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Abstract—Although practical communication networks employ
coding schemes with blocklengths as low as several hundred
symbols, classical information theoretic setups consider block-
lengths approaching infinity. Building upon information spectrum
concepts and recent work on channel dispersion, we develop
a non-asymptotic inner bound on as well as a low-complexity,
second-order achievable rate region for a discrete memoryless
multiple access channel with a given finite blocklength and
positive average error probability. Our bounds appear to capture
essentially the same region as those of Tan and Kosut, but
are less computationally complex because they require only the
means and variances of the relevant mutual information random
variables instead of their full covariance matrix.

I. INTRODUCTION

Traditional channel coding theorems of information theory
study the fundamental limits of communication in the presence
of noise and interference using coding schemes of asymptoti-
cally large blocklengths. In such extremes, information can be
encoded at a rate approaching a first order statistic (the channel
average mutual information). Delay and complexity limita-
tions of many practical applications, however, require coding
with finite blocklength, even on the order of several hundred
symbols, for which classical results do not hold. Following
Strassen [1], it has recently been shown [2], [3] that a second
order statistic (the channel dispersion) plays an important role
in the fundamental limits with finite blocklength.

From a high-level perspective, both analyses stem from the
common framework of information spectrum approach [4],
i.e., treating mutual information as a random variable (RV);
its limiting version for asymptotically large blocklength [4],
and its n-letter form for finite blocklength [1], [2], [3]. In
either case, the cumulative distribution function (CDF) of this
RV characterizes performance in terms of the probability that
channel cannot support the communication rate and causes an
“outage” for the actual codeword to be correctly detected at
the receiver. High coding rates turn out to arise when error
probability is approximated by the outage probability, and the
probability of “confusion”, i.e., the observation is wrongly
decoded to any incorrect codeword, decays to zero.

For the important case of stationary memoryless channels,
the limiting mutual information rate RV concentrates with
probability one at the average mutual information, so we are
dealing with a zero or one outage probability, depending upon
whether the communication rate is less than or greater than

the average mutual information, or first-order characterization.
Similarly, in the regime of finite blocklength, according to
the Central Limit Theorem, the CDF of the n-letter mutual
information rate RV approaches that of a Gaussian, so we
can estimate the outage probability and approximate achiev-
able rates by using first and second moments of the mutual
information rate RV, or the second-order characterization.

In this paper, we show how similar ideas can be extended to
a multi-user setting in which multiple users are communicating
several independent messages to a single receiver over a
multiple access channel. In particular, we explore the increase
in coding rate, especially its second-order, as a function of the
finite blocklength for a fixed average error probability. A key
element of our work is to use an outage-splitting approach for
the problem of assigning a single average error probability to
several outage events arising in a DM-MAC. We demonstrate
that this approach leads to simple, but rather tight achievable
regions in the finite blocklength regime.

II. PROBLEM STATEMENT AND BACKGROUND

A 2-user discrete memoryless multiple access channel (DM-
MAC) without feedback consists of two finite input alphabets
X1 and X2, a finite output alphabet Y , and a channel transition
probability matrix PY |X1X2

(y|x1, x2) : X1 × X2 → Y whose
n-th extension follows

PY n|Xn
1 X

n
2

(yn|xn1 , xn2 ) =

n∏
l=1

PY |X1X2
(yl|x1l, x2l).

For such a DM-MAC (X1,X2, PY |X1X2
(y|x1, x2),Y), an

(n,M1,M2, ε) code is composed of two message sets M1 =
{1, ...,M1} and M2 = {1, ...,M2}, and a corresponding set
of codeword pairs and mutually exclusive decoding regions
{(xn1 (j), xn2 (k), Dj,k)}, with j ∈M1 and k ∈M2, such that
the average error probability satisfies

P (n)
e ,

1

M1M2

M1∑
j=1

M2∑
k=1

Pr[Y n /∈ Dj,k|Xn
1 (j), Xn

2 (k) sent]≤ε.

Accordingly, a (logM1(n, ε)/n, logM2(n, ε)/n) pair is
achievable for a DM-MAC (X1,X2, PY |X1X2

(y|x1, x2),Y)
with finite blocklength n, and average error probability ε if
such an (n,M1,M2, ε) code exists.
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As mentioned in Section I, channel coding rates depend
upon the behavior of the relevant mutual information RVs.
Specifically, a 2-user DM-MAC involves the following three
mutual information RVs:

i(X1;Y |X2T ) , log
PY |X1X2

(Y |X1X2T )

PY |X2T (Y |X2T )
,

i(X2;Y |X1T ) , log
PY |X1X2

(Y |X1X2T )

PY |X1T (Y |X1T )
,

i(X1X2;Y |T ) , log
PY |X1X2

(Y |X1X2T )

PY |T (Y |T )
,

where T is an auxiliary “time sharing” RV satisfying the
Markov Chain T → X1X2 → Y . In the regime of asymp-
totically large blocklength, achievable rates will depend on
the first order statistics of these RVs:

I(X1;Y |X2T ) , E[i(X1;Y |X2T )],

I(X2;Y |X1T ) , E[i(X2;Y |X1T )],

I(X1X2;Y |T ) , E[i(X1X2;Y |T )],

where expectation is taken with respect to the distribution
p(t)p(x1|t)p(x2|t)PY |X1X2

(y|x1, x2). Using these quantities,
Ahlswede and Liao [5] established the capacity region of a
2-user DM-MAC. Subsequently, Dueck [6] and Ahlswede [7]
proved the strong converse, concluding that, even for a non-
vanishing average error probability 0 < ε ≤ 1, the first-
order characterization of the capacity region of a DM-MAC
(X1,X2, PY |X1X2

(y|x1, x2),Y) is given by the closure as
n→∞ of all (logM1(n, ε)/n, logM2(n, ε)/n) pairs satisfying

logM1(n, ε) < nI(X1;Y |X2T ) + o(n)

logM2(n, ε) < nI(X2;Y |X1T ) + o(n)

logM1(n, ε) + logM2(n, ε) < nI(X1X2;Y |T ) + o(n)

for some choice of the joint distribution
p(t)p(x1|t)p(x2|t)PY |X1X2

(y|x1, x2) with the auxiliary
random variable T defined on a set |T | ≤ 2.

In the following, we sharpen these classical results for the
finite blocklength regime using the second order statistics or
dispersions of the relevant mutual information RVs:

V(X1;Y |X2T ) , Var[i(X1;Y |X2T )],

V(X2;Y |X1T ) , Var[i(X2;Y |X1T )],

V(X1X2;Y |T ) , Var[i(X1X2;Y |T )],

where the variances are again calculated with respect to the
distribution p(t)p(x1|t)p(x2|t)PY |X1X2

(y|x1, x2).

III. MAIN RESULTS

This section summarizes our main results in this paper. We
first state the following Dependence Testing (DT) bound for a
DM-MAC, which provides a non-asymptotic achievable region
valid for any blocklength. It basically describes the error
probability in terms of the outage and confusion probabilities,
and is based on the DT bound of [2] and ideas from the
information-spectrum approach for a general MAC [4].

Theorem 1. For a DM-MAC (X1,X2, PY |X1X2
(y|x1, x2),Y)

and for any joint distribution p(t)p(x1|t)p(x2|t), there exists
a (n,M1,M2, ε) code such that

ε ≤ Pr [i(Xn
1 ;Y n|Xn

2 T
n) ≤ log γ1(Xn

1 , X
n
2 )]

+
M1 − 1

2
Pr
[
i(Xn

1 ; Ȳ n2 |Xn
2 T

n) > log γ1(Xn
1 , X

n
2 )
]

+ Pr [i(Xn
2 ;Y n|Xn

1 T
n) ≤ log γ2(Xn

1 , X
n
2 )]

+
M2 − 1

2
Pr
[
i(Xn

2 ; Ȳ n1 |Xn
1 T

n) > log γ2(Xn
1 , X

n
2 )
]

+ Pr [i(Xn
1 X

n
2 ;Y n|Tn) ≤ log γ3(Xn

1 , X
n
2 )]

+
(M1−1)(M2−1)

2
Pr
[
i(Xn

1 X
n
2 ; Ȳ n0 |Tn)> log γ3(Xn

1 , X
n
2 )
]

(1)

where Y n, Ȳ n0 , Ȳ
n
1 , Ȳ

n
2 are n-fold distributions

according to PY Ȳ0Ȳ1Ȳ2|X1X2T (y, a, b, c|x1, x2, t) =
PY |X1X2

(y|x1, x2)PY |T (a|t)PY |X1T (b|x1, t)PY |X2T (c|x2, t),
and where γ1, γ2, γ3 : Xn1 × Xn2 → [0,∞) are arbitrary
measurable functions whose optimal choices to give highest
rates are as follows:

γ1(Xn
1 , X

n
2 ) ≡ M1 − 1

2
, γ2(Xn

1 , X
n
2 ) ≡ M2 − 1

2
,

γ3(Xn
1 , X

n
2 ) ≡ (M1 − 1)(M2 − 1)

2
.

The above expression for DT bound is stated to match our
outage-splitting approach later in Theorem 3. It is, however,
possible to strengthen this bound by focusing on the three
outages jointly.

Theorem 2. For a DM-MAC (X1,X2, PY |X1X2
(y|x1, x2),Y)

and for any joint distribution p(t)p(x1|t)p(x2|t), there exists
a (n,M1,M2, ε) code such that

ε ≤ Pr [i(Xn
1 ;Y n|Xn

2 T
n) ≤ log γ1(Xn

1 , X
n
2 )

∪ i(Xn
2 ;Y n|Xn

1 T
n) ≤ log γ2(Xn

1 , X
n
2 )

∪ i(Xn
1 X

n
2 ;Y n|Tn) ≤ log γ3(Xn

1 , X
n
2 )]

+
M1 − 1

2
Pr
[
i(Xn

1 ; Ȳ n2 |Xn
2 T

n) > log γ1(Xn
1 , X

n
2 )
]

+
M2 − 1

2
Pr
[
i(Xn

2 ; Ȳ n1 |Xn
1 T

n) > log γ2(Xn
1 , X

n
2 )
]

+
(M1−1)(M2−1)

2
Pr
[
i(Xn

1 X
n
2 ; Ȳ n0 |Tn)> log γ3(Xn

1 , X
n
2 )
]
.

(2)

where Y n, Ȳ n0 , Ȳ
n
1 , Ȳ

n
2 are n-fold distributions

according to PY Ȳ0Ȳ1Ȳ2|X1X2T (y, a, b, c|x1, x2, t) =
PY |X1X2

(y|x1, x2)PY |T (a|t)PY |X1T (b|x1, t)PY |X2T (c|x2, t),

Next, we give an achievable region for a DM-MAC with
(sufficiently large) finite blocklength, which is a consequence
of the DT bound for DM-MAC in Theorem 1 by appealing to
the Central Limit Theorem to utilize a Gaussian approximation
for the relevant mutual information RVs, thus estimating the
outage and confusion probabilities. In the following, Q−1(·) is
the well-known inverse of the complementary-CDF function
of a standard Gaussian distribution Q(x) , 1

2π

∫∞
x
e−t

2/2dt.
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Theorem 3. An achievable region for the DM-MAC
(X1,X2, p(y|x1, x2),Y) is given by the union of all
(logM1(n, ε)/n, logM2(n, ε)/n) pairs satisfying

logM1(n, ε) < nI(X1;Y |X2T )

−Q−1(λ1ε)
√
nV(X1, Y |X2T )+O(1),

logM2(n, ε) < nI(X2;Y |X1T )

−Q−1(λ2ε)
√
nV(X2, Y |X1T )+O(1),

logM1(n, ε)+logM2(n, ε) < nI(X1X2;Y |T )

−Q−1(λ3ε)
√
nV(X1X2, Y |T )+O(1), (3)

for some choice of the joint distribution
p(t)p(x1|t)p(x2|t)PY |X1X2

(y|x1, x2) with the auxiliary
random variable T defined on a set |T | ≤ 6, and for some
positive constants λ1, λ2, λ3 satisfying λ1 + λ2 + λ3 = 1.

In light of our discussions in Section I, this theorem suggests
that high rates arise from coding schemes in which outages
dominate confusions, such that the average error probability ε
is split among the three outage events of a 2-user DM-MAC
according to some λ1, λ2, λ3 partitioning. In comparison with
Ahlswede and Liao’s result [5], Theorem 3 suggests that taking
finite blocklength into account introduces rate penalties (for
the interesting case of ε < 1

2 ) that depend on blocklength,
error probability and DM-MAC dispersions.

Our main result depends only on the mean and variance
of the relevant mutual information RVs, each of which is
approximated with a scalar Gaussian distribution. By contrast,
in a concurrent work on this problem, Tan and Kosut [8] treat
the outage events jointly, without using a union bound to split
the outages. In fact, although our Theorem 3 follows from the
DT bound of Theorem 1, the Tan and Kosut result [8] can be
obtained as a second-order approximation of the generalized
DT bound of Theorem 2. Although the approach of [8] leads
to an inner bound for the DM-MAC that is larger in principle,
it requires dealing with a full covariance matrix and the
inverse CDF of a multi-dimensional Gaussian distribution,
which we expect to be more computationally complex than
our result particularly as the number of users grows. It is
worth mentioning that choosing λ1 → 1 or λ2 → 1 in our
Theorem 3 recovers the point-to-point results of [2] along the
two axes, and selecting λ3 → 1 recovers (a significant part of)
the dominant face of the achievable region of [8].

IV. NUMERICAL EXAMPLE

In this section, we illustrates our results through the example
of the “real adder” DM-MAC Y = X1 + X2 + Z that takes
the real addition of binary inputs X1, X2 and Bernoulli( 1

2 )
noise Z, leading to a quaternary output Y .

Figure 1 depicts, in addition to the classical capacity region,
the achievable region of Theorem 3 for n = 200 and ε =
10−3. For each valid selection of the parameters λ1, λ2, λ3, a
pentagon is obtained and taking the union over all such choices
gives rise to a convex hull, that is, a curved shape.

Figure 2 compares our achievable rate region in Theorem 3
for blocklengths n = 200, 300, 500, 1000, 5000 and ε = 10−3
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Fig. 1. Achievable region of Theorem 3 for the real adder DM-MAC Y =
X1 +X2 +Z with n = 200 and ε = 10−3. The full union is approximated
by taking several values of λ1, λ2, λ3 with steps of 0.1. The capacity region
(n→ ∞) is also shown.

Fig. 2. Achievable region of Theorem 3 for the real adder DM-MAC Y =
X1 + X2 + Z with n = 200, 300, 500, 1000, 5000 and ε = 10−3. Also
shown for comparison are: the result of Tan-Kosut [8], the single-user outer
bound of [2], and the capacity region (n→ ∞).

with that of Tan and Kosut [8], the genie-aided single-user
outer bound implied by [2], and the classical capacity region.
Both achievable regions in the finite blocklength regime op-
erate quite close to the outer bound and both have smooth
shapes with no sharp corners, but as blocklength grows, they
approach the well-known pentagon shape of the capacity
region. Furthermore, for this example, our region appears to
achieve much of the region of [8], except for a very slight
gap at the blunt “corners” of the region which shrinks as
blocklength grows. In terms of numerical evaluation, our result
takes at least one order of magnitude less time than that of [8]
for the same resolution.
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V. PROOF OF THEOREMS 1 AND 2

Here, we summarize the proof of the DT bound for DM-
MAC. The proof uses the coded time sharing method of [5]
with the usual random coding technique, i.e., proving that
the average error probability over the ensemble of all codes
generated at random satisfies the DT bound, thus concluding
the existence of a code with the described rate and error prob-
ability performance. The decoding rule, however, is likelihood
ratio test (LRT) decoding [2], which can be considered as a
generalization of joint typicality decoding that evaluates the
partial (conditional) and full (unconditional) dependence of
the output on the input codeword pair under test.

A time sharing realization tn is generated according to∏n
l=1 p(tl) and revealed to both the receiver and the two

transmitters. Then, M1 codewords Xn
1 (j), j ∈ M1, and M2

codewords Xn
2 (k), k ∈ M2, all of length n are generated

independently according to
∏n
l=1 p(x1l|tl) and

∏n
l=1 p(x2l|tl),

respectively. These two codebooks are also revealed to the
receiver and both transmitters. Given the time sharing realiza-
tion tn, the codebook pair {xn1 (j)}M1

j=1×{xn2 (k)}M2

k=1, and the
channel output yn, the decoder runs for all M1M2 codeword
pairs the following three LRTs

Z
(1)
j,k (yn) = 1{i (xn1 (j); yn|xn2 (k)tn) > log γ1 (xn1 (j), xn2 (k))},

Z
(2)
j,k (yn) = 1{i (xn2 (j); yn|xn1 (k)tn) > log γ2 (xn1 (j), xn2 (k))},

Z
(3)
j,k (yn) = 1{i (xn1 (j)xn2 (k); yn|tn) > log γ3 (xn1 (j), xn2 (k))},

choosing the first pair (j, k) for which Z(1)
j,k (yn) = Z

(2)
j,k (yn) =

Z
(3)
j,k (yn) = 1, where “first” is defined as a row-by-row search,

so that (m, p) < (j, k) iff either m < j or m = j, p < k. The
error probability for message pair (j, k) is thus given by

εj,k=Pr
[{
Z

(1)
j,k (Y n)= 0 ∪ Z(2)

j,k (Y n)= 0 ∪ Z(3)
j,k (Y n)= 0

}
⋃

(m,p)<(j,k)

{
Z(1)
m,p(Y

n)=Z(2)
m,p(Y

n)=Z(3)
m,p(Y

n)=1
}∣∣∣Aj,k,tn]

≤
3∑
s=1

Pr
[
Z

(s)
j,k (Y n)=0

∣∣∣Aj,k,tn]+∑
m<j,p=k

Pr
[
Z

(1)
m,k(Y n)=1

∣∣∣Aj,k,tn]
+
∑

p<k,m=j

Pr
[
Z

(2)
j,p (Y n)=1

∣∣∣Aj,k,tn]+∑
m<j,p 6=k

Pr
[
Z(3)
m,p(Y

n)=1
∣∣∣Aj,k,tn]

where the notation Aj,k,tn in the conditioning is a shorthand
for the event {Xn

1 = xn1 (j), Xn
2 = xn2 (k), Tn = tn}, and we

have used the definition of the LRT’s and the union bound.
Not using the union bound for the first three summands and
leaving them as a joint outage event, while keeping the rest
of proof unchanged, will result in the generalized bound (2).

Now, since the time sharing sequence is generated i.i.d
according to distribution p(t) and all the codewords in the first,
resp. second, codebook are generated independently according
to the distribution p(x1|t), resp. p(x2|t), we can take the
average of the above inequality over all possible time sharing

realizations and the ensemble of all codebook pairs.

E[εj,k] ≤ Pr [i (Xn
1 ;Y n|Xn

2 T
n) ≤ log γ1 (Xn

1 , X
n
2 )]

+ (j − 1)Pr
[
i
(
Xn

1 ; Ȳ n2 |Xn
2 T

n
)
> log γ1 (Xn

1 , X
n
2 )
]

+ Pr [i (Xn
2 ;Y n|Xn

1 T
n) ≤ log γ2 (Xn

1 , X
n
2 )]

+ (k − 1)Pr
[
i
(
Xn

2 ; Ȳ n1 |Xn
1 T

n
)
> log γ2 (Xn

1 , X
n
2 )
]

+ Pr [i (Xn
1 X

n
2 ;Y n|Tn) ≤ log γ3 (Xn

1 , X
n
2 )]

+(j − 1)(M2 − 1)Pr
[
i
(
Xn

1 X
n
2 ; Ȳ n0 |Tn

)
> log γ3 (Xn

1 , X
n
2 )
]
.

Averaging this over all message pairs (j, k) gives the DT
bound (1). To conclude the proof of Theorem 1, it is sufficient
to observe that each line on its RHS is a weighted sum of
two types of error in a Bayesian binary hypothesis test, and
therefore corresponds to average error probability of the test.
Then, it is known that the optimal test is an LRT (as we
have used) with the optimal threshold equal to the ratio of
priors or simply the ratio of the coefficients of the two error
probabilities in each test.

VI. PROOF OF THEOREM 3

Here, we sketch how Theorem 1 is used for proving
Theorem 3. We basically expand each of the three mutual
information RVs in the DT bound (1) as sums of i.i.d. RVs
and use the Central Limit Theorem, or more specifically the
Berry-Esseen Theorem, to calculate the associated outage and
confusion probabilities, analogous to [2].

Upon fixing the distribution p(t)p(x1|t)p(x2|t), the output
Y n of the DM-MAC p(y|x1, x2) corresponding to the inputs
Xn

1 and Xn
2 and the time sharing variable Tn described in the

DT bound above satisfies

i (Xn
1 ;Y n|Xn

2 T
n) =

n∑
l=1

log
p(Yl|X1lX2lTl)

p(Yl|X2lTl)
,

n∑
l=1

i1l,

i (Xn
2 ;Y n|Xn

1 T
n) =

n∑
l=1

log
p(Yl|X1lX2lTl)

p(Yl|X1lTl)
,

n∑
l=1

i2l,

i (Xn
1 X

n
2 ;Y n|Tn) =

n∑
l=1

log
p(Yl|X1lX2lTl)

p(Yl|Tl)
,

n∑
l=1

i3l,

where for all l = 1, ..., n,

i1l ∼ i (X1;Y |X2T ) , i2l ∼ i (X2;Y |X1T ) ,

i3l ∼ i (X1X2;Y |T ) ,

and their mean and variance can be described in terms of
the corresponding average mutual information and dispersion
terms as

E[i1l] = I(X1;Y |X2T ), Var[i1l] = V(X1;Y |X2T ),

E[i2l] = I(X2;Y |X1T ), Var[i2l] = V(X2;Y |X1T ),

E[i3l] = I(X1X2;Y |T ), Var[i3l] = V(X1X2;Y |T ).

Assume that all three dispersions are strictly positive. In
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such a case, we obtain using the Berry-Esseen Theorem that

Pr [i (Xn
1 ;Y n|Xn

2 T
n) ≤ log γ1] = Pr

[
n∑
l=1

i1l ≤ log γ1

]

≤ Q

(
nI(X1;Y |X2T )− log γ1√

nV(X1;Y |X2T )

)
+
B11√
n
, (4)

where the constant B11 , 6S[i(X1;Y |X2T )]
V(X1;Y |X2T )3/2

, with S[·] being the
third moment operator, represents the Berry-Esseen gap to the
Gaussian distribution. On the other hand, we can use a change
of measure technique as in [2]

Q

[
dP

dQ
>γ

]
=

∫
1

{
dP

dQ
>γ

}
dQ=

∫ (
dP

dQ

)−1

1

{
dP

dQ
>γ

}
dP

(5)

to obtain

Pr
[
i
(
Xn

1 ; Ȳ n2 |Xn
2 T

n
)
> log γ1

]
= E

[
exp

{
−

n∑
l=1

i1l

}
1

{
n∑
l=1

i1l > log γ1

}]
≤ B12√

n
γ−1

1 ,

(6)

where (6) is according to [2, Lemma 47].
By substituting (4) and (6) and the analogous bounds for

the other two mutual information RVs into the DT bound (1)
with the optimal selection for thresholds γ1, γ2, γ3, we obtain

ε ≤ Q

(
nI(X1;Y |X2T )− log M1−1

2√
nV(X1;Y |X2T )

)
+
B1√
n

+Q

(
nI(X2;Y |X1T )− log M2−1

2√
nV(X2;Y |X1T )

)
+
B2√
n

+Q

(
nI(X1X2;Y |T )− log (M1−1)(M2−1)

2√
nV(X1X2;Y |T )

)
+
B3√
n
,

where B1 = B11 +B12 and analogously for B2 and B3. Now,
splitting ε among the three first terms of each line gives

logM1≤nI(X1;Y |X2T )−
√
nV(X1;Y |X2T )Q−1

(
λ1ε−

B1√
n

)
logM2≤nI(X2;Y |X1T )−

√
nV(X2;Y |X1T )Q−1

(
λ2ε−

B2√
n

)
logM1+logM2≤nI(X1X2;Y |T )

−
√
nV(X1X2;Y |T )Q−1

(
λ3ε−

B3√
n

)
(7)

where positive constants λ1, λ2, λ3 that sum up to 1 can
be arbitrarily chosen to represent the weight of each of the
three types of outage for communication over a DM-MAC
with average error probability ε. We can further simplify the
bounds in (7) using Taylor’s expansion Q−1(λε − B√

n
) ≥

Q−1(λε) + B̃/
√
n and the fact that dispersions are finite over

the set of distributions p(t)p(x1|t)p(x2|t), so V ≤ Vmax and
B̃ ≤ B̃max, to obtain the bounds of Theorem 3.

In the case that one or more of the dispersion terms are zero,
we directly evaluate the corresponding probabilities, using

the fact that a mutual information RV with zero dispersion
(variance) is concentrated almost surely at the average mutual
information (mean). For example, if the first dispersion is zero,
V(X1;Y |X2T ) = 0, then with the optimal choice of threshold

log γ1 = log
M1 − 1

2
= nI(X1;Y |X2T ) + log(λ1ε)︸ ︷︷ ︸

≤0

,

the first two summands on the RHS of the DT bound (1) can
be evaluated using a change of measure technique as in (5).

Pr [i (Xn
1 ;Y n|Xn

2 T
n) ≤ log γ1]

+
M1 − 1

2
Pr
[
i
(
Xn

1 ; Ȳ n2 |Xn
2 T

n
)
> log γ1

]
= 0 +

M1 − 1

2
exp{−nI(X1;Y |X2T )} · 1 = λ1ε.

Now, notice that the achievable rate is simply

logM1<nI(X1;Y |X2T )−Q−1(λ1ε)
√
nV(X1, Y |X2T )︸ ︷︷ ︸

=0

+O(1),

as in (3). This concludes the proof of Theorem 3.

VII. CONCLUSION

We have proved a simple achievable rate region for DM-
MAC in the regime of finite blocklength by splitting the
allowed average error probability among several “outage”
events, in which the channel cannot support the target rates of a
subset of the users. This region appears to have a curved blunt
shape in general and implies rate penalties with respect to the
infinite blocklength regime that depend on the allowed error
probability, the chosen finite blocklength, and the dispersions
of the DM-MAC, i.e., the variances of the relevant mutual
information RVs. We have observed that our achievable rate
region covers a significant portion of the concurrent result
in [8], while its numerical computation is much easier. We
aim as a future direction to prove the tightness of an outer
bound we have developed and compare it with the existing
inner bounds.
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