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Abstract. We describe an ensemble approach to learning salient regions from
arbitrarily partitioned data. The partitioning comes from the distributed process-
ing requirements of large-scale simulations. The volume of the data is such that
classifiers can train only on data local to a given partition. Since the data partition
reflects the needs of the simulation, the class statistics can vary from partition
to partition. Some classes will likely be missing from some or even most parti-
tions. We combine a fast ensemble learning algorithm with scaled probabilistic
majority voting in order to learn an accurate classifier from such data. Since some
simulations are difficult to model without a considerable number of false positive
errors, and since we are essentially building a search engine for simulation data,
we order predicted regions to increase the likelihood that most of the top-ranked
predictions are correct (salient). Results from simulation runs of a canister being
torn and from a casing being dropped show that regions of interest are success-
fully identified in spite of the class imbalance in the individual training sets. Lift
curve analysis shows that the use of data driven ordering methods provides a
statistically significant improvement over the use of the default, natural time step
ordering. Significant time is saved for the end user by allowing an improved focus
on areas of interest without the need to conventionally search all of the data.

Key words: Random forest · Saliency · Probabilistic voting · Imbalanced train-
ing data · Lift

1 Introduction

We consider the problem of dealing with datasets too large to fit in the memory of any
one computer and too bandwidth-intensive to move between neighboring computers
[20]. Such problems exist in the United States Department of Energy’s Advanced Sim-
ulation and Computing (ASC) program [27, 1], wherein a supercomputer simulates a
hypothetical real-world event. The simulation data is partitioned and distributed across
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separate disks, to facilitate parallel computation. It may be many terabytes to petabytes
in size. The current state of the art is that developers spend time manually browsing for
anomalies in order to develop the simulation, and domain experts spend similar time
looking for salient events. We want to create a tool to let them manually mark a small
number of examples and then automatically flag found examples throughout the rest of
the dataset, or similar datasets for directed browsing. Because there will be false pos-
itives, we want to present predicted positives to the user in an order that increases the
chances of true positives being presented early.

As a result of partitioning, the points of interest, or “salience”, in some partitions
may be limited to only a few nodes. Salient points, being few in number, exhibit a patho-
logical minority class classification problem. The problems associated with imbalanced
datasets and various strategies for dealing with those problems are described in [26]
and [41]. Techniques include various forms of undersampling and oversampling [8],
and cost-sensitive learning methods [13]. In the case of a partition having zero salient
points, a single-class “classifier” will be learned. This motivates a scaling adjustment
to the voting scheme used in [36] and [38], and developed in [37] to improve accuracy,
as shown in Section 4. Facial region recognition experiments and analysis of nodal as
well as regional accuracy were also included in [38]. A different, smaller dataset with
only four partitions was used in both [36] and [38]. We first used the ordering of salient
regions and the use of lift quality to measure the quality of the ordering for the casing
simulation only in [37].

In this paper, which is revised and expanded from an earlier four-page version by
the authors in [37], we give new examples of learning from four simulation runs of
a canister being torn, and expand on learning from one run of a casing being dropped.
These are relatively small simulations, used in initial investigations in the ASC program,
but large enough to show the utility and advantages of our approach. A visualization
of a casing being dropped is shown in Figure 1a. An illustration of the canister tear
simulation model appears in Figure 1b. We have evaluated how well our approach can
detect connected groups of salient nodes. Also, we have measured the quality of our
ordering of salient region predictions, as discussed in Section 5. We show that it is
possible to obtain an accurate prediction and a useful ordering of salient regions, even
when the data is broken up arbitrarily in 3D space with no particular relation to feature
space. Results on the canister tear and casing datasets indicate that experts working with
much larger simulations can benefit from the predictive guidance obtained from only a
small amount of relevant data.

As a final piece of evidence for the utility of this approach, one of the authors (Keg-
elmeyer) of this paper assisted with a real-world example of a much larger simulation
that involved 162 runs of 876 gigabytes of data in each run. The original data is classi-
fied. The structural safety simulation was a very complicated model with many layers
that developed cracks and tears, which sometimes constituted a breach all the way from
the outside to the inside of the model. After 180 man hours were spent manually mark-
ing only the tears in 12 runs, a faster approach was needed. A distributed classification
approach similar to that proposed in this paper was used to train on the 12 marked runs
and test the remaining 150 runs to find all tears and evaluate breaches in a cumulative
75 man hours.
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The main contributions of this paper are to show that accurate regions of interest can
be learned even when a dataset is distributed in disjoint partitions and that the regions
can be ordered so that the actual interesting regions are presented first. Individual pre-
dictions may be somewhat noisy because data is distributed in ways that are not helpful
to the learning algorithm, but they get smoothed into good regions. The true positive
regions can reliably be presented first in a ranked list. This approach can be used on
problems with minority classes where finding regions of interest is the goal and train-
ing noise is less than about 10%. For example, recognizing abnormal regions in medical
images or finding supernovae in astronomy are potential applications.

(a) (b)

Fig. 1: Visualizations of the casing and canister tear simulations. For the casing sim-
ulation, ground truth salient (bolt) regions are the smaller, darker regions. a Casing
simulation, b canister tear simulation

2 Related Work

We discuss the most relevant research in the related areas of incremental learning, dis-
tributed learning, and ranking problems. Incremental learning [15, 30, 40, 24], where
the model changes as training data becomes available over time, provides a potential
approach for creating a model from a very large training dataset. The model could be
built on one set of data and then moved to another processor for continued learning on
a second set of data, etc. Incremental learning models that require the storage of pre-
vious training examples, such as instance-based learning approaches [30], and decision
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tree approaches [14] are time consuming for very large datasets. Also, we could find
no work evaluating their performance on very large datasets. Alternatively, data mining
of streaming data [2, 17] has been developed precisely for endless streams of data. The
datasets considered in this paper could be treated as a stream, although they lack a nat-
ural ordering principle. Our empirical experiments show statistically different results
depending on how the partitions are ordered.

There are distributed learning algorithms, such as distributed boosting [10], that
could be applied to this problem. The authors of [28] evaluate several distributed boost-
ing algorithms, one of which deals specifically with learning from homogeneous dis-
tributions of data scattered across different sites. They consider the problem from the
standpoint of data privacy, where data examples may not be propagated to other comput-
ers. In this algorithm, they compute statistics on the data such as mean and covariance
in order to calculate the Mahalanobis distance between sites. Sites containing similar
distributions employ the authors’ distributed boosting algorithm, while those without
similarity use standard boosting.

In the distributed boosting algorithm, a boosted classifier was built in each partition
and broadcast to the other partitions. Using this ensemble of classifiers, the weight
of each example was updated. A global weight array stores the sum of the updated
weights for each individual site, thus providing information on how difficult it is to
learn at any one site, and weighting that partition accordingly for the next iteration. The
authors showed that this algorithm was at least as accurate as standard boosting on the
centralized data base. The only spatially disjoint sets used in [28] were two very small
synthetic datasets with three equal size classes, two physical dimensions, and no time
dimension. In contrast, our much larger datasets consist of physics simulations of real
world events with unequal size classes, three physical dimensions, a time dimension,
and different partition schemes that present unique data mining challenges.

Distributed learning models have been shown to be able to provide classification
performance that is competitive with that obtained on all of the data [9]. There is some
work that indicates it is possible to do effective distributed learning with cost sensi-
tive data [18]. Further, any approach that builds independent classifiers or models and
combines them could potentially be applied [35]. Of the work discussed here, only in
[28] were spatially disjoint datasets used, with significant differences from our work as
mentioned above. In addition, we have developed smoothing and thresholding methods
to obtain regional predictions.

Many variants of ranking problems in machine learning exist. One approach is to
learn an order of items based on a pairwise score function [11]. Bucket orders, i.e.,
total orders with ties are considered in [19]. The Spearman rank correlation metric is
minimized by using a simple weighted voting procedure [22], and by active learning
of label ranking functions [7]. The authors of [39] use an order consistency metric to
measure how similar the predicted order is to the true order of recommendation on item
graphs. Since we are concerned only with whether our predictions satisfy an overlap
requirement, we use lift quality as developed for database marketing [29, 33].
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3 Experimental Datasets and Procedures

In this section, the canister tear simulation and casing simulation datasets are described,
including physical and spatial characteristics, as well as their respective train and test
datasets.

3.1 Canister Tear Simulation

In the canister tear simulation, a canister is dropped on a strike plate as shown in Fig-
ure 1a. The canister appears at the top, over the strike plate. The canister is made of one
material for the sides and of a second material for the top and bottom. Simulated welds
join the top and bottom to the sides. The collision of the canister with the strike plate
causes compression faults in the canister shell at the point of impact and rupture faults
(tears) in the canister shell farthest from impact. In our experiments, depending on the
particular run, we observed 11 to 31 time steps for the simulated event. The baseline
run was designated run 1. In runs 2 and 3, variables associated with the two canister
materials were given values different from the baseline values. In run 4, the shell height
of the middle region of the canister shell was increased from 1 to 2 and the refined weld
surface and thickness were each reduced from 2 to 1.

Physical and Spatial Characteristics. In the four different instances of the canister
tear simulation provided to us by the Department of Energy, all in the EXODUS II
format, nodes and finite elements of the simulation model are embedded in a mesh
framework [34]. Nine physical variables are stored for each node within each of the
time steps. They are the displacement on the X, Y, and Z axes; velocity on the X, Y, and
Z axes; and acceleration on the X, Y, and Z axes. In addition, 17 variables are stored
for each finite element of eight nodes. We converted to a purely nodal representation by
averaging all values of the corresponding elemental variables that contain the node. We
then used only nodal variables for learning. Table 1 shows the parameter settings for
each run. Table 13 in the Appendix shows the different ranges taken on by the features
available in each run.

Table 1: Physical and spatial characteristics for the canister tear simulation runs

Tear Run 1 2 3 4

# of nodes per time step 140,293 140,293 140,293 81,465

# of time steps 11 11 11 31

Total # of nodes 1,543,223 1,543,223 1,543,223 2,525,415

% of salient nodes in training time step 0.79 4.94 3.25 2.28

% of salient nodes in remaining time steps 2.17 3.73 4.50 2.38

% of salient nodes in all time steps 2.05 3.84 4.38 2.30

There were 37 nodal variables for each run, including 26 that changed
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Train and Test Sets. To create labeled data for every time step, those pieces of the
canister that have deformed so as to possibly indicate a tear in the canister wall were
marked as salient by manual editing of the data via a custom plug-in to the open source
visualization tool ParaView [21]. At the beginning of the simulation there are no salient
nodes within the mesh. As time progresses and the canister deforms, more and more
nodes were marked salient.

The marking of the salient nodes within the mesh can in principle be as precise as
desired, but more precision requires greater effort in manual marking. In actual ASC
work, the scientists use a tool that permits them to quickly mark coarsely shaped re-
gions, or to laboriously mark detailed regions. Since they invariably choose the fast but
coarse option, we have done the same, allowing noise in the class labels by marking
areas rather than individual nodes in the simulation models. Smoothing of the output to
create regions may reduce the noise in predictions created by imprecise labeling, as we
shall see.

The data for the middle time step of each canister tear simulation run was divided
spatially according to the computer to which it is assigned and used for training clas-
sifiers and/or ensembles. The partitioning divided the canister into 14 disjoint spatial
partitions of roughly equal size, as shown in Figure 2. Table 2 shows the number of
salient nodes in each canister tear partition of the training time step. The training data
in eight of the 14 training partitions of both runs 1 and 3 have no salient examples. The
training data in seven of the 14 training partitions of both runs 2 and 4 have no salient
examples. In addition, two other partitions of run 1 each contain only two salient exam-
ples. The high number of one-class partitions was deliberately chosen to illustrate the
advantages of scaled probabilistic majority voting. In reality, the partitioning would be
arbitrary and not user selectable.

In each time step and in each partition, saliency was designated as described. Every
node not designated salient received the label “unknown”, rather than “not salient”, to
reflect the fact that, in general, the users will indicate only salient regions. An ensemble
of classifiers was trained on each of the 14 partitions of the training time step. Testing
was done either on all of the remaining time steps of the same run, or on all time steps
of each different run. Figures 3 and 4 show a view of the training time step and the final
time step of all four canister tear runs.

The classifiers predicted each test example based on the attributes associated with
that example. The votes of each partition were combined using a scaled probabilistic
combination of the votes (to be reviewed in Section 4). We obtained region-based
results by smoothing and thresholding the point-based predictions. Smoothing occurs
by averaging saliency values of nodes within a specified distance and subsequently
binarizing the saliency using the Otsu automatic thresholding algorithm [32]. We focus
on the accuracy of region detection, not node detection, because it is regions that are
presented to the user, and assessed for their utility.

3.2 Casing Simulation

In this dataset, also used in [37] and [25], a casing was dropped on the ground as shown
in Figure 1a. The casing is composed of four main sections: the nose cone, the body
tube, the coupler, and the tail. The coupler connects the body tube and tail through a
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Fig. 2: A visualization of the 14 canister tear simulation partitions, with the tear area
(seen in later time steps) inside the white outline

Table 2: Salient class statistics by partition for the canister tear simulation runs

Partition # of training nodes # of salient training nodes

Run 1, 2, or 3 Run 4 Run 1 Run 2 Run 3 Run 4

0 5041 5041 0 0 0 0

1 6800 6800 0 0 0 0

2 6271 6271 0 0 0 0

3 7471 7388 0 0 0 0

4 12,980 7441 0 0 0 0

5 10,672 5720 0 0 0 0

6 12,257 6642 0 0 0 0

7 10,759 5972 2 64 0 32

8 11,651 5823 166 1076 226 183

9 12,653 6560 471 1679 1415 337

10 10,938 6371 2 622 1095 389

11 8258 4406 0 1226 685 289

12 8693 3780 37 1192 537 368

13 15,849 3250 433 1071 599 262

all 140,293 81,465 1111 6930 4557 1860
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Fig. 3: Training time step in the canister tear simulation run 1, run 2, run 3, and run 4
(left to right). Ground truth salient regions are darker than unknown regions. The tear
area view in Figure 2 has been rotated 90 ◦cw

Fig. 4: Final time step in the canister tear simulation run 1, run 2, run 3, and run 4 (left
to right). Ground truth salient regions are darker than unknown regions. The tear area
view in Figure 2 has been rotated 90 ◦cw

series of ten bolts. The ground has also been modeled. The casing was dropped from
a short height and landed on the tail at an angle. This simulation recorded the stresses
across the entire device as might be found were it to be accidentally dropped during
transport, storage, etc.

Physical and Spatial Characteristics. The goal using this dataset is to discover which
nodes in the simulation belong to bolts. When dropped at an angle on the tail, one group
of bolts experiences a tensile force, while the other group of bolts experiences a com-
pressive force. Each was also subject to sheer forces. These forces were expressed in
many other sections of the casing as well. The physical characteristics of the individual
nodes modeling the bolts are not substantially different from those modeling the rest
of the casing. In other words, there is no underlying feature of “boltness” which would
make this an easy problem without using additional block node identification or loca-
tion geometry. This additional information was only used for the initial labeling of bolt
nodes as salient, and not as one of the features for improving test accuracy, as discussed
later in Section 3.2.

The physical and spatial characteristics are provided in Table 3. Dataset attributes
include the motion variables of displacement, velocity, and acceleration as well as sev-
eral interaction variables such as contact force, total internal force, total external force,
and reaction force. The different ranges for each of these attributes are shown in Ta-
ble 14 in the Appendix. A time step showing the ground truth data is shown in Fig-
ure 1a. The bolts are the smaller, darker regions and represent the salient nodes in this
simulation.



Detecting and Ordering Salient Regions 9

There are several important differences between this dataset and the canister tear
dataset. There is not a large change in the structure of the casing data as the simulation
runs through time. The change in the structure occurs mostly at the end of the sim-
ulation after some amount of shear has taken place. Since the structural changes are
more subtle, the deformation of the casing simulation turns out to be more difficult than
the canister simulation to accurately predict. Instead, for this dataset it is considered
sufficient merely to identify the bolts.

Table 3: Physical and spatial characteristics for the casing simulation

# nodal variables 21 Total # non-bolt nodes 1,450,533

# time steps 21 Total # bolt nodes 119,280

# non-bolt nodes per time step 69,073 Total # nodes 1,569,813

# bolt nodes per time step 5680 Total % of bolt nodes 7.6%

Total # nodes per time step 74,753

The properties of the partitioning for the casing dataset are shown in Table 4. Fig-
ure 5 shows the partitioning of the actual simulation. The partitioning was performed
lengthwise in 12 pieces across the cylindrical body so as to distribute the bolts across
computers. We purposefully partitioned the data so that four of the partitions do not con-
tain any node from a bolt. This created four one-class classifiers, which were processed
accordingly by the voting algorithm during classification. Two of the remaining par-
titions each contain a complete bolt and parts of two other bolts. The six remaining
partitions each contain only a part of each of two bolts. The ground section was also
partitioned and used for training in case its data became relevant in later time steps.

Train and Test Sets. During the simulation, nodes belonging to all of the bolts were
specifically designated as their own substructure or block within the simulation. There-
fore, labeling of those points was a matter of setting all those nodes as salient, and hence
the training and test sets are labeled perfectly. This block node identification was delib-
erately not used as one of the features for improving test accuracy in order to establish
a legitimate machine learning challenge for our methods. Recall that in the canister
tear simulation the ground truth was subject to the inaccuracies inherent in the tools
available to designate saliency.

Data from time steps zero to six were combined for each of the 12 partitions to
form 12 sets of training data. The test set consisted of all of the data in the remaining
time steps, 7 to 20. A classifier or an ensemble of classifiers was trained on the training
data of each of the 12 partitions. Testing was performed using a scaled probabilistic
combination of those 12 votes (to be reviewed in Section 4). The classifiers predicted
each test example based on the attributes associated with that example. We obtained
region-based results by smoothing and thresholding the point-based predictions.
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Table 4: Partitioning characteristics for the casing simulation

Partition # of training # of salient % of salient

nodes training nodes training nodes

0 53,529 6818 12.74

1 59,654 5110 8.57

2 37,625 0 0.00

3 29,617 980 3.31

4 40,467 6972 17.23

5 29,183 0 0.00

6 43,106 0 0.00

7 29,155 3374 11.57

8 30,254 4578 15.13

9 54,488 0 0.00

10 49,728 3374 6.78

11 66,465 8554 12.87

all 523,271 39,760 7.60

Fig. 5: A visualization of the 12 casing simulation partitions. Four of the eight bolts that
are each contained in more than one partition are visible
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4 Predicting and Ordering Salient Regions

Initially, a classifier or ensemble of classifiers was constructed using the labeled, spa-
tially disjoint, training data local to each partition. Each of these classifiers or ensembles
was then transferred to a test partition from either the same or similar simulations. Once
there, each classifier or ensemble of classifiers was used to predict the class of each in-
stance of test data local to that computer. Due to possible class imbalances, a scaled
probabilistic majority vote of all class predictions was used to determine the consensus
class of each instance of test data. Because regional predictions are the ultimate goal,
connected-component regions of the predicted data were constructed, smoothed, and
thresholded for better accuracy. For evaluation purposes, these predicted regions were
compared to the labeled ground truth test regions, using different overlap thresholds to
determine the quality of each result.

First, to establish a baseline for each partition we used a single default pruned C4.5
release 8, decision tree (DT) with a certainty factor of 25, trained on the data at that
partition. Then we used Breiman’s random forest (RF) algorithm [6], with 250 unpruned
trees per partition with both unweighted (RF) and weighted (RFW) predictions. The
accuracy of random forests was evaluated in [5] and shown to be comparable with or
better than other well-known ensemble generation techniques. The number of random
features chosen at each decision tree node was log2 n+1 given n features. The values for
the same set of features for each individual node is presented to each DT or RF, but RF
randomly selects only some of the features for use internally. RF predictions produce a
single class vote for the forest, while RFW predictions are based on the percentage of
trees that vote for a class. The motivation for using this ensemble technique stems from
the inherent speed benefit of analyzing only a few possible attributes from which a test
is selected at an internal tree node.

Classification of a test point within the simulation involves prediction by each par-
tition’s ensemble of decision trees. Because our algorithms need to work when only a
few computers have salient examples, a simple majority vote algorithm may fail to clas-
sify any points as salient. In a large-scale simulation it is likely that there will be nodes
which have no salient examples in training. If many individual classifiers are unable to
predict a node as salient because there are no salient examples in the individual training
sets, then it may be impossible for a majority vote to predict a node as salient. Therefore
we must consider the prior probability that any given node contained salient examples
during training and therefore is capable of producing a classifier that can predict an
example as salient. A breakdown of this algorithm as presented in [4] is as follows:

p(w1|x) = % of ensembles voting for class w1 for example x

P(w1) = % of ensembles capable of predicting class w1

Classify as w1 if :
p(w1|x)
P(w1)

>
p(w2|x)
P(w2)

Classify as w2 if :
p(w1|x)
P(w1)

<
p(w2|x)
P(w2)
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Thus, a probabilistic majority vote can be applied for a two-class problem. For instance,
suppose there are five training partitions, including two partitions with both unknown
(w1 class) and salient (w2 class) examples and three partitions with only unknown (w1
class) examples. Therefore p(w1) = 5 and p(w2) = 2 . If the first two partitions each
vote salient for example x , and since the final three partitions can only vote unknown
for example x, the overall vote would be salient since 3

5 < 2
2 .

This algorithm does not differentiate between ensembles trained on data with a very
different number of examples by class. In order to further improve accuracy, we modi-
fied the input to the above algorithm by first multiplying each partition’s ensemble vote
for each class by the percentage of examples of that class in the corresponding partition,
compared to the number of examples of that class in all partitions. After this additional
step, the modified class votes were totaled, and the above algorithm applied. We call
this implementation a scaled probabilistic majority vote (spmv).

An n-class problem’s class votes would be similarly modified, and the algorithm
below would then be applied [4]:

Classify as wn : argmaxn(
p(wn|x)
P(wn)

)

In the case of a tie vote, the unknown class was predicted, since a definite salient
vote has not been determined. We are interested in directing people to salient regions
so, presumably, missing a few salient points that are tied in a vote will not be important
for region recognition.

Casing simulation ground truth salient regions (bolts) are constant in size, while
salient regions in the canister tear simulations generally grow larger with each time
step. Different methods were explored in an attempt to order true salient regions before
false positive regions. Predicted regions were ordered by their size in number of nodes,
with largest regions first. This method assumes that very small predicted regions are
less likely to meet overlap threshold requirements for true positives. Another method
ordered the predicted regions closest to the mean size of all predicted regions first. This
technique assumes false positive regions are more likely to be very small or very large.
Regions were also ordered by the mean of the salient margins of the scaled probabilistic
majority votes by ensembles for nodes in each region before smoothing. In this case,
salient margin is computed by salient votes minus unknown votes. Regions with higher
means are ordered first since the ensemble voting shows more confidence in a salient
classification. In addition, using domain knowledge, predicted regions for casing exper-
iments were ordered by how closely their number of nodes compared to the number of
nodes (568) in each ground truth bolt. The goal is to point the user to actual ground
truth regions first, and false positive regions last, in those cases where perfect accuracy
cannot be obtained.

5 Experimental Results

First, the basic experimental steps for both the casing and the canister tear experiments
are described. Next, the metrics used to evaluate the results of predicting and ordering
salient regions are explained. Finally, the results are presented and analyzed.
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5.1 Experiments

For the casing experiments, training was performed on the data contained in each of
the 12 partitions of time steps 0 to 6 to create both a single pruned decision tree and
a 250-tree random forest ensemble for each partition. The decision tree classifier or
the random forest ensemble of each training partition returned a single prediction (or
a weighted prediction in the case of random forests weighted) for each test example
in test time steps 7 to 20. The 12 predictions from those classifiers or ensembles were
combined into a single prediction for each test example using the scaled probabilistic
majority vote (see Section 4).

For each of the canister tear simulation experiments, training was performed on the
data contained in each of the 14 partitions of the training time step of a single run. For
each of runs 1, 2, and 3, this time step was 5 of 0 to 11, and for run 4, this time step was
15 of 0 to 31. Both a single pruned decision tree and a 250-tree random forest ensemble
were created for each partition of the training data in a run. The decision tree classifier or
the random forest ensemble of each partition returned a single prediction (or a weighted
prediction in the case of random forests weighted) for each test example of either the
remaining time steps of the same run, or of all time steps of a different run. The 14
predictions from those classifiers or ensembles were combined into a single prediction
for each test example using the scaled probabilistic majority vote (see Section 4).

The salient regions of the data were marked using the region-based tools of the
ParaView application [21]. The ensembles of classifiers used to classify the test data of-
ten produced smaller salient clusters of nodes or even individual isolated salient nodes,
which do not correspond well to the larger marked, ground truth regions. In order to
improve the regional accuracy of these ensembles, we employed some of the regional
tools in the Feature Characterization Library (FCLib-1.2.0) toolkit [23] to process the
ensemble prediction data. The numeric class label (0.5 for unknown, 1.0 for salient)
of all nodes within a physical radius of three units of each node (found by testing on
the training data) was averaged in a smoothing operation. We expect that smoothing at
three units will erase smaller dimension regions without degrading larger regions.

After smoothing, nodes had numeric class labels in the range from [0.5,1]. These
values were binarized using the Otsu automatic thresholding algorithm [32]. Predicted
regions were created from connected components of salient nodes after smoothing.
Smoothing tended to remove the smaller salient regions and the isolated salient nodes.
All pairs of salient regions separated by no more than the maximum edge distance be-
tween nodes for the casing simulation, or by no more than an edge distance of two
units between nodes for the canister tear simulation runs, were assigned the same re-
gion label. Another tool was used to generate overlap matrices of connected component
ground truth and predicted regions. Predicted salient regions were finally ordered by the
various size and voting confidence methods as described in the previous section.

5.2 Evaluation Metrics

Our previous approach [36] did not consider the actual node intersection percentage be-
tween ground truth and predicted salient regions. We extended that approach [38, 37] by
establishing thresholds for the overlap percentage of the nodes in a ground truth salient
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region and a predicted salient region for the prediction to be counted as a true positive.
The overlap required for a true positive at a given threshold was applied separately to
both the ground truth region and to the predicted region. If no predicted salient regions
sufficiently overlapped a ground truth salient region, a false negative was registered for
the failure to adequately predict the ground truth region.

A false positive was recorded for each predicted region that did not sufficiently
overlap any ground truth region. This may have resulted in more total predicted regions
than actual regions. It is possible that more than one predicted salient region satisfied a
given overlap threshold for intersection with a labeled salient region. We counted this
as a single discovery of the ground truth region (true positive or TP), with the remain-
ing prediction(s) counted as false positive(s). For the purposes of people searching for
interesting events, this appears sensible because they would be directed to the region. If
one predicted region sufficiently overlapped more than one labeled salient region, the
only true positive counted was the one with the most overlap with the predicted region.

Recall, precision, and the traditional F-measure, which weights false positives (FP)
and false negatives (FN) equally, provide measures of regional accuracy, as shown be-
low [42].

recall =
T P

T P+FN

precision =
T P

T P+FP

F-measure =
2 ·T P

2 ·T P+FP+FN

For many users, a small overlap threshold is an appropriate regional metric, since
coarsely pointing those users to suspicious regions for further investigation is the main
goal. From a machine learning viewpoint, a smaller overlap does not address the case
where a very large region is always predicted salient. As long as this region minimally
overlaps a given ground truth region, a true positive is counted. By increasing the over-
lap requirement to 10%, or even 50% for example, a more precise match is obtained.
The stricter requirements also provide useful discrimination between classifier methods
that would not be possible with a minimal overlap requirement.

While the F-measure indicates how well salient regions are found, it does not mea-
sure the quality of ordering predicted salient regions so that correct predictions are
selected before false predictions. Lift is a measure often used in database marketing for
this purpose and is defined as the percent of all targets (hits) in the first p% of the mar-
keting list sorted by decreasing score of the model, divided by p. The authors of [29]
and [33] previously addressed the measurement of lift quality in database marketing.
The authors of [29] introduced a lift index that used a weighted sum of the items in the
lift table. That index converged to the ratio of the area under the cumulative lift curve.
The L-quality measure described in [33] is similar to the lift index, and ranges from -1
(worst case), to 0 (random case), to 1 (optimal case). We applied the same basic formula
for calculating L-quality as shown below.

L-quality(M) =
SumCPH(M)−SumCPH(R)
SumCPH(B)−SumCPH(R)
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The term CPH denotes Cumulative Percent Hits, which is defined as lift multiplied by
p% as explained above. The term SumCPH(M) is defined as the area under the CPH
curve for the model M. The terms SumCPH(R) and SumCPH(B) are defined as the area
under the CPH curve for the random model and for the optimal model respectively.
The optimal case occurs when all targets are grouped at the beginning of the list. In our
application, we sort a list of predicted regions instead of a list of potential customers. In-
stead of counting cumulative targets or hits, we count the number of cumulative ground
truth salient regions that meet given overlap threshold requirements with a unique pre-
dicted region. While database applications involve numbers of potential customers large
enough for practical expression as percentages on cumulative lift charts, the number of
predicted regions is small enough to show on our charts as actual numbers.

Two cases that usually do not occur in database marketing applications would result
in undefined L-qualities. First, the number of predicted regions may exactly equal the
number of ground truth regions. In this case, all possible orders of the predicted regions
have equal quality. Second, no ground truth region may be correctly predicted if the
overlap threshold requirement is sufficiently high. Since all orderings are equivalent in
these cases we cannot evaluate the L-quality. Hence, it will be undefined.

5.3 Results

Casing Simulation Regional Results Table 5 shows the regional results for the casing
experiments evaluated with 10% and 50% overlap thresholds. These experiments used
12 partitions of training data, each from the first seven time steps. As discussed in Sec-
tion 4, predicted regions were ordered by the ratio of region size to ground truth bolt
size (GT ratio), by the ratio of region size to mean region size (size ratio), by region size
from highest to lowest (size), and by the mean of the salient margins of the scaled prob-
abilistic majority votes by ensembles for nodes in each region before smoothing (smm).
Each method resulted in high L-qualities, which indicates that the ordering greatly im-
proves the user experience compared to random ordering, by pointing to the most salient
regions first, and causing most false positives to lie near the end of the list. Regions were
also ordered naturally, by timestep (ts), from low to high, then by region number within
each timestep from low to high. The corresponding natural L-qualities are lower, but
still above zero, which a random ordering would produce. Figure 6 shows the cumula-
tive lift curve for the model trained using 250 random forests unweighted trees for each
of the 12 training partitions of data, using a 10% overlap threshold. Predicted regions
were ordered by how closely their number of nodes compared to the number of nodes
(568) in each ground truth bolt. For reference, the ideal, random, natural (ordered by
timestep), and worst case lift curves are also shown.

Figure 7 shows the cumulative lift curves for a single decision tree (DT), and for
250 random forests unweighted (RF) and weighted (RFW) trees, for each of the 12
training partitions of data, using an overlap threshold of 10%. The vertical height of the
rightmost point of each curve shows the total number of ground truth salient regions
for which predicted regions meet the 10% overlap threshold requirement. Of the 140
actual ground truth regions, RFW correctly predicted 115, DT 123, and RF 124. The
vertical distance of the rightmost point below the top of the chart indicates the number
of false negative regions. The horizontal location of the rightmost point of each curve
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Table 5: Casing regional results evaluated with 10% and 50% overlap thresholds. (Bold
indicates the highest values)

Class OT % GT Preds TP FN FP Rec. Prec. F-m L-qualities
GT size size smm ts

ratio ratio

DT 10 140 319 123 17 196 0.88 0.39 0.54 0.97 0.98 0.86 0.90 0.26
RF 10 140 251 124 16 127 0.89 0.49 0.63 0.98 0.97 0.93 0.87 0.33
RFW 10 140 257 115 25 142 0.82 0.45 0.58 0.96 0.95 0.94 0.94 0.37

mean: 0.86 0.44 0.58 0.97 0.97 0.91 0.90 0.32
sd: 0.04 0.05 0.05 0.01 0.02 0.04 0.04 0.06

DT 50 140 319 104 36 215 0.74 0.33 0.45 1.00 0.81 0.91 0.89 0.37
RF 50 140 251 109 31 142 0.78 0.43 0.56 0.99 0.79 0.95 0.89 0.43
RFW 50 140 257 100 40 157 0.71 0.39 0.50 0.99 0.76 0.97 0.91 0.48

mean: 0.74 0.38 0.50 0.99 0.79 0.94 0.90 0.43
sd: 0.04 0.05 0.06 0.01 0.03 0.03 0.01 0.06

Class: classifier; OT: overlap threshold; GT: ground truth regions; Preds: predicted regions; TP: true positives;
FN: false negatives; FP: false positives; Rec.: Recall; Prec.: Precision; F-m: F-measure; smm: salient margin mean;
ts: timestep
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Fig. 6: A visualization of the casing cumulative lift curve for the model trained using
random forests unweighted ensembles and evaluated with 10% overlap threshold. The
ideal, natural, random, and worst case lift curves are also shown
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shows the total number of predicted regions, including true and false positives. RF has
251, RFW has 257, and DT has 319 predicted regions. The high L-qualities for all three
classifier/ensemble methods indicates false positives are mostly added at the end, after
the user has seen almost all correctly identified salient regions.
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Fig. 7: A visualization of the casing cumulative lift curves for the models trained using
single decision tree, and random forests unweighted and weighted ensembles, evaluated
with 10% overlap thresholds

Canister Tear Simulation Regional Results Tables 6, 7, and 8 show the canister tear
regional results with 10% overlap thresholds using DT, RF, and RFW respectively. The
training data from each run was from 14 partitions of a single time step. Most of the
lower F-measures involve run 1 (baseline) as either the test run or the training run time
step. Run 1 has the fewest salient nodes of any run, and is the only run that has more than
one salient region in a single time step (seven time steps each have two smaller salient
regions, including the training time step). Only 3 of the 14 partitions of run 1 have
at least 50 salient nodes. As discussed in Section 4, predicted regions were ordered by
region size from highest to lowest, by the ratio of region size to mean region size, and by
the mean of the salient margins of the scaled probabilistic majority votes by ensembles
for nodes in each region before smoothing. Regions were also ordered naturally, by
timestep (ts), from low to high, then by region number within each timestep from low
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to high. While some of each table’s entries show an L-quality of 1.00, the most notable
of these is the 89 false positive regions in Table 6, all after the 29 true positives have
been presented. A high L-quality is more significant when there are more false positives
along with many true positives.

Table 6: Canister tear decision tree regional results evaluated with 10% overlap thresh-
old

Train Test GT Preds TP FN FP Rec. Prec. F-m L-qualities
run run size size smm ts

ratio

1 1 15 53 8 7 45 0.53 0.15 0.24 0.96 0.57 0.86 -0.01
2 1 17 30 4 13 26 0.24 0.13 0.17 0.71 0.71 0.67 -0.23
3 1 17 36 4 13 32 0.24 0.11 0.15 0.92 0.53 0.53 -0.86
4 1 17 17 5 12 12 0.29 0.29 0.29 0.83 0.17 0.53 -0.27

1 2 10 66 10 0 56 1.00 0.15 0.26 0.94 0.56 0.88 0.06
2 2 9 19 9 0 10 1.00 0.47 0.64 1.00 1.00 0.96 0.51
3 2 10 61 9 1 52 0.90 0.15 0.25 0.97 0.74 0.94 -0.65
4 2 10 18 10 0 8 1.00 0.56 0.71 1.00 0.93 1.00 0.45

1 3 10 75 10 0 65 1.00 0.13 0.24 0.87 0.74 0.86 0.22
2 3 10 20 10 0 10 1.00 0.50 0.67 1.00 0.60 0.80 0.60
3 3 9 45 9 0 36 1.00 0.20 0.33 1.00 0.83 0.96 -0.13
4 3 10 24 10 0 14 1.00 0.42 0.59 1.00 1.00 1.00 0.41

1 4 29 194 25 4 169 0.86 0.13 0.22 0.91 0.20 0.87 0.00
2 4 29 67 29 0 38 1.00 0.43 0.60 1.00 0.98 0.91 0.34
3 4 29 117 28 1 89 0.97 0.24 0.38 1.00 0.81 0.95 -0.39
4 4 28 57 28 0 29 1.00 0.49 0.66 1.00 1.00 0.98 0.39

mean: 0.81 0.29 0.40 0.94 0.71 0.86 0.03
sd: 0.30 0.16 0.20 0.08 0.26 0.15 0.43

GT: ground truth regions; Preds: predicted regions; TP: true positives; FN: false negatives; FP: false positives;
Rec.: Recall; Prec.: Precision; F-m: F-measure; smm: salient margin mean; ts: timestep

An illustration of the canister tear run 1 cumulative lift curves for the model trained
using 250 random forests weighted trees for each of the 14 training partitions of data
appears in Figure 8. Predicted regions were ordered by their size (number of nodes)
from large to small. Similarly, the cumulative lift curves for the canister tear runs 2,
3, and 4 are shown in Figures 9, 10, and 11. As discussed above, most of the lower
F-measures involve run 1 (baseline), and can be distinguished by a lower and/or farther
right final point on the lift curve. Those lift curves with higher L-qualities have more
diagonally upward steps (true positives) for the initial predictions and more horizontal
steps (false positives) for the final predictions.

While precision, recall, and the F-measure are computed on unordered sets of pre-
dicted regions, L-quality is computed on ordered or ranked sets of predicted regions.
Another ranking quality method is the precision-recall curve, which shows the preci-
sion at increasing recall levels. The standard curve is usually smoothed to remove saw-
tooth patterns by using interpolated precision, which is the highest precision found for
any recall level greater than or equal to the given recall level. Eleven-point interpolated
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Table 7: Canister tear random forests unweighted regional results evaluated with 10%
overlap threshold

Train Test GT Preds TP FN FP Rec. Prec. F-m L-qualities
run run size size smm ts

ratio

1 1 15 18 14 1 4 0.93 0.78 0.85 0.14 0.93 0.96 -0.04
2 1 17 12 7 10 5 0.41 0.58 0.48 0.20 -0.20 -0.14 -0.20
3 1 17 17 5 12 12 0.29 0.29 0.29 0.63 0.40 0.37 0.20
4 1 17 10 7 10 3 0.41 0.70 0.52 0.14 -1.00 -0.52 -0.14

1 2 10 21 10 0 11 1.00 0.48 0.65 0.36 0.47 0.53 0.38
2 2 9 13 9 0 4 1.00 0.69 0.82 1.00 1.00 1.00 0.61
3 2 10 12 10 0 2 1.00 0.83 0.91 1.00 1.00 1.00 0.60
4 2 10 12 10 0 2 1.00 0.83 0.91 1.00 1.00 1.00 -0.10

1 3 10 20 7 3 13 0.70 0.35 0.47 0.58 0.69 0.56 0.52
2 3 10 13 10 0 3 1.00 0.77 0.87 1.00 1.00 1.00 0.60
3 3 9 9 9 0 0 1.00 1.00 1.00 ND ND ND ND
4 3 10 16 10 0 6 1.00 0.62 0.77 1.00 1.00 1.00 0.40

1 4 29 67 26 3 41 0.90 0.39 0.54 0.41 0.25 0.24 0.22
2 4 29 60 29 0 31 1.00 0.48 0.65 0.68 0.54 0.80 0.39
3 4 29 51 29 0 22 1.00 0.57 0.73 1.00 1.00 0.71 0.44
4 4 28 33 28 0 5 1.00 0.85 0.92 1.00 1.00 1.00 0.01

mean: 0.85 0.64 0.71 0.68 0.61 0.63 0.26
sd: 0.25 0.20 0.20 0.35 0.57 0.47 0.29

GT: ground truth regions; Preds: predicted regions; TP: true positives; FN: false negatives; FP: false positives;
Rec.: Recall; Prec.: Precision; F-m: F-measure; smm: salient margin mean; ts: timestep; ND: not defined
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Fig. 8: A visualization of the canister tear cumulative lift curves for the models trained
using random forests weighted ensembles and evaluated with 10% overlap threshold on
canister tear run 1. In each case the time step (ts) of the training run (train) is specified
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Table 8: Canister tear random forests weighted regional results evaluated with 10%
overlap threshold

Train Test GT Preds TP FN FP Rec. Prec. F-m L-qualities
run run size size smm ts

ratio

1 1 15 18 15 0 3 1.00 0.83 0.91 0.51 0.96 0.91 0.64
2 1 17 10 5 12 5 0.29 0.50 0.37 0.60 -0.60 -0.92 -0.60
3 1 17 17 5 12 12 0.29 0.29 0.29 0.63 0.40 0.30 0.17
4 1 17 11 6 11 5 0.35 0.55 0.43 0.47 -0.60 -0.33 -0.27

1 2 10 18 10 0 8 1.00 0.56 0.71 0.18 0.40 0.18 0.30
2 2 9 10 9 0 1 1.00 0.90 0.95 1.00 1.00 1.00 0.33
3 2 10 11 10 0 1 1.00 0.91 0.95 1.00 1.00 1.00 0.40
4 2 10 11 10 0 1 1.00 0.91 0.95 1.00 1.00 1.00 0.20

1 3 10 19 9 1 10 0.90 0.47 0.62 0.40 -0.09 0.53 0.29
2 3 10 15 10 0 5 1.00 0.67 0.80 1.00 1.00 1.00 0.56
3 3 9 9 9 0 0 1.00 1.00 1.00 ND ND ND ND
4 3 10 16 10 0 6 1.00 0.62 0.77 1.00 1.00 1.00 0.30

1 4 29 61 24 5 37 0.83 0.39 0.53 0.26 0.23 0.26 0.11
2 4 29 31 29 0 2 1.00 0.94 0.97 1.00 1.00 0.45 -0.17
3 4 29 47 29 0 18 1.00 0.62 0.76 1.00 1.00 1.00 0.54
4 4 28 30 28 0 2 1.00 0.93 0.97 1.00 1.00 0.89 -0.11

mean: 0.85 0.69 0.75 0.74 0.58 0.55 0.18
sd: 0.27 0.22 0.23 0.31 0.60 0.58 0.34

GT: ground truth regions; Preds: predicted regions; TP: true positives; FN: false negatives; FP: false positives
Rec.: Recall; Prec.: Precision; F-m: F-measure; smm: salient margin mean; ts: timestep; ND: not defined
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Fig. 9: A visualization of the canister tear cumulative lift curves for the models trained
using random forests weighted ensembles and evaluated with 10% overlap threshold on
canister tear run 2. In each case the time step (ts) of the training run (train) is specified
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Fig. 10: A visualization of the canister tear cumulative lift curves for the models trained
using random forests weighted ensembles and evaluated with 10% overlap threshold on
canister tear run 3. In each case the time step (ts) of the training run (train) is specified

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60

predicted region #

# 
of

 T
P 

re
gi

on
s

train 1, ts 5 train 2, ts 5 train 3, ts 5 train 4, ts 15

Fig. 11: A visualization of the canister tear cumulative lift curves for the models trained
using random forests weighted ensembles and evaluated with 10% overlap threshold on
canister tear run 4. In each case the time step (ts) of the training run (train) is specified
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precision-recall graphs average the interpolated precision at eleven fixed recall levels
from zero to one [3, 31]. Figure 12 shows an eleven-point interpolated precision-recall
graph averaged across 16 canister tear train-test combinations using RFW ensembles.
Curves for five overlap thresholds (10% to 50%) between predicted and ground truth
regions are graphed. As expected, as more salient regions are retrieved from the ranked
list (the recall increases), some more false positive regions are also retrieved (the pre-
cision decreases). In general, the curves meeting lower overlap threshold requirements
show the best performance and are closest to the upper-right corner of the graph, where
recall and precision are maximized.
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Fig. 12: Eleven-point interpolated precision-recall graph averaged across 16 canis-
ter tear train/test combinations using random forests weighted ensembles. Curves are
shown for five overlap thesholds (OT) from 10% to 50%

Labeling Noise Results Labeling noise experiments were performed on the casing
simulation, since it has perfect ground truth labeling for all bolts (salient regions). The
ground truth labels were changed in the training data only, so that 1%, 5%, 10%, 15%,
and 20% of the 568 nodes in each bolt were mislabeled as unknown instead of salient.
Each bolt has 11 layers of nodes, and noise was thus added to the exterior surface nodes
of layer(s) beginning farthest from the bolt head as required. In separate experiments,
the labels of the same number of nodes closest to each bolt were changed from unknown
to salient at the above five noise levels. In other words, the first set of five noise levels
decreased the number of bolt nodes that were labeled correctly, and the second set
increased the number of nodes adjacent to each bolt that were labeled incorrectly as
bolt nodes.
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Table 9: Casing simulation RFW bolt labeling noise results evaluated with 10% overlap
threshold.

Noise GT Preds TP FN FP Rec Prec F-m L-qualities

level type GT size size ts
ratio ratio

0% NA 140 257 115 25 142 0.82 0.45 0.58 0.96 0.95 0.94 0.37

1% b 140 250 118 22 132 0.84 0.47 0.61 0.97 0.95 0.93 0.33
5% b 140 226 120 20 106 0.86 0.53 0.66 0.92 0.91 0.89 0.37
10% b 140 195 90 50 105 0.64 0.46 0.54 0.91 0.87 0.87 0.32
15% b 140 174 60 80 114 0.43 0.34 0.38 0.93 0.93 0.80 0.26
20% b 140 106 25 115 81 0.18 0.24 0.20 0.86 0.86 0.59 0.19

1% nb 140 253 104 36 149 0.74 0.41 0.53 0.93 0.94 0.92 0.38
5% nb 140 230 98 42 132 0.70 0.43 0.53 0.94 0.88 0.95 0.38
10% nb 140 192 86 54 106 0.61 0.45 0.52 0.95 0.79 0.94 0.38
15% nb 140 192 78 62 114 0.56 0.41 0.47 0.95 0.85 0.96 0.42
20% nb 140 160 71 69 89 0.51 0.44 0.47 0.93 0.76 0.97 0.39

NA: not applicable; b: bolt; nb: non-bolt; GT: ground truth regions; Preds: predicted regions
TP: true positives; FN: false negatives; FP: false positives;
Rec.: Recall; Prec.: Precision; F-m: F-measure; ts: timestep

Random forests unweighted (RF), weighted (RFW), and a single decision tree (DT)
were separately trained on each of the 12 partitions of the training data. For reference,
a single decision tree was also trained on all of the combined training data (SDT), al-
though this method would not be feasible for much larger datasets. An overlap threshold
of 10% was used. The results of the labeling noise experiments for RFW are shown in
Table 9 and Figure 13. The results for RF, DT, and SDT are shown in the Appendix—
Tables 15, 16, and 17, and Figures 14, 15, and 16. All figures show cumulative lift curves
that were produced with the ground truth (GT) ratio method of ordering predicted re-
gions, as discussed in Section 4. For all noise level cases, the L-qualities remained
consistently high. Methods that produce high L-qualities compensate for low precision
and make higher recall the key measurement, since most true positive regions (bolts)
are detected before false positive regions. While the recall for each method steadily de-
creased as the non-bolt noise level increased, there were exceptions as the bolt noise
level increased. Both SDT and RFW showed a small gain in recall for some increase(s)
in bolt noise levels. DT showed a larger decrease in recall (though still high overall) at
bolt noise levels of 1% and 10% than at the other bolt noise levels. This was likely due
to a combination of decision tree instability and partitioning of the data.

The decision tree methods each proved more robust to noise inside the bolts than the
random forests methods for 15% and 20% noise levels. Conversely, both decision tree
methods were less robust to 20% noise added to nodes outside the bolts. For the recall
at the bolt and non-bolt 10% noise levels, SDT averaged a recall of 0.89, followed by
RFW at 0.63, RF at 0.62, and DT at 0.55. Excluding SDT, which is not viable for larger
datasets, RFW performed best overall for both types of noise. SDT and DT predicted
more salient regions (true and false positives combined) than RF and RFW, and the
number of predicted regions for all methods tended to decrease at the higher noise
levels. In general, our methods are best used for noise levels less than about 10%.
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Fig. 13: Casing simulation bolt and non-bolt noise cumulative lift curves using RFW

Voting Method Results A simple majority vote (mv) and a probabilistic majority vote
(pmv) without scaling each produce inferior results when compared to a scaled prob-
abilistic majority vote (spmv) for the experiments described in this paper. If only par-
titions that have examples of both classes (unknown and salient) are used for training,
the probabilistic component of spmv is the same for both classes and has no effect on
each classifier or ensemble vote. However, both mv and a scaled majority vote (smv)
using only two-class partitions could be used to examine alternative voting methods.
Table 10 shows the average results of such tests on the 16 canister tear train-test combi-
nations. The smv method almost always yields higher recall, precision, and F-measure
than the mv method. The final three lines of Table 11 show the corresponding spmv re-
sults, which are better than the mv and smv results for recall, precision, and F-measure
in Table 10 for RF and RFW. The difference lies in the adjustment to the probabilis-
tic component of the scaled probabilistic majority vote, which assigns higher relative
weights to salient votes in these cases. Of course this adjustment could be made without
building one-class partition classifiers, since they always predict the class as unknown.

Statistical Significance Results Ensembles often result in a higher accuracy classifier
than a single classifier. Many times an ensemble is trained on a subset of the data (e.g.
bagging). The data may be implicitly weighted as in bagging, features left out to create
random subspaces, etc. Other work has shown that you can get better accuracy from an
ensemble of classifiers built on subsets of the data [10, 16]. The disjoint subsets of data
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Table 10: Canister tear average regional results using only two-class partitions and
evaluated with 10% overlap threshold. (Bold indicates the highest values)

Classifier Voting Recall Precision F-measure L-qualities

method size size ratio timestep

DT mv 0.61 0.31 0.40 0.85 0.42 0.32

DT smv 0.80 0.34 0.47 0.84 0.71 0.18

RF mv 0.60 0.47 0.43 0.76 0.58 0.51

RF smv 0.84 0.50 0.61 0.65 0.71 0.40

RFW mv 0.63 0.47 0.50 0.70 0.50 0.48

RFW smv 0.73 0.45 0.54 0.66 0.66 0.50

mv: majority vote; smv: scaled majority vote

here will result in classifiers that make different errors, which can (and often does) lead
to better accuracy as has been seen with smaller datasets previously.

The average canister and casing regional results for a 10% overlap threshold are
shown in Tables 11 and 12. For a baseline comparison, each table includes results for
a single decision tree (SDT) built on the unpartitioned training data, which includes
all available labeled training data. To illustrate, instead of training one DT for the data
in each of the 14 tear training partitions, only one decision tree was trained on all of
the combined training data of the 14 partitions. For the combined casing experiments
and canister tear experiments we applied the Friedman test, an average algorithm rank
method, and the Holm step-down procedure, both described in [12], to show that the
precision and F-measure from DT are significantly worse than either RF or RFW with
a 99% confidence level. Each of the four canister tear simulation runs was considered
as a separate dataset, since each has a unique % of salient nodes in the training time
step and in all time steps, and either unique material properties, or a different number
of time steps or nodes per time step. The casing experiments and all 16 tear train-test
combinations were used in the evaluations. We also found that the natural time step
ordering is significantly worse than all of the predicted region ordering methods with
a 99% confidence level. For the combined casing and canister tear simulations, the
precision and F-measure from DT using unpartitioned training data are significantly
worse than either RF or RFW with a 99% confidence level. This demonstrates that
partitioning obstacles to data mining can be more than overcome with the diversity of
random forests.

6 Summary and Discussion

Large simulations (terabyte to petabyte scale) must be partitioned across multiple proces-
sors in order to obtain results in a reasonable amount of time. The method of breaking
data into pieces may cause highly skewed class distributions, as it violates the usual as-
sumption of independent and identically distributed datasets. In this paper, we showed
how such data may nonetheless be effectively used for data mining. We showed that
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Table 11: Canister tear average regional results evaluated with 10% overlap threshold.
(Bold indicates the highest values)

Classifier Training data Recall Precision F-measure L-qualities

partitioned? size size ratio timestep

SDT no 0.77 0.24 0.35 0.87 0.72 0.05

DT yes 0.81 0.29 0.40 0.94 0.71 0.03

RF yes 0.85 0.64 0.71 0.68 0.61 0.26

RFW yes 0.85 0.69 0.75 0.74 0.58 0.18

Table 12: Casing regional results evaluated with 10% overlap threshold. (Bold indicates
the highest values)

Classifier Training data Recall Precision F-measure L-qualities

partitioned? GT size size timestep

ratio ratio

SDT no 0.95 0.41 0.57 0.97 1.00 0.84 0.28

DT yes 0.88 0.39 0.54 0.97 0.98 0.86 0.26

RF yes 0.89 0.49 0.63 0.98 0.97 0.93 0.33

RFW yes 0.82 0.45 0.58 0.96 0.95 0.94 0.37

GT: ground truth regions
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results from the distributed training data are as good or better than one can obtain with
a single decision tree trained on all the labeled training data. Our approach uses fast
ensemble learning algorithms, scaled probabilistic majority voting, and ordering of pre-
dicted regions of saliency.

The results show that a simulation experiment that yields only somewhat above
average regional F-measures can provide efficient visual analysis of those results by
effective ordering of the predicted regions. The vast majority of false positives were
ordered last, after the user has already seen most of the true positive salient regions.
The canister tear results often showed higher F-measures than the casing results in
spite of the relatively fewer examples used for training ensembles. Again, the quality of
ordering predicted regions is typically reflected in high L-quality measures.

The results indicate that simulation developers and users would be accurately di-
rected to regions of interest with only occasional misdirection. This has the potential
for saving significant time during debugging and use by allowing for a much improved
focus of attention on areas of interest without highly time-consuming search.
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Table 13: Feature ranges for the canister tear data in runs 1, 2, 3, and 4

Feature Run 1 Run 2 Run 3 Run 4
min max min max min max min max

DISPLX -262.1 374.4 -186.5 472.4 -223.3 231.2 -134.8 190.2
DISPLY -30.68 507.3 -30.52 338.8 -30.16 435.4 -30.66 235.3
DISPLZ -486.9 206.9 -416.4 215.6 -212.4 214.6 -182.3 142.9
VELX -144,943 262,027 -170,385 164,370 -122,159 133,943 -111,141 151,133
VELY -111,516 234,437 -129,884 212,983 -133,301 312,411 -161,039 227,234
VELZ -171,581 102,341 -214,932 122,208 -117,727 118,168 -96,732 119,858
ACCLX -5.74E+11 3.71E+11 -5.36E+11 6.65E+11 -5.67E+11 6.50E+11 -2.12E+11 2.99E+11
ACCLY -5.59E+11 3.49E+11 -6.67E+11 3.31E+11 -3.84E+11 1.88E+11 -2.50E+11 2.35E+11
ACCLZ -3.55E+11 6.54E+11 -3.80E+11 3.87E+11 -2.82E+11 1.80E+11 -1.51E+11 1.33E+11
ELEMDEATH 0 4 0 4 0 4 0 4
ELEMVAR7 0 324.8 0 288.4 0 326.0 0 324.8
ELEMVAR8 0 0.218 0 0.226 0 0.229 0 0.217
ELEMVAR9 0 47,968 0 22,256 0 26,819 0 24,105
ELEMVAR10 0 538.9 0 597.4 0 680.4 0 557.0
ELEMVAR11 0 9.18E+06 0 5.93E+06 0 7.05E+06 0 5.06E+06
ELEMVAR12 0 1.04 0 1.04 0 1.01 0 1.00
ELEMVAR18 0 1.56 0 1.63 0 2.19 0 1.20
ELEMVAR19 0 64,043 0 30,995 0 54,581 0 29,743
ELEMVAR20 -1640 1021 -2202 1165 -1929 1038 -1974 1025
PLASTICSTRAIN 0 1.56 0 1.63 0 2.19 0 1.21
SIGMAXX -1913 1021 -2202 1173 -1929 1051 -1974 1025
SIGMAXY -568.7 520.5 -625.4 593.8 -540.1 527.8 -541.0 521.4
SIGMAYY -2513 1222 -2871 1238 -2366 1084 -2327 976.7
SIGMAYZ -566.1 515.8 -640.6 581.2 -595.4 527.7 -564.5 518.8
SIGMAZX -574.6 515.2 -660.7 620.9 -585.9 532.5 -582.6 514.8
SIGMAZZ -1819 1025 -2387 1300 -2268 1134 -1734 1046

Table 14: Feature ranges for the casing simulation

Feature Minimum Maximum Feature Minimum Maximum

DISPLX -2.62 5.00 F-EXT-X -1550 877.2
DISPLY -0.24 0.23 F-EXT-Y -354.1 345.8
DISPLZ -10.34 0.55 F-EXT-Z -2561 2329
VELX -4306 7437 F-INT-X -1550 877.0
VELY -2108 5943 F-INT-Y -470.0 473.1
VELZ -11,518 3922 F-INT-Z -4920 2354
ACCELX -1.30E+09 8.79E+09 REACT-X -558.3 596.4
ACCELY -1.47E+09 1.46E+09 REACT-Y -354.1 345.8
ACCELZ -2.23E+09 3.29E+09 REACT-Z -165.4 2328
F-CONTACT-X -463.9 392.4
F-CONTACT-Y -469.1 478.6
F-CONTACT-Z -4917 2354
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Table 15: Casing simulation RF bolt labeling noise results evaluated with 10% overlap
threshold.

Noise GT Preds TP FN FP Rec Prec F-m L-qualities

level type GT size size ts
ratio ratio

0% NA 140 251 124 16 127 0.89 0.49 0.63 0.98 0.97 0.93 0.33

1% b 140 241 118 22 123 0.84 0.49 0.62 0.97 0.98 0.92 0.32
5% b 140 228 106 34 122 0.76 0.46 0.58 0.87 0.86 0.83 0.35
10% b 140 212 67 73 145 0.48 0.32 0.38 0.84 0.83 0.78 0.17
15% b 140 171 52 88 119 0.37 0.30 0.33 0.87 0.86 0.75 0.20
20% b 140 132 22 118 110 0.16 0.17 0.16 0.90 0.90 0.47 0.18

1% nb 140 270 115 25 155 0.82 0.43 0.56 0.95 0.96 0.93 0.31
5% nb 140 263 115 25 148 0.82 0.44 0.57 0.96 0.94 0.90 0.27
10% nb 140 249 107 33 142 0.76 0.43 0.55 0.95 0.95 0.94 0.25
15% nb 140 234 92 48 142 0.66 0.39 0.49 0.95 0.89 0.96 0.31
20% nb 140 189 79 61 110 0.56 0.42 0.48 0.95 0.85 0.97 0.34

NA: not applicable; b: bolt; nb: non-bolt; GT: ground truth regions; Preds: predicted regions
TP: true positives; FN: false negatives; FP: false positives;
Rec.: Recall; Prec.: Precision; F-m: F-measure; ts: timestep
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Fig. 14: Casing simulation bolt and non-bolt noise cumulative lift curves using RF
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Table 16: Casing simulation DT bolt labeling noise results evaluated with 10% overlap
threshold.

Noise GT Preds TP FN FP Rec Prec F-m L-qualities

level type GT size size ts
ratio ratio

0% NA 140 319 123 17 196 0.88 0.39 0.54 0.97 0.98 0.86 0.26

1% b 140 264 96 44 168 0.69 0.36 0.48 0.98 0.90 0.98 0.37
5% b 140 277 122 18 155 0.87 0.44 0.59 0.94 0.94 0.93 0.22
10% b 140 213 87 53 126 0.62 0.41 0.49 0.93 0.91 0.97 0.44
15% b 140 253 121 19 132 0.86 0.48 0.62 0.97 0.92 0.95 0.18
20% b 140 266 100 40 166 0.71 0.38 0.49 0.97 0.92 0.96 0.30

1% nb 140 300 112 28 188 0.80 0.37 0.51 0.94 0.99 0.85 0.25
5% nb 140 258 83 57 175 0.59 0.32 0.42 0.93 0.91 0.95 0.36
10% nb 140 288 67 73 221 0.48 0.23 0.31 0.93 0.91 0.95 0.40
15% nb 140 273 54 86 219 0.39 0.20 0.26 0.93 0.89 0.96 0.35
20% nb 140 240 41 99 199 0.29 0.17 0.22 0.91 0.87 0.96 0.64

NA: not applicable; b: bolt; nb: non-bolt; GT: ground truth regions; Preds: predicted regions
TP: true positives; FN: false negatives; FP: false positives;
Rec.: Recall; Prec.: Precision; F-m: F-measure; ts: timestep
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Fig. 15: Casing simulation bolt and non-bolt noise cumulative lift curves using DT
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Table 17: Casing simulation SDT bolt labeling noise results evaluated with 10% overlap
threshold.

Noise GT Preds TP FN FP Rec Prec F-m L-qualities

level type GT size size ts
ratio ratio

0% NA 140 323 133 7 190 0.95 0.41 0.57 0.97 1.00 0.84 0.28

1% b 140 345 131 9 214 0.94 0.38 0.54 0.97 0.99 0.83 0.29
5% b 140 378 131 9 247 0.94 0.35 0.51 0.97 1.00 0.83 0.18
10% b 140 351 130 10 221 0.93 0.37 0.53 1.00 1.00 0.89 0.20
15% b 140 323 129 11 194 0.92 0.40 0.56 0.99 0.99 0.86 0.25
20% b 140 348 135 5 213 0.96 0.39 0.55 0.99 1.00 0.85 0.23

1% nb 140 334 132 8 202 0.94 0.40 0.56 0.98 0.99 0.82 0.27
5% nb 140 240 126 14 114 0.90 0.53 0.66 0.99 1.00 0.97 0.20
10% nb 140 236 117 23 119 0.84 0.50 0.62 0.97 0.99 0.93 -0.02
15% nb 140 317 87 53 230 0.62 0.27 0.38 0.89 0.96 0.80 0.27
20% nb 140 186 20 120 166 0.14 0.11 0.12 0.92 0.82 0.97 -0.33

NA: not applicable; b: bolt; nb: non-bolt; GT: ground truth regions; Preds: predicted regions
TP: true positives; FN: false negatives; FP: false positives;
Rec.: Recall; Prec.: Precision; F-m: F-measure; ts: timestep
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Fig. 16: Casing simulation bolt and non-bolt noise cumulative lift curves using SDT


