, for there to be infinitely many sets of level 2, there have to be
infinitely many first-level objects — i.e., infinitely many non-sets. But it does not seem
that we can know a priori that there are infinitely many concrete things; and it certainly
seems implausible that we have to know this in order to know that 2+2=4.

A second, related problem: the paradox of analysis. If Russell’s analysis of mathemati-
cal statements in terms of logical statements is correct, does that have implications for
what schoolchildren are really learning when they learn their multiplication tables? The
dilemma posed by analyses of meaning which are supposed to be both plausible and to
deliver surprising philosophical consequences.

A third problem: Gödel’s proof of the incompleteness of arithmetic.
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