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ABSTRACT. I hope this description of flat chains and their slices is less intimidating than Federer’s [3],
though I follow his very closely.
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1. CURRENTS

1.1. Definition and basic operations. Fix an Euclidean space V of dimension n. The metric on V
induces metrics (−,−) on Λ•V and Λ•V ∗. We will denote the corresponding norms with | − |.

For any open subset O ⊂ V we denote by Ωk(O) (respectively Ωk
cpt(O)) the space of smooth

differential k-forms on O (respectively smooth differential k-forms with compact support contained
in O). We denote by Ωcpt

k (O) (respectively Ωk(O)) their topological duals. We have a linear operator

∂ : Ωk(O)→ Ωk−1(O),

defined by
〈ϕ, ∂T 〉 = 〈dϕ, T 〉, ∀ϕ ∈ Ωk−1

cpt (O).

Observe that any α ∈ Ω`(O) defines a continuous linear map

α∩ : Ωk(O)→ Ωk−`(O), T 7→ α ∩ T,
given by

〈ϕ, α ∩ T 〉 = 〈α ∪ ϕ, T 〉, ∀ϕ ∈ Ωk−`
cpt (O).

Date: Started March 10, 2011. Completed on March 21, 2011. Last revision March 22, 2011.
Notes for the “Blue collar seminar on geometric integration theory”.

1



2 LIVIU I. NICOLAESCU

Moreover,
(−1)`∂(α ∩ T ) = α ∩ ∂T − dα ∩ T. (1.1)

Similarly, for any smooth `-vector field ξ : O→ Λ`V we define ξ ∧ T ∈ Ωk+`(O) via the equality

〈ϕ, ξ ∧ T 〉 = 〈ξ ϕ, T 〉, ∀ϕ ∈ Ωk+`
cpt (O).

Suppose that (ei)1≤i≤n is an orthonormal basis of V . We denote by (ei)1≤i≤n the dual orthonormal
basis of V ∗. For any subset I = {1 ≤ i1 < · · · < ik ≤} we set

eI = ei1 ∧ · · · ∧ eik , eI = ei1 ∧ · · · ∧ eik .

Then the collections (eI)|I|=k and (eI)|I|=k are orthonormal bases of ΛkV and respectively ΛkV ∗.
Moreover

T =
∑
|I|=k

eI ∧ (eI ∩ T )

The support of a current T ∈ Ωk(O) is the complement of the open set{
x ∈ O; ∃η ∈ Ωk

cpt(O); η(x) 6= 0, 〈η, T 〉 6= 0
}
.

We denote by suppT the support of T .
Suppose that U ,V are finite dimensional Euclidean spaces of dimensions m and respectively n,

and U is an open subset of U , V is an open subset of V . For any smooth map F : U → V and any
current T ∈ Ωk(U) such that the restriction of F to suppT is proper, we define the pushforward
F∗T ∈ Ωk(V) by the equality

〈ϕ, F∗T 〉 = 〈uF ∗ϕ, T 〉
where u ∈ C∞cpt(U) is a function such that u = 1 on an open neighborhood of suppT . From the
definition of the support we deduce immediately that the pushfoward is independent of the choice of
cutoff function u. The resulting map T 7→ F∗T commutes with the boundary operator.

Fix orthonormal bases (ei)1≤i≤m and (f j)1≤j≤n are orthonormal bases of U and respectively
V . We denote by (xi) the Euclidean coordinates determined by (ei) and by (yj) the Euclidean
coordinates determined by (f j).

Any S ∈ Ωk(U) defines a linear map (called the slant product with S)

/S : Ωp
cpt(U× V)→ Ωp−k

cpt (V ), ∑
|I|+|J |=p

ωI,J(x, y)dxI ∧ dyJ
 /S =

∑
|J |=p−k

〈∑
|I|=k

ωI,Jdx
I , S

〉
dyJ ,

If T ∈ Ω`(V) the we define S × T ∈ Ωk+`(U× V) by the equality

〈ω, S × T 〉 = 〈ω/S, T 〉, ∀ω ∈ Ωk+`
cpt (U× V).

We denote by πU (respectively πV ) the natural projection U ×V → U (respectively U ×V → V ).
The following simple result is often useful in proving various identities.

Proposition 1.1. Suppose A,B ∈ Ωp(U × V). Then A = B if and only for any α ∈ Ω•cpt(U) and
β ∈ Ω•cpt(V) such that degα+ deg β = p we have

〈π∗Uα ∧ π∗V β,A〉 = 〈π∗Uα ∧ π∗V β,B〉. ut

Here is a simple application of this principle.

Corollary 1.2. For any S ∈ Ωk(U) and T ∈ Ω`(V) we have

∂(S × T ) = ∂S × T + (−1)dimSS × ∂T. (1.2)
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Proof. Let α ∈ Ω•(U) and β ∈ Ω•(V) such that degα+ deg β = k + `− 1. Then

〈π∗Uα ∧ π∗V β, ∂(S × T )〉 = 〈d(π∗Uα ∧ π∗V β), S × T 〉

= 〈π∗Udα ∧ π∗V β + (−1)degαπ∗Uα ∧ π∗V dβ, S × T 〉 = 〈dα, S〉〈β, T 〉+ (−1)degα〈α, S〉〈dβ, T 〉

= 〈α, ∂S〉〈β, T 〉+ (−1)degα〈α, S〉〈β, ∂T 〉 = 〈α, ∂S〉〈β, T 〉+ (−1)dimS〈α, S〉〈β, ∂T 〉

= 〈π∗Uα ∧ π∗V β, ∂S × T + (−1)dimSS × ∂T 〉.
ut

1.2. Currents representable by integration. We define the mass of a current T ∈ Ωk(O) to be the
quantity (see also [6, Rem. 26.6])

‖T‖ = sup
{
〈ϕ, T 〉; T ∈ Ωk

cpt(O); |ϕ(x)| ≤ 1, ∀x ∈ O
}
∈ [0,∞].

We say that T ∈ Ωk(O) has locally finite mass if ‖η ∩ T‖ < ∞ for any η ∈ Ω0
cpt(O). Observe that

this implies that for any compact subset K ⊂ O there exists a positive constant CK such that

|〈ϕ, T 〉| ≤ C sup
x∈K
‖ϕ(x)‖, ∀ϕ ∈ Ωk

cpt(O). (1.3)

We have the following result.

Proposition 1.3. Let T ∈ Ωk(O) The following statements are equivalent.
(a) The current T has locally finite mass.
(b) The current T is representable by integration, i.e., there exists a Radon measure µT over U

and a µT -measurable k-vector field ~T : O→ ΛkV such that |~T (x)| = 1, µT - a.e. x and

T = ~T ∧ µT ,

i.e.

〈ϕ, T 〉 =
∫

O
〈ϕ(x), ~T (x)〉dµT (x).

Proof. Clearly (b) ⇒ (a). The opposite implication follows from the Riesz representation theorem.
Here is roughly the outline. For more details we refer to [6, §4].

Suppose that T has locally finite mass. For any open subset U ⊂ O we define

µ̃T (U) := sup
{
〈ϕ, T 〉; ϕ ∈ Ωk

cpt(U), ϕ(x) ≤ 1, ∀x ∈ U
}
. (1.4)

For any A ⊂ O we set
µ̃T (A) = inf

U⊃A
µ̃T (U).

The correspondence A 7→ µ̃T (A) is an outer measure on O that satisfies the Caratheodory condition

µ̃T (A ∪B) = µ̃T (A) + µ̃T (B) if dist(A,B) > 0. (1.5)

A subset A ⊂ O is called measurable if

µ̃T (S) = µ̃T (S \A) + µ̃T (S ∩A), ∀S ⊂ O.

The collection ST of measurable subsets is a σ-algebra and we denote by µT the restriction of µ̃T to
ST . The Caratheodory condition implies that the measure µT is Borel regular, i.e.,

• ST contains all the Borel sets, and
• for every S ∈ ST there exists a Borel set B ⊃ S such that µT (B) = µT (S).
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From the local mass condition (1.3) we deduce that µT satisfies the additional conditions

µT (K) <∞, ∀K ⊂ O compact,

µT (A) = sup
{
µT (K); K ⊂ A, K compact

}
.

Moreover, for any nonnegative function f ∈ C0
cpt(O) we have∫

O
f(x)dµT (x) = sup

{
〈ϕ, T 〉; |ϕ(x)| ≤ f(x), ϕ ∈ Ωk

cpt(O), ∀x ∈ O
}
. (1.6)

For any η ∈ ΛkV ∗ we define

λη : Ω0
cpt(O)→ R, λϕ(f) = 〈fη, T 〉, ∀f ∈ Ω0

cpt.

Observe that
|λη(f)| ≤ |〈fϕ, T 〉|

≤ sup
{
〈ϕ, T 〉; ϕ ∈ Ωk

cpt(O); |ϕ(x)| ≤ |f(x)| · |η|, ∀x ∈ O
}

= |η|
∫

O
|f | dµT .

This implies that λη extends to a continuous linear functional λη : L1(O, µT ) → R. Thus, there
exists νη ∈ L∞(O, µT ) such that

λη(f) =
∫

O
f(x)νη(x)dµT (x) ∀f ∈ C0

cpt(O).

Note that ‖νη‖L∞ ≤ |η|. Now fix a basis (eI) of ΛkV , denote by (eI) the dual basis of ΛkV ∗ define
ξ : O→ ΛkV via the equality

~T (x) =
∑
I

ξI(x)eI , ξI(x)νeI (x).

We deduce that |~T (x)| ≤ 1, and

〈η, T 〉 =
∫

O
〈ϕ(x), ~T (x)〉dµT (x), ∀ϕ ∈ Ωk

cpt(O).

The equality |~T (x)| = 1 is proved observing that for a countable, dense, open subset F ⊂ ΛkV ∗ we
have

〈η, ~T (x)〉 = lim
ε↘0

1
µT (B(x, ε)

∫
B(x,ε)

〈η, ~T (y)〉dµT (y), ∀η ∈ F, a.e. x ∈ O.

ut

If T ∈ Ωk(O) is representable by integration, then the map

Ωk
cpt(O) 3 ϕ 7→ 〈ϕ, T 〉 ∈ R

extends by L1(O, µT ) continuity to a linear map on the space of bounded, compactly supported, Borel
measurable k-forms on O. In particular, if η is a bounded, Borel measurable `-form on O, we can
define the (k − `)-current η ∩ T . Note that if B ⊂ O is a Borel set, then the characteristic function
1B is a bounded, Borel measurable 0-form and we define the restriction of T to B to be the current

T |B := 1B ∩ T. (1.7)
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Example 1.4. Suppose that M is a compact, orientable m-dimensional C1-submanifold of V . Then
any orientation or on M defines a current [M,or] ∈ Ωm(V ),

〈ω, [M,or]〉 =
∫

(M,or)
ω, ∀ω ∈ Ωm

cpt(V ).

The orientation or defines a continuous, unit length section ξM,or of ΛmTM . The current [M,or]
is reprsentable by integration

[M,or] = ξM,or ∧ dHm,

where Hm denotes the m-dimensional Hausdorff measure. Moreover

‖ [M,or] ‖ = Hm
(
M
)
. ut

Let us observe that if U and V are finite dimensional Euclidean spaces, U ⊂ U , V ⊂ V are open
subsets, S ∈ Ωk(U), T ∈ Ω`(V) are currents representable by integration, then S×T is representable
by integration and

µS×T = µS × µT , ;
−−−→
S × T = ~S ∧ ~T .

1.3. Locally normal and locally flat currents. A current T ∈ Ωk(O) is called normal if it has
compact support and

N(T ) := ‖T‖+ ‖∂T‖ <∞.
We denote by Nk(O) the space of normal k-dimensional currents.

We say that T ∈ Ωk(O) is locally normal if f ∩ T is normal for any f ∈ Ω0
cpt(O). Note that T is

locally normal iff both T and ∂T are representable by integration. We denote by N loc
k (O) the vector

space of locally normal currents.
For any compact subset K ⊂ O and any ϕ ∈ Ω`(O) we set

‖ϕ‖K := sup
x∈K
‖ϕ(x)‖,

and we define the flat seminorm

FK(ϕ) := max
{
‖ϕ‖K , ‖dϕ‖K

}
.

For T ∈ Ωk(O) we define the dual flat seminorm

FK(T ) = sup
{
〈ϕ, T 〉; FK(ϕ) ≤ 1

}
.

Let us observe that
FK(T ) <∞⇒ suppT ⊂ K.

Proposition 1.5. Let T ∈ Ω`(O) and K a compact subset of O. If suppT ⊂ K then

FK(T ) = inf
{
‖T − ∂S‖+ ‖S‖; S ∈ Ωk+1(O), suppS ⊂ K

}
.

Proof. Suppose that S ∈ Ωk+1(O), suppS ⊂ K. Then for any ϕ ∈ Ωk
cpt(O) such that ‖ϕ‖K ≤ 1 we

have
〈ϕ, T 〉 = 〈ϕ, T − ∂S〉+ 〈dϕ, S〉 ≤ ‖T − ∂S‖+ ‖S‖.

This proves that

FK(T ) ≤ inf
{
‖T − ∂S‖+ ‖S‖; S ∈ Ωk+1(O), suppS ⊂ K

}
.

The equality follows from the following key existence result.
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Lemma 1.6. If T ∈ Ω`(O), and FK(T ) <∞, then there exist R ∈ Ω`(O), S ∈ Ω`+1(O) such that
suppR, suppS ⊂ K,

T = R+ ∂S,

FK(T ) = ‖R‖+ ‖S‖.
ut

The proof is a direct application of the Hahn-Banach theorem. In particular, it is nonconstructive.
For details we refer to [3, §4.1.12]. ut

We denote by F `,K(O) the closure with respect to the seminorm FK of the space

N `,K(O) :=
{
T ∈ Ω`(O); suppT ⊂ K, N(T ) <∞

}
.

and we set
F `(O) =

⋃
K⊂O

F `,K(O).

We will refer to the currents in F `(O) as flat currents. Observe that, by definition, the flat currents
have compact support.

A current T ∈ Ω`(O) is called locally flat if for any f ∈ C∞cpt(O) the current fT = f ∩ T ∈
Ωcpt
` (O) is flat. We denote by F loc

` (O) the vector space of locally flat currents. Observe that

N loc
` (O) ⊂ F loc

` (O)

and moreover
∂N loc

` (O) ⊂N loc
`−1(O), ∂F loc

` (O) ⊂ F loc
`−1(O).

Suppose that U and V are finite dimensional Euclidean vector spaces, U ⊂ U is an open set, F :
U → V is a smooth map, and T ∈ Ωk(U). If T is representable by integration then F∗(T ) is
representable by integration and

µF∗T ≤ F∗
(
‖F∗ ~T‖µT

)
, (1.8)

where ‖F∗ ~T | denotes the measurable function

O 3 x 7→
∥∥DxF

(
~T (x)

) ∥∥ ∈ [0,∞).

This shows that if T ∈N `(U) (resp. F `(U)) then F∗(T ) ∈N `(V ) (resp. F∗(T ) ∈ F `(V )).

1.4. Homotopies. Suppose U (resp. V) is an open subset of the Euclidean spaces U (resp. V ) and

H : [0, 1]× U→ V ,

is a smooth map. We denote by Ht the restriction of H to the slices {t} × U. Let [[0, 1]] ∈ Ω1(R)
denote the current of integration over [0, 1] equipped with its natural orientation. Observe that for any
T ∈ Ωk(U) we have

∂H∗([[0, 1]]× T ) = H∗
(
∂[[0, 1]]]× T − [[0, 1]]× ∂T

)
so that

(H1)∗T − (H0)∗T = ∂H∗([[0, 1]]× T ) +H∗
(
[[0, 1]]× ∂T

)
. (1.9)

Using the inequality (1.8) we deduce that if T is reprsentable by integration than H∗([[0, 1]] × T ) is
representable by integration and for anu open subset O ⊂ V we have

µH∗([[0,1]]×T (O) ≤
∫ 1

0

(∫
H−1
t (O)

|Ḣt(x) ∧DHt(~T (x))|dµT (x)

)
dt. (1.10)
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In the remainder of this subsection we assume that If H is an affine homotopy

Ht = (1− t)H0 + tH1,

and we set
ρ(x) := max

{
‖DH0(x)‖, ‖DH1(x)‖

}
.

We deduce

µH∗([[0,1]]×T (O) ≤
∫
H−1(O)

|H1(x)−H0(x)|ρ(x)kdµT (x), (1.11)

and ∥∥H∗([[0, 1]]× T )
∥∥ ≤ sup

x∈U
|H1(x)−H0(x)| × sup

x∈U
ρ(x)k × ‖T‖. (1.12)

Suppose now that T is normal. In particular, it has compact support, and we define

C := H
(
[0, 1]× suppT

)
, S := H∗([[0, 1]]× T ).

Using (1.9) we deduce

(H1)∗T − (H0)∗T − ∂S = H∗([[0, 1]]× ∂T ).

Invoking Proposition 1.5 we conclude

F k,C

(
(H1)∗T − (H0)∗T

)
≤
∥∥H∗([[0, 1]]× ∂T )

∥∥+
∥∥H∗([[0, 1]]× T )

∥∥
(1.12)

≤ ‖H1 −H0‖L∞(suppT )

(
‖T‖ · ‖ρ‖kL∞(suppT ) + ‖∂T‖ · ‖ρ‖k−1

L∞(suppT )

)
.

(1.13)

1.5. Lipschitzian pushfoward. Suppose U (resp. V) is an open subset of the Euclidean space U
(resp V ), K ⊂ U is a compact subset. We assume that V is a convex set and F : U → V is a locally
Lipschitzian map.

For any smooth maps H0, H1 : U → V we denote by C(H0, H1) the convex hull of H0(K) ∪
H1(K), by LHi the Lipschitz constant of the restriction of Hi to K, and we set

LH0,H1 := max
{
LH0 , LH1

}
.

From (1.13) we deduce that if T ∈Nm,K(U), then

FC(H0,H1)

(
(H1)∗T − (H0)∗T

)
≤ ‖H1 −H0‖L∞(K)

(
‖T‖LmH0,H1

+ ‖∂T‖Lm−1
H0,H1

)
. (1.14)

Suppose that Fn : U→ V is a sequence of smooth maps with the following properties.
(a) The sequence converges uniformly to F on K.
(b) The sequence LFn is bounded.

For any compact neighborood C of F (K) there exists n = n(C) such that

(Fn)∗T ∈Nm,N(V), ∀n ≥ n(C),

and the sequence (Fn)∗T ∈ Nm,N(V), n ≥ n(C) is Cauchy in the F N-metric. This is a complete
metric so this sequence is convergent in this metric. The limit current is supported on F (K). The
inequality (1.14) also shows that the limit is independent of the choice of smooth map Fn with the
above properties. We define the pushforward F∗T to be this common limit. In other words, we have
succeeded in giving an unambiguous meaning of the pushforward of a normal current by a locally
Lipschitz map. We get in this fashion a linear map

F∗ : Nm,K(U)→Nm,F (K)(V).

Observe that
‖F∗T‖ ≤ LmF ‖T‖. (1.15)
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From Proposition 1.5 we deduce that there exists a current S ∈ Ωm+1(U) such that suppS ⊂ K and

FK(T ) = ‖T − ∂S‖+ ‖S‖.
Since T has finite mass we deduce that ∂S has finite mass and thus S is normal. We deduce

F F (K)

(
F∗T

)
≤ ‖F∗(T − ∂S)‖+ ‖F∗S‖ ≤ LmF ‖T − ∂S‖+ Lm+1

F ‖S‖
≤ max(LF , 1)LmF FK(T ).

Since by definition Nm,K(U) is FK-dense in Fm,k(U) we deduce from the above inequality that the
push-forward extends by continuity to a linear map

F∗ : Fm,K(U)→ Fm,F (K)(V),

satisfying the bound

F F (K)

(
F∗T

)
≤ max(LF , 1)LmF FK(T ), ∀T ∈ Fm,K(U) (1.16)

The above considerations lead immediately to the following conclusion.

Corollary 1.7. If Fn : U → V is a sequence of smooth Lipschitz maps satisfying the conditions (a)
and (b) above then for any compact neighborhood C of F (K) in V we have

lim
n→∞

FC((Fn)∗T − F∗T )→ 0, ∀T ∈ Fm,K(U). ut

This is a nontrivial result even when F is C1 because above we do not require C1 convergence
Fn → F .

1.6. Properties of flat currents. Corollary 1.7 has nontrivial consequences. We want to discuss one
of them here.

Proposition 1.8. Suppose that V is an Euclidean space of dimension n and T ∈ F k(V ). If U is
another finite dimensional Euclidean space O is an open neighborhood of suppT and F,G : O→ U
are locally Lipschitz maps such F |suppT = G|suppT , then F∗T = G∗T .

Proof. For r > 0 define Ψr : U → U by the equality

Ψr(u) =

{
0, |u| ≤ r(
1− r

|u|
)
v, |u| > r.

The map Ψr is Lipschitz with Lipschitz constant ≤ 1 and∣∣Ψr(u)− u
∣∣ ≤ r, ∀u ∈ U . (1.17)

We fix a smooth, nonnegative, function Φ : V → R such that∫
U

Φ(u)|du| = 1 and Φ(u) = 0, ∀|u| ≥ 1.

We set
Φε(u) :=

1
εn

Φ
(u

ε

)
,

so that (Φε)ε>0 is a mollifying family. We define

Gr(v) = F (v) + Ψr

(
G(v)− F (v)

)
.

From (1.17) we deduce that ∣∣Gr(v)−G(v)| ≤ r, ∀v ∈ O,

and
Gr(v) = F (v) if |F (v)−G(v)| ≤ r.
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Observe that the maps Φε ∗ F and Φε ∗Gr coincide on the set

Or,ε :=
{
v ∈ O; |F (v′)−G(v′)| < r, ∀v′ ∈ B(v, ε)

}
.

For r, ε > 0 sufficiently small Or,ε is a neighborhood of suppT . Moreover, the maps Φε ∗ F and
Φε ∗ Gr approximate F and respectively G on any compact K ⊂ U. The proposition now follows
from Corollary 1.7. ut

Remark 1.9. The above proposition shows that the pushfoward of a flat current by a locally Lipschitz
map is oblivious to the infinitesimal neighborhood of the support of the current. Consider for example
the current representable by integration

T = ∂x ∧ δ0 ∈ Ω1(R),

where δ0 is the Dirac measure concentrated at the origin. Then suppT = {0} The maps

F,G : R→ R, F (x) = 0, G(x) = x, ∀x ∈ R

coincide at the origin. However, F∗T = 0 and G∗T = T . ut

Corollary 1.10. Suppose V is a finite dimensional Euclidean space, U is a subspace of V and T is
a flat currrent with support contained in U . If dimT > dim U , then T = 0.

Proof. Denote by PU : V → U the orthogonal projection onto U and by IU : U → V the canonical
inclusion.

Then the maps 1V and IU ◦ PU coincide on U and thus on the support of T . Hence

T = (1V )∗T = (PU )∗(IU )∗T.

Now observe that since dimT > dim U the current (IU )∗T ∈ ΩdimT (U) is trivial. ut

Suppose that V is an Euclidean vector space of dimension n. For every 0 ≤ m ≤ n we denote by
Xm the space of Lebesgue integrable, compactly supported maps

ξ : V → ΛmV .

To every pair (ξ, η) ∈ Xm × Xm+1 we associate the compactly supported current

Tξ,η = ξ ∧ dHn
V + ∂(η ∧ dHn

V ),

where dHn
V is the usual Lebesgue measure on V . Observe that

supp Tξ,η ⊂ supp ξ ∪ supp η =: supp(ξ, η).

Moreover, for any compact K ⊃ supp(ξ, η) and any ϕ ∈ Ωm
cpt(V ) such that

FK(ϕ) = sup
x∈K

max
{
|ϕ(x)|, |dϕ(x)| ≤ 1

}
≤ 1,

we have

〈ϕ,Tξ,η〉 =
∫

V
〈ϕ(x), ξ(x)〉dHn(x) +

∫
V
〈dϕ(x), η(x)〉dHn(x) ≤ ‖ξ‖L1 + ‖η‖L1 .

This proves that Tξ,η is flat, Tξ,η ∈ Fm,K(V ), and

FK(T ) ≤ ‖ξ‖L1 + ‖η‖L1 = ‖ξ ∧ dHn
V ‖+ ‖η ∧ dHn

V ‖.

The next result essentially states that all flat currents are of the form Tξ,η.
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Proposition 1.11. Suppose that K is a compact subset and T ∈ Fm,K(V ). For any r > 0 we set

Kr :=
{
v ∈ V ; dist(v,K) ≤ r

}
.

Then for any δ > 0 there exist (ξδ, ηδ) ∈ Xm × Xm+1 such that

supp ξδ ∪ supp ηδ ⊂ Kδ,

T = Tξδ,ηδ ,

‖ξδ‖L1 + ‖ηδ‖L1 ≤ FK(T ) + δ.

The proof of this result is via a decreasing induction on m aided by Lemma 1.6. More precisely
on writes T as a an infinite sum

T =
∞∑
j=0

(Rj + ∂Sj)

convergent in the flat norm, where for any j

Rk ∈Nm(V ), Sj ∈Nm+1(V ), suppRj ,Kk ⊂ K2(−j+3)δ

and Rj is smooth. Because Rj is smooth we can write

Rj = ξj ∧ dHn, ξj ∈ C∞(V ,ΛmV ).

By induction we can write

Sj = ηj ∧ dHn + ∂(ζj ∧ dHn), ξj ∈ L1(V ,Λm+1V ), ζj ∈ L1(V ,Λm+1V )

and one can can show that ∑
j

(‖ξj‖L1 + ηj‖L1) <∞.

For details we refer to [3, §4.1.18]. In the next example we explain the construction of ξδ and ηδ in
some special but illuminating cases.

Example 1.12. (a) Suppose T ∈ Ω0(R) is given by the Dirac measure supported at the origin. The
equality T = Tξ,η signifies that η is a compactly supported intgerable function on R, η is a copactly
supported L1-vector field on R such that

f(0) =
∫

R

(
f(x)ξ(x) +

df

dη
(x)
)
dx, ∀f ∈ C∞cpt(R).

We can represent η(x) in the form w(x) d
dx , w ∈ L1 and we can rewrite the above equality as

f(0) =
∫

R
f(x)ξ(x)dx+

∫
R
w(x)

df

dx
(x)dx, ∀f ∈ C∞cpt(R),

or as an equality of distributions
dw

dx
= −δ0 + ξ(x).

We seek compactly supported L1-solutions (ξ(x), w(x)) of the above equation.
Fix a smooth, function Φ : R→ [0,∞) with support on [−1, 1] such that∫

R
Φ(x)dx = 1.

For r > 0 we set

Φr(x) =
1
r

Φ
(x
r

)
.
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The measure Φr(x)|dx| is a 0-current that converges to δ0. Define

wr,ε(x) =
∫ x

−∞

(
Φr(t)− Φε(t)

)
dt.

Observe that suppwr,ε ⊂ [−r, r] and

dwr,ε
dx

= Φr − Φε.

It is easy to check that wr,ε converges as ε → 0 to a L1-function supported on [−r, r] and satisfying
the distributional equation

dwr
dx

= −δ0 + Φr(x).

(b) For any ξ ∈ ΛmV we denote by ξ† ∈ ΛmV ∗, i.e.,

(η, ξ†) = 〈η, ξ〉, ∀η ∈ ΛmV ∗.

Fix an orientation or on V , denote by ΩV ∈ Ωn(V ) the metric volume defined by this orientation
and by ∗ the Hodge star operator

∗ : Ωk(V )→ Ωn−k(V ∗).

If ξ ∈ Xm then for any ϕ ∈ Ωm
cpt(V ) we have

〈ϕ, ξ ∧ dHn
V 〉 =

∫
V
〈ϕ, ξ〉ΩV =

∫
V

(ϕ, ξ†)ΩV =
∫

V
ϕ ∧ ∗ξ†

= (−1)m(n−m)

∫
V
∗ξ† ∧ ϕ = (−1)m(n−m)

〈
ϕ, ∗ξ† ∩ [V ,or]

〉
Hence

ξ ∧ dHn
V = (−1)m(n−m) ∗ ξ† ∩ [V ,or].

Using (1.1) we deduce

(−1)n−m+m(n−m)∂(ξ ∧ dHn) = −d ∗ ξ† ∩ [V ,or].

We set
χ(n,m) := 1 + (n−m) +m(n−m) mod 2,

and we deduce
∂(ξ ∧ dHn) = (−1)χ(n,m)(d ∗ ξ†) ∩ [V ,or]

The equality T = Tξ,η becomes

T =
(

(−1)m(n−m) ∗ ξ† + (−1)χ(n,m+1)d ∗ η†
)
∩ [V ,or] =: (τ + dσ) ∩ [V ,or],

τ ∈ Ωn−m
cpt (V ), σ ∈ Ωn−m−1

cpt (V ). If T is the current of integration defined by a smooth compact
oriented submanifold of V without boundary then τ would be a Thom form of the normal bundle and
σ would be an angular form of the punctured normal bundle, [1]. ut

Corollary 1.13. Suppose that K is a compact subset of Rn and T ∈ F n,K(Rn). Then T has finite
mass and the measure µT is absolutely continuous with respect to Hn. If we set

ρT :=
dµT
dHn

∈ L1(Rn, dHn),

then
dµT (x) = ρT (x)dHn(x)
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and
T = ξT (x) ∧ dHn, ξT (x) = ρT (x)~T (x). ut

We say that a flat current T ∈ F `(O), O open in V , is smooth if it can be written as T = Tξ,η ξ, η
smooth. The space of smooth flat currents with support in a compact set is clearly dense with respect
to the F `,Kr -norm, r very small, where

Kr :=
{

v; dist(v,K) ≤ r
}
.

For r sufficiently small we have Kr ⊂ O. Any current T ∈ F `,K(O) can be approximated in FKr -
norm b smooth flat currents. Indeed using molllifiers, we obtain a family of smooth flat currents
Tε ∈ F `,Kε(O) such that

FKr(Tε − T )→ 0 as ε→ 0.
Suppose now that K admits a compact neighborhood N ⊂ O such that there exists a Lipschitz
retraction r : N→ K. Then r∗(T ) = 0 and

FKr

(
r∗Tε − r∗T )→ 0 as ε→ 0.

We have thus proved the following result.

Corollary 1.14. If K is a Lipschitz neighborhood retract in O then the space F `,K(O) is separable
with respect to the FK norm. ut

From Proposition 1.11 and mollifiers we deduce the following refinement of Lemma 1.6.

Proposition 1.15. If V is an open subset of the n-dimensional Euclidean space V , K is a compact
subset of V and T ∈ F `,K(V) then there exist R ∈ F `,K(V) and S ∈ F `+1,K(V) such that

T = R+ ∂S, FK(T ) = ‖R‖+ ‖S‖. ut

2. SLICING

2.1. Notations.
• We denote by Uan oriented Euclidean space of dimension N .
• We denote by U an open subset of U .
• We denote by F : U→ Rn a locally Lipschitz map.
• We denote by ΩU the canonical volume form on U determined by the Euclidean metric and

the orientation.
• We denote by (x1, . . . , xn) the canonical Euclidean coordinates on Rn, and by ωn the vo-

lume of the unit ball in Rn.
• For r > 0 and y ∈ Rn we set

Ωy,r :=
1

ωnrn
1B(y,r)Ω, Ω := dx1 ∧ · · · ∧ dxn,

where 1S denotes the characteristic function of a set S ⊂ Rn.
Observe that Ωy,r defines a 0-current δy,r ∈ Ω0(Rn)

〈f, δy,r〉 =
1

ωnrn

∫
B(y,r)

f(x)dx1 · · · dxn, ∀f ∈ C∞cpt(Rn),

that converges as r → 0 to the current [[y]] defined by the Dirac measure concentrated at y.
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2.2. A baby case. Suppose that the map F is smooth, and M ⊂ U is a smooth compact, orientable
manifold with boundary of dimension m ≥ n. Suppose that y ∈ Rn is a regular value for F |M and
F |∂M . Then the fiber F−1(y) ∩M is compact manifold of dimension m− n with boundary

∂
(
F−1(y) ∩M

)
= F−1(y) ∩ ∂M.

This manifold is also orientable because its normal bundle in M is trivial.
For r > 0 sufficiently small any point z ∈ B(y, r) is a regular value of F |M and thus

Ty,r := F−1
(
B(y, r)

)
∩M

is a tubular neighborhood of F−1(y) ∩M fibered in manifolds with boundary.
Fix an orientation [orM ] on M and denote by F ∗(δy,r) ∩ [M,orM ] the (m − n)-dimensional

current in U given by

〈ϕ, F ∗(δy,r) ∩ [M,orM ]〉 =
∫

(M,orM )
F ∗(Ωy,r) ∧ ϕ

:=
1

ωnrn

∫
(Ty,ε,orM )

F ∗(Ω) ∧ ϕ, ∀ϕ ∈ Ωm−n
cpt (U).

Proposition 2.1. If orF is the orientation on F−1(y) ∩M such that F ∗Ω ∧ orF = orM along
F−1(y), then

lim
r→0

F ∗(δy,r) ∩ [M,orM ] = [F−1(y) ∩M,orF ]

weakly, i.e.,

lim
r↘0

1
ωnrn

∫
(Ty,r,orM )

F ∗(Ω) ∧ ϕ =
∫

(F−1(y)∩M,orF )
ϕ, ∀ϕ ∈ Ωm−n

cpt (U). (2.1)

Proof. For simplicity we assume that y is the origin in Rn. We discuss first the case m > n. We
denote by ui the pullback of xi to M via F . Then F−1(0) is described by the equalities

u1 = . . . = un = 0.

Then
F ∗Ω = du1 ∧ · · · ∧ dun.

Observe that the equality (2.1) hold for all form ϕ such that suppϕ ∩ F−1(0) = ∅ because, for
r > 0 sufficiently small, the restriction of ϕ to the tube T0,r is trivial. Thus we assume that suppϕ ∩
F−1(0) 6= ∅. Via partitions of unity we can reduce the problem to the situation when ϕ is supported
on a tiny neighborhood N of a point p ∈ F−1(0) where there exist smooth function un+1, . . . , um

with the following properties,
• The collection of function (u1, . . . , un, un+1, . . . , um) defines local coordinates for M on

N.
• The restrictions of un+1, . . . , um to F−1(0)∩N define local coordinates for F−1(0) on N).
• The orientation of M is given by the m-form du1 ∧ · · · ∧ dum and the orientation orF is

given by the (m− n)-form dun+1 ∧ · · · ∧ dum.
We write

ϕ =
∑

|I|=m−n

ϕIdu
I , ϕI ∈ C∞cpt(N), I = {1 ≤ i1 < · · · < im−n ≤ m}.

We have
F ∗(Ω) ∧ ϕ = ϕn+1,...,mdu

1 ∧ · · · ∧ dum
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We regard ϕn+1,...,m as a smooth, compactly supported function on Rm. For every x = (x1, . . . , xn)
in Rn we set

[ϕ]x :=
∫

Rn−m
ϕn+1,...,m(x1, . . . , xn, un+1, . . . , um)dum+1 · · · dum.

We deduce from the Fubini theorem that
1

ωnrn

∫
(Ty,r,orM )

F ∗(Ω) ∧ ϕ =
1

ωnrn

∫
B(0,ε)

[ϕ]x dx1 · · · dxn r→0−→ [ϕ]0 =
∫

(F−1(0),orF )
ϕ.

The case m = n is simpler. In this case we have

[F−1(0) ∩M,orF ] =
∑

p∈F−1(0)

εpδp

where εp = ±1 if DF : TpM → Rn preserves/reverses orientations, and δp denotes the Dirac
measure concentrated at p. ut

2.3. Lipschitzian pullbacks. Suppose that T ∈ Fm,K(U), where K is a compact subset of U. We
would like to give a meaning to the current F ∗Ωy,r ∩ T when F is only a locally Lipschitz map. To
achieve this, we begin by giving a new description of this current when F is smooth. Suppose that
η ∈ Ωn(Rn) is a smooth n-form. In this case, for any ϕ ∈ Ωm−n

cpt (U) we have

〈ϕ, F ∗η ∩ T 〉 = 〈F ∗η ∪ ϕ, T 〉 = (−1)n(m−n)〈ϕ ∪ F ∗η, T 〉

= (−1)n(m−n)〈F ∗η, ϕ ∩ T 〉 = (−1)n(m−n)〈η, F∗(ϕ ∩ T )〉.

Lemma 2.2. For any smooth form ϕ ∈ Ωn−m(U) the current ϕ ∩ T is flat and n-dimensional.

Proof. According to Example 1.12(b) we can find compactly supported, integrable forms

τ ∈ L1(U,ΛN−mU∗), σ ∈ L1(U,ΛN−m−1U∗)

such that

T = τ ∩ [U ,orU ] + ∂(σ ∩ [U ,orU ]), FK(T ) ≤ ‖τ‖L1(K) + ‖σ‖L1(K).

We have
ϕ ∩ T = (τ ∪ ϕ) ∩ T + ϕ ∩ ∂(σ ∩ [U ,orU ]).

Note that for any α ∈ Ωn(U) we have

〈α,ϕ ∩ ∂(σ ∩ [U ,orU ])〉 = 〈σ ∪ d(ϕ ∪ α), [U ,orU ]〉
= 〈σ ∪ dϕ ∪ α), [U ,orU ]〉 ± 〈σ ∪ ϕ ∪ dα), [U ,orU ]〉

= 〈α, (σ ∪ dϕ) ∩ [U ,orU ]〉 ±
〈
α, ∂

(
(σ ∪ ϕ) ∩ [U ,orU ]

) 〉
We deduce

ϕ ∩ T = (τ ∪ ϕ+ σ ∪ dϕ) ∩ [U ,orU ]± ∂
(

(σ ∪ ϕ) ∩ [U ,orU ]
)
.

ut

The above proof implies that

FK(ϕ ∩ T ) ≤ ‖ϕ‖L∞(K)

(
‖τ‖L1(K) + ‖σ‖L1

)
+ ‖dϕ‖L∞(K)‖τ‖L1(K),

for any compactly supported integrable forms

τ ∈ L1(U,ΛN−mU∗), σ ∈ L1(U,ΛN−m−1U∗),

such that
T = τ ∩ [U ,orU ] + ∂(σ ∩ [U ,orU ]).
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Invoking Proposition 1.11 we deduce from the above that

FK(ϕ ∩ T ) ≤
(
‖ϕ‖L∞(K) + ‖dϕ‖L∞(K)

)
FK(T ) ≤ 2FK(ϕ)FK(T ). (2.2)

Using the above lemma we deduce that the current F∗(ϕ ∩ T ) ∈ Ωn(Rn) is flat. Invoking Corollary
1.13 we deduce that there exists a compactly supported, integrable n-field ξT,ϕ : Rn → ΛnRn such
that

F∗(ϕ ∩ T ) = ξT,ϕ ∧ dHn(x).
We can thus write for any smooth n-form η ∈ Ωn(Rn)

〈ϕ, F ∗η ∩ T 〉 = (−1)n(m−n)

∫
Rn
η(ξT,ϕ)dHn, ∀ϕ ∈ Ωm−n

cpt (U). (2.3)

Note that the right-hand-side of the above equality makes sense for locally Lipschitz maps F and
bounded measurable forms η. We take (2.3) as definition of F ∗η ∩ T ,where ξT,ϕ is determined
uniquely by the equality

ξT,ϕ ∧ dHn = F∗(ϕ ∩ T ).
We can rewrite (2.3) as〈

ϕ, F ∗(η ∩ T )
〉

:= (−1)n(m−n)
〈
η, F∗(ϕ ∩ T )

〉
, ∀η ∈ L∞

(
Rn, Λn(Rn)∗

)
, (2.4)

∀ϕ ∈ Ωm−n
cpt (U).

Using (1.16) we deduce that since F∗(ϕ ∩ T ) is flat and top dimensional it has finite mass and

‖F∗(ϕ ∩ T )‖ = FK(ϕ ∩ T ) ≤ 2 max(LK , 1)LnKFK(ϕ)FK(T ), (2.5)

where LF denotes the Lipschitz constant of F |K . Using this in (2.4) we deduce that〈
ϕ, F ∗η ∩ T

〉
≤ ‖η‖L∞(Rn)‖F∗(ϕ ∩ T )‖ ≤ 2 max(LF , 1)LnFFK(T )‖η‖L∞(Rn)FK(ϕ),

Hence
FK(F ∗η ∩ T ) ≤ 2 max(LF , 1)LnFFK(T )‖η‖L∞(Rn)

Observe next that for any ϕ ∈ Ωm−n−1(U) we have〈
ϕ, ∂

(
F ∗η ∩ T

) 〉
= 〈dϕ, F ∗η ∩ T 〉 = (−1)n(m−n)〈η, F∗(dϕ ∩ T )〉.

Using the identity (1.1) we deduce that

dϕ ∩ T = ±∂(ϕ ∩ T )± ϕ ∩ ∂T
so that

F∗(dϕ ∩ T ) = ±∂F∗(ϕ ∩ T )± F∗(ϕ ∩ ∂T ).
Note that F∗(ϕ ∩ T ) ∈ Ωn+1(Rn) = {0} so that

F∗(dϕ ∩ T ) = ±F∗(ϕ ∩ ∂T ), (2.6)

which shows that
∂
(
F ∗η ∩ T

)
= ±η ∩ ∂T. (2.7)

The correct sign is determined from (1.1) by assuming that η is a smooth n-form on Rn and observing
that dF ∗η = F ∗dη = 0.

Note that if T is normal, then so is ϕ ∩ T and

‖ϕ ∩ T‖+ ‖∂(ϕ ∩ T )‖ ≤ ‖ϕ‖L∞(K)

(
‖T‖+ ‖∂T‖

)
.

We deduce that F ∗η ∩ T is also normal and

‖F ∗η ∩ T‖K + ‖∂(F ∗η ∩ T )‖K ≤ ‖η‖L∞(F (K))

(
‖T‖+ ‖∂T‖

)
. (2.8)
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Using (1.14) and (2.6) we deduce that if T is normal, G : U → Rn is another locally Lipschitz con-
stant and LF,G is the largest of the Lipschitz constants of F |K and G|K , then for any η ∈ Ωm−n(U)

‖F∗(ϕ ∩ T )−G∗(ϕ ∩ T )‖ = F
(
F∗(ϕ ∩ T )−G∗(η ∩ T )

)
≤ ‖F −G‖C0(K)

(
LnF,G‖ϕ ∩ T‖+ Ln−1

F,G ‖ϕ ∩ ∂T‖
)

≤ ‖F −G‖C0(K)‖ϕ‖L∞(K)

(
LnF,G‖T‖+ Ln−1

F,G ‖∂T‖
)
.

We deduce as before

FK

(
F ∗η ∩ T −G∗η ∩ T

)
≤ ‖F −G‖C0(K)‖η‖L∞(K)

(
LnF,G‖T‖+ Ln−1

F,G ‖∂T‖
)
, (2.9)

∀T ∈Nm,K(U). We gather all of the above observations in our next result.

Proposition 2.3. (a) If T ∈ Fm,K(U) and η is a bounded, measurable n-form on Rn, then F ∗ ∩ η ∈
Fm−n,K(U). If additionally T ∈Nm,K(U), then F ∗ ∩ η ∈Nm−n,K(U)

(b) If T ∈ FM,K(U), m ≥ n and ηj are bounded measurable n-forms on Rn such that

lim
j→∞

ηj(y) = η(y) a.e. y ∈ F (K),

sup
j
‖ηj‖L∞(K) <∞,

then
lim
j→∞

FK

(
F ∗ηj ∩ T − F ∗η ∩ T

)
= 0.

(c) If
lim
j→∞

FK(Tj − T ) = 0,

and η is a bounded, measurable n-form on Rn then

lim
j→∞

FK

(
F ∗η ∩ Tj − F ∗η ∩ T

)
= 0.

(d) If T ∈Nm,K(U), η is a bounded, measurable n-form on Rn and Fj : U→ Rn are smooth maps
such that

lim
j→∞

‖Fj − F‖C0(K) = 0 and sup
j
‖DFj‖C0(K) <∞,

then
lim
j→∞

FK

(
F ∗j η ∩ T − F ∗η ∩ T

)
= 0. ut

2.4. Slicing. Suppose that T ∈ Fm,K(U), m ≥ n. For any y ∈ Rn and any r > 0 we set

F−1(y) ∩r T := F ∗Ωy,r ∩ T.

We will sometime use the alternate notation

〈T, F,y〉r := F−1(y) ∩r T.

We obtain in this fashion a continuous map

Rn 3 y 7→ F−1(y) ∩ε T ∈ Fm−n,K(U).
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Theorem 2.4. Let T ∈ Fm,KU) and F : U→ Rn a locally Lipschitzian map, n ≤ m.
(a) There exists a negligible set Z ⊂ Rn such that for any y ∈ Rn \ Z the weak limit

lim
r↘0

F−1(y) ∩r T

exists. It defines a current denoted by F−1(y)∩T ∈ Ωn−m(U) supported on F−1(y)∩K and called
the F -slice of T over y. We will some time use the alternate notation 〈T, F,y〉 to denote the F slice
over y.
(b) For ϕ ∈ Ωm−n(U) we have〈

η, F−1(z) ∩ T
〉

= Ω(ξT,ϕ(z)〉 a.e. z ∈ Rn,

where Ω = dx1 ∧ · · · ∧ dxn ∈ Λn(Rn)∗.

Proof. For every ϕ ∈ Ωm−n
cpt (U) we have

〈ϕ, F−1(y) ∩r T 〉 =
1

ωnrn

〈
1B(y,r)Ω, F∗(ϕ ∩ T )

〉
=

1
ωnrn

∫
B(y,r)

Ω(ξT,ϕ)dHn.

We need to extract some additional information about ξT,ϕ.
Using Proposition 1.15 we can find currents R ∈ Fm,U (O), S ∈ Fm+1,K(U) of finite mass such

that
T = R+ ∂S, FK(T ) = ‖R‖+ ‖S‖.

For ϕ ∈ Ωm−n
cpt (U) we have

ϕ ∩ T = ϕ ∩R+ ϕ ∩ ∂S.
If F is smooth, then for any ω ∈ Ωn

cpt(Rn) we have

〈ω, F∗(ϕ ∩ T )〉 = 〈F ∗ω, ϕ ∩ T 〉 = 〈F ∗ω, ϕ ∩R〉+ 〈F ∗ω, ϕ ∩ ∂S〉

(dω = 0)

= 〈ϕ ∪ F ∗ω,R〉+ 〈dϕ ∪ F ∗ω, S〉 =
∫

U
〈ϕ ∪ F ∗ω, ~R〉dµR +

∫
U
〈dϕ ∪ F ∗ω, ~S〉dµS .

For every y ∈ Rn we set

ρR(y) = sup
F (p)=y

∣∣〈 (ϕ ∪ F ∗ω)p, ~Rp 〉
∣∣, ρS(y) = sup

F (p)=y

∣∣〈 (dϕ ∪ F ∗ω)p, ~Sp 〉
∣∣.

We deduce ∣∣〈ω, F∗(ϕ ∩ T )〉
∣∣ ≤ ∫

U
F ∗ρRdµR +

∫
U
F ∗ρSdµS

=
∫

Rn
ρR(y)dF∗µR(y) +

∫
Rn
ρS(y)dF∗µS(y).

There exists a universal constant C0 > 0 such that

ρR(y) ≤ CLmF ‖ϕ‖L∞ |ωy|, ρR(y) ≤ CLm+1
F ‖dϕ‖L∞ |ωy|, ∀ϕ, ∀ω,

where LF denotes the Lipschitz constant of F |K . We deduce∣∣ 〈ω, F∗(ϕ∩T )〉
∣∣ ≤ C0‖ϕ‖C1(K)‖

(
LmF

∫
Rn
|ωy|dF∗µR(y) + Lm+1

F

∫
Rn
|ωy|dF∗µS(y)

)
. (2.10)

An approximation argument shows that the above inequality continues to hold for any locally Lips-
chitz map F and any bounded measurable n form ω.
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Using [6, Thm. 4.7] we deduce that there exists a negligible subset ∆ ⊂ Rn such that for any
y ∈ Rn \∆ the limits

ΘR(y) := lim
r↘0

1
ωnrn

F∗µR
(
B(y, r)

)
, ΘS(y) := lim

r↘0

1
ωnrn

F∗µS
(
B(y, r)

)
exits and are finite. For ε > 0 we set

ΘT (y, r) :=
1

ωnrn
F∗µR

(
B(y, r)

)
+

1
ωnrn

F∗µS
(
B(y, r)

)
.

Fix a countable subset F ⊂ Ωm−n
cpt (U) such that for any ϕ ∈ Ωm−n(U) there exits a sequence ϕj in

F such that
lim
j→∞

‖ϕj − ϕ‖C1(K) = 0.

This implies classically (see e.g. [6, Thm. 4.7], [7, Thm 11.1]) that there exists a negligible subset
Zϕ ⊂ Rn such that for any y ∈ Rn \ Zϕ the limit

lim
r↘0
〈ϕ, F−1(y) ∩r T 〉 = lim

r↘0

1
ωnrn

〈
1B(y,r)Ω, F∗(ϕ ∩ T )

〉
= lim

r↘0

1
ωnrn

∫
B(y,r)

Ω(ξT,ϕ)dHn

exists and it is equal to Ω(ξT,ϕ(y)〉. The set

Z := ∆ ∪

 ⋃
ϕ∈F

Zϕ


is negligible. We deduce from (2.10) that there exists a constant C1 > 0 such that, for any ϕ0, ϕ1 ∈
Ωn−m

cpt (U), any r > 0, and any y ∈ Rn \ Z we have∣∣ 〈ϕ0, F
−1(y) ∩r T 〉 − 〈ϕ1, F

−1(y) ∩r T 〉
∣∣ ≤ C‖ϕ0 − ϕ1‖C1ΘT (y, r). (2.11)

To finish (a) it suffices to prove that for any y ∈ Rn \ Z and any ϕ ∈ Ωm−n
cpt (U) the function

(0, 1] 3 r 7→ 〈Aϕ(r) := 〈ϕ, F−1(y) ∩r T 〉 ∈ R
as a finite limit as r → 0. We will achieve this by showing that for any ε > 0 there exists r = r(ε) > 0
such that

|Aϕ(r′)−Aϕ(r′′)| < ε, ∀0 < r′, r′′ < r(ε).
Set

My := sup
r∈(0,1)

ΘT (y, r),

and choose ϕ′ ∈ F such that
My‖ϕ− ϕ′‖C1(K) <

ε

3
. (2.12)

Since the limit limr↘0Aϕ′(r) exists and it is finite, there exists r(ε) ∈ (0, 1) such that

|Aϕ′(r′)−Aϕ′(r′′)| <
ε

3
, ∀0 < r′, r′′ < r(ε).

Then

|Aϕ(r′)−Aϕ(r′′)| ≤ |Aϕ(r′)−Aϕ′(r′)|+ |Aϕ′(r′)−Aϕ′(r′′)|+ |Aϕ′(r′′)−Aϕ(r′′)|
(use (2.11) )

≤ ‖ϕ− ϕ′‖C1(K)ΘT (y, r′) +
ε

3
+ ‖ϕ− ϕ′‖C1(K)ΘT (y, r′′)

(2.12)
< ε.

This proves (a). Part (b) follows from classical density results, e.g. [6, Thm. 4.7] or [7, Thm 11.1]. ut
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The ideas in the above proof lead to the following additional information about slices. For details
we refert to [3, Thm. 4.3.2].

Theorem 2.5. Under the same assumptions as in Theorem 2.4 the following hold for any function
Φ ∈ L∞(Rn).
(a) For any ϕ ∈ Ωm−n

cpt (U) we have∫
Rn

Φ(y)〈ϕ, F−1(y) ∩ T 〉 = 〈ϕ, F ∗(ΦΩ) ∩ T 〉.

(b) If ‖T‖ <∞ then
f∗(ΦΩ) ∩ T = F ∗(Φ) ∩ (F ∗Ω ∩ T ),∫

Rn
Φ(y)‖F−1(y) ∩ T‖dHn(y) = ‖f∗(ΦΩ) ∩ T‖

≤ LnF
∫

U
F ∗(Φ)dµT ,∫

Rn

(∫
U
fdµF−1(y)∩T

)
dHn(y) =

∫
U
f(u)dµF ∗Ω∩T (u), ∀f ∈ L∞(U).

(c) If T ∈Nm,K(U) then F−1(y) ∩ T ∈Nm−n,K(U) for a.e. y ∈ Rn.
(d) F−1(y) ∩ T ∈ Fm−n,K(U) for a.e. y ∈ Rn.
(e) If K is a Lipschitz neighborhood retract in U, then the function

Rn 3 y 7→ F−1(y) ∩ T ∈ Fm−n,K(U),

is summable with respect to the norm FK and

FK

(
F−1(y) ∩ T − F−1(y) ∩r T

)
≤
∫
B(y,r)

FK

(
F−1(y) ∩ T − F−1(z) ∩ T

)
dHn(z)→ 0,

as ρ↘ 0, for a.e. y ∈ Rn.
(f) If G : Rn → Rn is locally Lipschitz, then

(G ◦ F )−1(z) ∩ T =
∑

y∈G−1(z)

sign detDyG · F−1(y) ∩ T.

(g) If V is an open subset of a finite dimensional Euclidean space V andG : U→ V, andH : V→ Rn

are locally Lipschitz maps, then

G∗
(

(H ◦G)∗(ΦΩ) ∩ T
)

= H∗(ΦΩ) ∩G∗(T ),

G∗
(

(H ◦G)−1(y) ∩ T
)

= H−1(y) ∩G∗T for a.e. y ∈ Rn.

ut

Theorem 2.6. Suppose that F : U → Rn and G : U → Rν are locally Lipchitz maps and T ∈
Fm,K(U), m ≥ n+ ν. Define the cartesian product

F ×G : U→ Rn × Rν , (F ×G)(u) =
(
F (u), G(u)

)
Then for a.e. (y, z) ∈ Rn × Rν we have

(F ×G)−1(y, z) ∩ T = G−1(z) ∩
(
F−1(y) ∩ T

)
.

ut
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2.5. An alternative approach to slicing. Suppose that f : U → R is a locally Lipschitz map and
T ∈ Nm,K(U) is a normal current of dimension m ≥ 1. For r ∈ R we set

〈T, f, r+〉 := (∂T )|{f>r} − ∂
(
T |{f>r}

)
,

〈T, f, r−〉 := ∂
(
T |{f<r}

)
− (∂T )|{f<r}

= (∂T )|{f≥r} − ∂
(
T |{f≥r}

)
.

For all but countably many r-s we have

µT
(
{f = 0}

)
+ µ∂T

(
{f = 0}

)
= 0

so that
〈T, f, r+〉 = 〈T, f, r−〉

for all but countable many r ∈ R.

Proposition 2.7. For almost all r ∈ R we have

f−1(r) ∩ T =
1
2
(
〈T, f, r+〉+ 〈T, f, r−〉

)
. (2.13)

Proof. Let us first observe that for every Lipschitz function γ : R→ R we have the equality

f∗(dγ) ∩ T = f∗(γ) ∩ ∂T − ∂
(
f∗(γ) ∩ T ).

Indeed, this is true for smooth f and g, and by smoothing we can extend this to general f and γ.
Note that dγ is a bounded measurable form on R and f∗(dγ) ∩ T can be defined as in Subsection
2.3. Define γr,h : R→ R to be the Lipschitz approximation of the Heaviside function t 7→ H(t− r)
depicted in Figure 1

r r+h

1

FIGURE 1. A Lipschitzian approximation of the Heaviside function

Then

1[r+h,∞) ≤ γr,h ≤ 1[r,∞), dγh,r =
1
h
1(r,r+h]dt,

and
1
h
f∗dt ∩ T |r<f<r+h − 〈T, f, r+〉
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= f∗(dγr,h) ∩ T − 〈T, f, r+〉 =
(
γr,h ◦ f − 1{f>r}

)
(∂T )︸ ︷︷ ︸

=:R

−∂
(

(γr,h ◦ f − 1{f>r})T︸ ︷︷ ︸
=:−S

)
Hence

F
(
f∗(dγr,h) ∩ T − 〈T, f, r+〉

)
≤ ‖R‖+ ‖S‖ ≤

(
µ∂T + µT

)
({r < f < r + h}).

It follows that for almost all r we have

lim
h↘0

F
( 1
h
f∗dt ∩ T |r<f<r+h − 〈T, f, r+〉

)
= lim

h↘0

(
µ∂T + µT

)
({r < f < r + h}) = 0

We obtain similarly that, for almost all r, we have

lim
h↘0

F
( 1
h
f∗dt ∩ T |r−h<f<r − 〈T, f, r−〉

)
= 0.

To conclude observe that for almost all r we have
1

2h
(
f∗dt ∩ T |r−h<f<r + f∗dt ∩ T |r<f<r+h

)
= f−1(r) ∩h T.

ut

Combining the above proposition with Theorem 2.6 we can produce alternative description of the
type (2.13) for normal currents T ∈Nm(U), and locally Lipschitz maps f : U→ Rn, 1 ≤ n ≤ m.

For integer multiplicity rectifiable currents we can give an even more explicit description of the
slicing process. Recall that a current T ∈ Ωm(U) is called rectifiable if the following hold.

• It is representable by integration.
• There exists a countably m-rectifiable set M = MT ⊂ U and a locally Hm-integrable

function θT : M → R such that

µT = θT ·Hm|M .

• For Hm-a.e. point p ∈M there exists a basis e1(p), . . . , em(p) of the approximate tangent
space TpM such that

~T = e1(p) ∧ · · · ∧ em(p).

We denote this current by [[M, ~T , θ]]. The rectifiable current T is said to have integer multiplicity
if θT (p) ∈ Z for Hm -a.e. p ∈M .

Proposition 2.8. Suppose that T = [[M, ~T , θ]] ∈ Ωm(U) is a normal integer multiplicity rectifiable
m-curent. We set fM := f |M ,

M∗ :=
{
p ∈M ; ∇f |M (p) 6= 0

}
,

(a) For almost all r ∈ R the set
Mr := f−1(r) ∩M∗

is countably (m − 1)-rectifiable, and for Hm−1-a.e. p ∈ Mr both TpMr and ∇fM (p) exist. More-
over, for such r and p the approximate tangent space TpMr exists and

TpM = TpMr ⊕ R〈∇fM 〉.

We define ~Tr(p) ∈ Λm−1U by the equality

(~Tr(p), ξ) =
(
~Tp,

1
|∇fM (p)|

∇fM (p) ∧ ξ
)
, ∀ξ ∈ Λm−1(U),
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and we set

θr(p) =

{
θ(p), f(p) = r, ∇fM (p) 6= 0
0, otherwise.

(b) For almost any r ∈ R we have

f−1(r) ∩ T = [[Mr, ~Tr, θr]].

Proof. Part (a) follows from the basic properties of countably rectifiable sets. We refer to [6, Lemma
28.1] for more details.

To prove (b) we fix a countable subset F ⊂ Ωm−1
cpt (U) that is dense in the C1(suppT )-norm and

we prove that there exists a negligible subset Z ⊂ R wwith the following properties.

(i) For any r ∈ R \ Z both f−1(r) ∩ T and [[Mr, ~Tr, θ|Mr ]] are well defined.
(ii) For any ϕ ∈ F and any r ∈ R \ Z we have

〈ϕ, f−1(r) ∩ T 〉 = 〈ϕ, [[Mr, ~Tr, θ|Mr ]]〉. (2.14)

Fix a negligible subset Z0 ⊂ R such that r ∈ R \Z0 both f−1(r)∩ T and [[Mr, ~Tr, θ|Mr ]] are well
defined. We will show that for any ϕ ∈ F there exists a negligible subset Zϕ ⊂ R \ Z0 such that
(refeq: slice-rect) holds for any r ∈ R \ (Z0 ∪ Zϕ). More precisely we have to show that

〈ϕ, [[Mr, ~Tr, θ|Mr ]]〉 = lim
h↘0

1
h
〈1{r≤f≤r+h}f∗dt ∧ ϕ, T 〉. (2.15)

We have 〈
1{r≤f≤r+h}f

∗dt ∧ ϕ, T
〉

=
〈
1{r≤f≤r+h}∩Mdf ∧ ϕ, T

〉
=
∫
{r≤f≤r+h}∩M

|∇fM (p)|
(

1
|∇fM (p)|

dfM ∧ ϕ
)

p

(~Tp)θ(p)︸ ︷︷ ︸
=gϕ(p)

dHm(p)

(use the co-area formula)

=
∫ r+h

r

(∫
Mt

gϕ(p)dHm−1(p)
)
.dt

Now observe that∫
Mt

gϕ(p)dHm−1(p) =
∫
Mt

ϕp(~Tt(p))θ(p)dHm−1(p) = 〈ϕ, [[Mr, ~Tt, θt]]〉

Hence
1
h
〈1{r≤f≤r+h}f∗dt ∧ ϕ, T 〉 =

1
h

∫ r+h

r
〈ϕ, [[Mr, ~Tt, θt]]〉dt

To prove (2.15) for a.e. r it thus suffices to show that the function

t 7→ 〈ϕ, [[Mr, ~Tt, θt]]〉

is locally integrable. This is another application of the co-area formula∫
R
‖[[Mr, ~Tt, θt]]dt =

∫
R

(∫
Mr

|θr|dHm−1

)
=
∫
M
|∇fM ||θ|dHm

≤ ‖∇fM‖L∞
∫
M
|θ|dHm = ‖∇fM‖L∞‖T‖.

ut
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