FLAT CURRENTS AND THEIR SLICES

LIVIU I. NICOLAESCU

ABSTRACT. Ihope this description of flat chains and their slices is less intimidating than Federer’s [3],
though I follow his very closely.
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1. CURRENTS

1.1. Definition and basic operations. Fix an Euclidean space V' of dimension n. The metric on V'
induces metrics (—, —) on A®*V and A*V*. We will denote the corresponding norms with | — |.

For any open subset O C V we denote by QF(0) (respectively ngpt((‘))) the space of smooth
differential k-forms on O (respectively smooth differential k-forms with compact support contained

in O). We denote by szt( O) (respectively Q1 (0)) their topological duals. We have a linear operator
0: Q%(0) = Q_1(0),
defined by
(. 0T) = (dp, T), ¥y € Q' (0).
Observe that any o € Q¢(0O) defines a continuous linear map
an: Qp(0) = Q_p(0), T—anT,
given by
(p,anT)=(aUp,T), Vpe Qf&z((‘)).
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Moreover,
(-D)9(anT)=andT —danT. (1.1)
Similarly, for any smooth ¢-vector field & : O — A’V we define £ AT € Q;4¢(0O) via the equality

(0, ENT) = (£ 1, T), Yo € QEHH(0).

cpt

Suppose that (e;)1<;<y, is an orthonormal basis of V. We denote by (e’)1<;<, the dual orthonormal
basis of V'*. For any subset I = {1 < i) < --- < i <} we set

er=e;, N---Nej,, el =e' N Nek.

Then the collections (e7)|7— and (e’)|;j— are orthonormal bases of A*V and respectively AFV*.
Moreover
T = Z er\(elnT)
[|=k
The support of a current 7' € Q(0) is the complement of the open set

{z€0; Ine Qb (0); nlx)#0, (n,T)#0}.
We denote by supp 7' the support of T'.

Suppose that U, V' are finite dimensional Euclidean spaces of dimensions m and respectively n,
and U is an open subset of U, V is an open subset of V. For any smooth map F' : U — V and any
current 7' € Qi (U) such that the restriction of £ to supp T is proper, we define the pushforward
F.T € Q(V) by the equality

<()07 F*T> = <UF*()07T>
where u € Cg5i(U) is a function such that u = 1 on an open neighborhood of supp7". From the
definition of the support we deduce immediately that the pushfoward is independent of the choice of
cutoff function u. The resulting map 1" — F, T’ commutes with the boundary operator.

Fix orthonormal bases (e;)1<i<m and (f j)lgjgn are orthonormal bases of U and respectively
V. We denote by (z%) the Euclidean coordinates determined by (e;) and by (?) the Euclidean
coordinates determined by (f ).

Any S € Qi (U) defines a linear map (called the slant product with S)

/S QP (U x V) — QP F(V),

cpt cpt
Z wr,J (7, y)dxl A dyJ /S = Z < Z wLdeI, S> dyJ,
[7|+]J|=p |J|l=p—k \|I|=k

If T € (V) the we define S x T' € Qp¢(U x V) by the equality

(w, 8 x T) = (w/S,T), Yw € QEF(UX V).
We denote by 7gs (respectively my) the natural projection U x V' — U (respectively U x V — V).
The following simple result is often useful in proving various identities.

Proposition 1.1. Suppose A, B € Q,(U x V). Then A = B if and only for any a € Q2 (U) and
B € Q8,1 (V) such that deg a + deg 8 = p we have

(rira N my B, A) = (mi;a Ay 3, B). O
Here is a simple application of this principle.
Corollary 1.2. Forany S € Qi(U) and T' € 4(V) we have
IS xT)=08x T+ (—1)1m58 x 9T, (1.2)
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Proof. Leta € Q*(U) and B € Q°(V) such that deg v + deg f = k + ¢ — 1. Then
(T Ay 3,0(S x T)) = (d(rgra A 3), S x T)
= (njda AT B + (—1)%8 %t A nldB, S x T = (da, S)(3,T) + (1), S)(df,T)
= (2, 08)(B, T) + (1) *(, S)(8,0T) = (e, 8S) (8, T) + (=1)"™*(«, 5) (83, 0T)
= (nfra Ay (3,08 x T + (=1)1m58 5 aT).
(|

1.2. Currents representable by integration. We define the mass of a current 7' € ;(0O) to be the
quantity (see also [6, Rem. 26.6])

IT|l = sup{ (¢, T); T € Q5,(0); lp(x)] <1, Vo €O} € [0,00].

We say that ' € Q4 (0) has locally finite mass if [|n N T|| < oo for any n € Q2 (0). Observe that

this implies that for any compact subset K C O there exists a positive constant C'x such that
(e, T)] < Csup flp(@)ll, Vi € Qe (0). (1.3)
xe

We have the following result.

Proposition 1.3. Let T' € Q. (O) The following statements are equivalent.

(a) The current T’ has locally finite mass.
(b) The current T is representable by integration, i.e., there exists a Radon measure pr over U
and a pip-measurable k-vector field T : O — AFV such that |T(x)| = 1, ur- a.e. x and

TZT/\MT,

(. T) = /O (o (x), T(2))dur ().

Proof. Clearly (b) = (a). The opposite implication follows from the Riesz representation theorem.
Here is roughly the outline. For more details we refer to [6, §4].
Suppose that 7" has locally finite mass. For any open subset U C O we define

ir(U) = sup{ (o, T); ¢ € Qe (U), ¢(x) <1, Vo eU}. (1.4)
For any A C O we set
ar(4) = inf ir(U).
The correspondence A — fir(A) is an outer measure on O that satisfies the Caratheodory condition
Ar(AU B) = fir(A) + fir(B) if dist(A, B) > 0. (1.5)
A subset A C O is called measurable if
fir(S) = pr(S\ A) + ar(SNA), vSCO.

The collection 87 of measurable subsets is a o-algebra and we denote by 7 the restriction of jip to
8. The Caratheodory condition implies that the measure pr is Borel regular, i.e.,

e St contains all the Borel sets, and
e forevery S € 8y there exists a Borel set B D S such that up(B) = pup(S).
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From the local mass condition (1.3) we deduce that p7 satisfies the additional conditions
pr(K) < oo, VK C O compact,

pr(A) =sup{ur(K); K C A, K compact }.

Moreover, for any nonnegative function f € Cpt(O) we have

/O F@)dur () = sup{ (. T): |o()] < f@), peOh,(0), ¥reO)  (16)

For any € A*V* we define

Ayt Q0 (0) = R, A(f) = (. T), Vf € Ny
Observe that
()] < 1(feo, T

< sup{ (p.T); 9 € O8(0); [o(@)] < |f(@)]- Inl, Vre O} = /O fldur.

This implies that ), extends to a continuous linear functional A, : L*(O,ur) — R. Thus, there
exists v, € L>(0O, 1) such that

/f )vy(@)dpr () VS € CO,(0),

Note that ||v || > < |n|. Now fix a basis (e;) of A¥V, denote by (e’) the dual basis of A¥V* define
¢ : O — AFV via the equality

Zfl z)er, §1(x)ver(x).
We deduce that |T'(z)| < 1, and
(1, T) = /O (o), T(a))dpur (), Vi € QE L (0).

The equality |T'(z)| = 1 is proved observing that for a countable, dense, open subset ¥ C AFV* we

have

1

T @) =t —es | TG, e, ae o

If T € Q4 (0) is representable by integration, then the map
ept(0) 3 0 (9, T) €R

extends by L' (O, u7) continuity to a linear map on the space of bounded, compactly supported, Borel
measurable k-forms on . In particular, if 7 is a bounded, Borel measurable ¢/-form on O, we can
define the (k — ¢)-current n N T". Note that if B C O is a Borel set, then the characteristic function
15 is a bounded, Borel measurable 0-form and we define the restriction of T' to B to be the current

T|p:=1pNT. (1.7)
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Example 1.4. Suppose that M is a compact, orientable m-dimensional C''-submanifold of V'. Then
any orientation or on M defines a current [M, or] € Q,,(V),

(w,[M,or]) = / w, Vw € Qe (V).
(M,or)

The orientation or defines a continuous, unit length section £/ o of A" T'M. The current [M, or]
is reprsentable by integration

[Mu OT] = SM,O'I‘ A dj—fm7
where H™ denotes the m-dimensional Hausdorff measure. Moreover

| [0, or] || = 3" (M). 0

Let us observe that if U and V are finite dimensional Euclidean spaces, U C U,V C V are open
subsets, S € Qi (U), T € Qy(V) are currents representable by integration, then S x T is representable
by integration and

- L L
psxT = js X p, ;9 X T =S AT,
1.3. Locally normal and locally flat currents. A current 7" € Q(0) is called normal if it has
compact support and
N(T) = ||T] + ||oT| < oc.

We denote by IN(0O) the space of normal k-dimensional currents.

We say that T € Q(0) is locally normal if f 1T is normal for any f € Q0 (0). Note that T" is

locally normal iff both 7" and 07" are representable by integration. We denote by IN }COC(O) the vector
space of locally normal currents.
For any compact subset K C O and any ¢ € Q¢(09) we set

el == sup [[¢(z)]],
reK

and we define the flat seminorm

Fr(p) == max{llelx, lldplx }-
For T € Q1 (0O) we define the dual flat seminorm
Fg(T) =sup{ (p,T); Fr(p)<1}.

Let us observe that
Fg(T)<oo=suppT C K.

Proposition 1.5. Let T € Qy(0) and K a compact subset of O. If suppT C K then
Fy(T)=inf{|T - 85|+ S[l; S€Q1(0), suppS C K }.

Proof. Suppose that S € Qi 1(0), supp S C K. Then for any ¢ € Q'gpt((‘)) such that ||| x < 1 we
have

(0, T) = {p, T = 0S) + (dp, S) < [T = 0S| +|S]].
This proves that
Fr(T) <inf{||T—8S| + IS]; S € Q41(0), suppS C K }.

The equality follows from the following key existence result.
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Lemma 1.6. If T € €4(0), and F g (T) < oo, then there exist R € Q,(0), S € Q41(0) such that
supp R,supp S C K,
T =R+ 0S,
Fr(T) = IR + 5]

The proof is a direct application of the Hahn-Banach theorem. In particular, it is nonconstructive.
For details we refer to [3, §4.1.12]. O

We denote by F' i (O) the closure with respect to the seminorm F'i of the space
Nk (0) :={T € Q(0); suppT C K, N(T) < o0 }.

and we set
Fy(0)= | Fri(0).
KcO
We will refer to the currents in F'¢(O) as flat currents. Observe that, by definition, the flat currents
have compact support.
A current T € €,(0) is called locally flat if for any f € CZ;(O) the current fT = fNT €

szt(O) is flat. We denote by F°°(0) the vector space of locally flat currents. Observe that
NI#<(0) ¢ F(0)
and moreover
ONP(0) C NP9 (0), 9FPe(0) C FP(0).
Suppose that U and V are finite dimensional Euclidean vector spaces, U C U is an open set, [ :

U — V is a smooth map, and 7' € Q;(U). If T is representable by integration then F,(7T') is
representable by integration and

per < Fo(| BT pr), (1.8)
where || F, T| denotes the measurable function
O3z | DQUF(T'(:U)) | € [0, 00).
This shows that if 7' € Ny(U) (resp. F¢(U)) then F.(T) € N (V) (resp. Fix(T) € F¢(V)).
1.4. Homotopies. Suppose U (resp. V) is an open subset of the Euclidean spaces U (resp. V') and
H:[0,1]]xU—V,
is a smooth map. We denote by H; the restriction of H to the slices {¢t} x U. Let [0,1] € ©;(R)
denote the current of integration over [0, 1] equipped with its natural orientation. Observe that for any
T € Q(U) we have
OH,([0,1] x T) = H,(8[0,1]] x T — [0,1] x oT)
so that
(H1)«T — (Ho)«T = 0H.([0,1] x T) + H,([0,1] x oT). (1.9)
Using the inequality (1.8) we deduce that if 7" is reprsentable by integration than H, ([0, 1] x T') is
representable by integration and for anu open subset O C 'V we have

t

1 . —
per. (fo,11x7(0) S/O (/H_l(o)\Ht(:v)ADHt(T(w))!duT(:v)> dt. (1.10)
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In the remainder of this subsection we assume that If A is an affine homotopy

H,=(1—t)Hy+tHy,

and we set
pla) == max{||DHo(x)||, || DHy(x)]| }.
We deduce
por o O) S [ )~ Hof)lpe) dpr (), 1.1
and
| £.(00. 10 7)) < sup 1 (@) — Ho(w)] x sup p(z)* x [T (1.12)
A zel

Suppose now that 7" is normal. In particular, it has compact support, and we define
C:=H([0,1] x suppT), S:= H,([0,1] x T).
Using (1.9) we deduce
(H1)«T — (Hp)«T — 0S = H,(]0,1] x oT).
Invoking Proposition 1.5 we conclude
Fio((H1)T — (Ho)«T) < ||Ho([0,1] x OT) || + || H«([0,1] x T) ||

(1.12) (1.13)

11 = Holl < auppry (I 101 upp ) = 1T - 1015y ) -

1.5. Lipschitzian pushfoward. Suppose U (resp. V) is an open subset of the Euclidean space U
(resp V), K C U is a compact subset. We assume that V is a convex set and F' : U — V is a locally
Lipschitzian map.

For any smooth maps Hy, H; : U — V we denote by C'(Hy, Hy) the convex hull of Hy(K) U
H,(K), by Ly, the Lipschitz constant of the restriction of H; to K, and we set

Lyy.m, = max{ Luy, Lu, }
From (1.13) we deduce that if 7" € N, (U), then

F (o, (H)-T = (Ho).T) < ||Hy — Holl oo (i) (ITII Ly g, + 10T L 37, ). (1.14)
Suppose that F), : U — V is a sequence of smooth maps with the following properties.

(a) The sequence converges uniformly to ' on K.
(b) The sequence L, is bounded.

For any compact neighborood C' of F'(K) there exists n = n(C') such that
(Fn)«T € Ny n(V), ¥Yn > n(0),

and the sequence (F3,).T" € N, n(V), n > n(C) is Cauchy in the F'y-metric. This is a complete
metric so this sequence is convergent in this metric. The limit current is supported on F'(K). The
inequality (1.14) also shows that the limit is independent of the choice of smooth map F;, with the
above properties. We define the pushforward F,T" to be this common limit. In other words, we have
succeeded in giving an unambiguous meaning of the pushforward of a normal current by a locally
Lipschitz map. We get in this fashion a linear map

F, : Nm’K(U) — Nm,F(K)(v)'

Observe that
| BT < LEg|T. (1.15)
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From Proposition 1.5 we deduce that there exists a current S € €241 (U) such that supp S C K and
Fg(T)=|T - 0S| + [I5]]-
Since T has finite mass we deduce that 0.5 has finite mass and thus .S is normal. We deduce
Fp)(FT) <||F(T = 89)|| + [|FuS|| < LR||T — 9S| + Lg+||S||
< maX(LF, 1)L?FK(T).

Since by definition N, i (U) is F'i-dense in F', 1, (U) we deduce from the above inequality that the
push-forward extends by continuity to a linear map

Fo: Frg(W) — Fp pcy(V),
satisfying the bound
Fpuo) (FT) <max(Lp, 1) LEF(T), VT € Fp (W) (1.16)
The above considerations lead immediately to the following conclusion.

Corollary 1.7. If F,, : U — 'V is a sequence of smooth Lipschitz maps satisfying the conditions (a)
and (b) above then for any compact neighborhood C of F(K) in 'V we have

lim Fo((Fy).T — F.T) — 0, VT € Fy, k(). O

This is a nontrivial result even when F' is C! because above we do not require C'! convergence
F, — F.

1.6. Properties of flat currents. Corollary 1.7 has nontrivial consequences. We want to discuss one
of them here.

Proposition 1.8. Suppose that V' is an Euclidean space of dimension n and T € Fy (V). If U is
another finite dimensional Euclidean space O is an open neighborhood of suppT and F,G : O — U
are locally Lipschitz maps such F|sppm = Glsupp 7> then F,T = G, T.

Proof. For r > 0 define ¥, : U — U by the equality
0, u|l <r
U, (u) = { [ul

(1- I%\)U’ lu| > 7.
The map U, is Lipschitz with Lipschitz constant < 1 and
‘\I/T(u)—u| <r, VueU. (1.17)

We fix a smooth, nonnegative, function ¢ : V' — R such that

/ ®(u)|du| =1 and (u) =0, V|u| > 1.
U

O (u) := iq) (E> ,

en €

We set

so that (®.).~0 is a mollifying family. We define
Gr(v) = F(v) + ¥, (G(v) — F(v)).
From (1.17) we deduce that
’Gr(v) —G)| <r, Yweo,

and
G.(v) = F(v) if |F(v)—Gw)| <.
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Observe that the maps ®. * F' and ®. * GG, coincide on the set
Orei={ve0; |[F(v)-GW) <r, Yo'eB(v,e)}.

For r,e > 0 sufficiently small O, is a neighborhood of supp 7". Moreover, the maps ®. * I’ and
&, x GG, approximate F' and respectively G on any compact ' C U. The proposition now follows
from Corollary 1.7. O

Remark 1.9. The above proposition shows that the pushfoward of a flat current by a locally Lipschitz
map is oblivious to the infinitesimal neighborhood of the support of the current. Consider for example
the current representable by integration

T =0, Ndp € Q1(R),
where dy is the Dirac measure concentrated at the origin. Then supp 7" = {0} The maps
F.G:R—-R, F(z)=0, G(z)==z, VzeR
coincide at the origin. However, F,T = 0 and G, T =T. O
Corollary 1.10. Suppose V' is a finite dimensional Euclidean space, U is a subspace of V and T is
a flat currrent with support contained in U. If dimT > dim U, then T = 0.

Proof. Denote by Pry : V' — U the orthogonal projection onto U and by Iy : U — V the canonical
inclusion.
Then the maps 1y, and Iy o Py coincide on U and thus on the support of 7. Hence

T = (1y).T = (Pu)«(Iu)«T.

Now observe that since dim 7" > dim U the current (Iy7)+«T" € Qqim 7 (U) is trivial. O

Suppose that V' is an Euclidean vector space of dimension n. For every 0 < m < n we denote by
X, the space of Lebesgue integrable, compactly supported maps

E:V A"V,
To every pair (§,7) € X, X ;41 We associate the compactly supported current
Ten = ENAHY, 4+ 0(n N dHE,),

where dHY, is the usual Lebesgue measure on V. Observe that

supp Je,y C supp§ Usuppn =: supp(&, 7).
Moreover, for any compact K D supp(&,n) and any ¢ € QI (V') such that

cpt
Fr(p) = sup max{|p(z)], |dp(z)] <1} <1,
we have
(6, Ten) = /V (o (), £(x)) I (z) + /V (dip(), (@) d3o () < [l + Il

This proves that T¢ , is flat, T¢ , € F'y, g(V'), and
Fr(T) < |lElr + nllzr = 1€ A dHEA + [ln A dIHG|l-

The next result essentially states that all flat currents are of the form T ,,.
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Proposition 1.11. Suppose that K is a compact subset andT' € Fy, (V). For any r > 0 we set
K, :={veV; dist(v,K) <r}.
Then for any § > 0 there exist ({5,15) € Xy X Xypt1 such that
supp §s Usupp s C K,
T = Tes s
1€l + [Insllzr < Fr(T) + 6.

The proof of this result is via a decreasing induction on m aided by Lemma 1.6. More precisely
on writes 7" as a an infinite sum

T= i R; + 0S;)
7=0

convergent in the flat norm, where for any j
Ry, € Npp(V), Sj € Ny (V), supp Rj, Ki, C Ky(—j1s)5
and R; is smooth. Because R; is smooth we can write
R; =& NdH", & € C*(V,A™V).
By induction we can write
S =mn; NdH™ + (¢ NdH™), & € LNV, A™TIV), ¢ e LYV, A"TV)

and one can can show that
> &l +millz1) < oo
J
For details we refer to [3, §4.1.18]. In the next example we explain the construction of &5 and 75 in
some special but illuminating cases.

Example 1.12. (a) Suppose T' € y(R) is given by the Dirac measure supported at the origin. The
equality T" = T, signifies that 7 is a compactly supported intgerable function on RR, 7 is a copactly
supported L!-vector field on R such that

10 = [ (fet)+ @) o, vf € CH®

We can represent 7)(x) in the form w(x) di, w € L' and we can rewrite the above equality as

0 = [ f@t@is+ [ w@) @de. 7 € CR),

or as an equality of distributions

dw
— == :
dr 0+ &(z)
We seek compactly supported L!-solutions (&(z), w(z)) of the above equation.

Fix a smooth, function ® : R — [0, co) with support on [—1, 1] such that

/R@(a:)dx — 1.

For r > 0 we set
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The measure ®, (x)|dz| is a 0-current that converges to dy. Define
€T
Wy () = / (.(0) .0 )t
—0o0
Observe that supp w, . C [—r, 7] and
dwy ¢
dz

It is easy to check that w,. . converges ase — O toa L'-function supported on [—r, 7] and satisfying
the distributional equation

=&, - ..

dw
L= 50+ P, ().
dx 0+ &r(2)

(b) For any £ € A™V we denote by {; € A"V™,ie.,

(n,&) = (n,€), Vne A"V~

Fix an orientation or on V, denote by Qy € Q" (V') the metric volume defined by this orientation
and by = the Hodge star operator

w: QP (V) = QvR(v,

If £ € X, then for any € Q5 (V) we have

(0, € N dICY) = /V (0, &)y = /V () Qv = /V o e

_ (_1)m(n7m) /V ¥ N = (_1)m(n7m)< @, %& N [V, or] >
Hence
ENAHY = (—1)™ ™)y &, N [V, or).
Using (1.1) we deduce
(—1)nmrm=mge A dH) = —d x & N [V, or).
We set
x(n,m):=14 (n—m)+ m(n —m) mod 2,
and we deduce
A(ENAH™) = (=1)X™™(d % &) N [V, or]
The equality 7' = T¢ ,, becomes

T = ((—1)’”(”7’”) * &+ (=1)Xm+) gy nt) N[V, or] = (r+do)N[V,or],

T € Qe (V), 0 € Q?p_tm_l(V). If T is the current of integration defined by a smooth compact
oriented submanifold of V' without boundary then 7 would be a Thom form of the normal bundle and

o would be an angular form of the punctured normal bundle, [1]. a

Corollary 1.13. Suppose that K is a compact subset of R™ and T € F, i (R™). Then T has finite
mass and the measure ur is absolutely continuous with respect to H™. If we set

_ dpr
pT - a7

e LYR™, dH™),

then
dur(z) = pr(z)dH" (z)
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and

T = &r(a) NdH", &r(a) = pr(2)T(@). O

We say that a flat current 7' € F';(O), O open in V/, is smooth if it can be written as 7' = T¢ ,, £,
smooth. The space of smooth flat currents with support in a compact set is clearly dense with respect
to the F'y g, -norm, r very small, where

K, = {v; dist(v,K) <r}.

For r sufficiently small we have K, C O. Any current I' € F'y (O) can be approximated in F'g, -
norm b smooth flat currents. Indeed using molllifiers, we obtain a family of smooth flat currents
T. € Fy k. (O) such that

Fg (I.—T)—0 as ¢ — 0.
Suppose now that K admits a compact neighborhood N C O such that there exists a Lipschitz
retraction  : N — K. Then r.(T") = 0 and

Fr (rI.—r.,T) —0 as £ — 0.
We have thus proved the following result.

Corollary 1.14. If K is a Lipschitz neighborhood retract in O then the space Fy i (0) is separable
with respect to the F i norm. O

From Proposition 1.11 and mollifiers we deduce the following refinement of Lemma 1.6.

Proposition 1.15. If'V is an open subset of the n-dimensional Euclidean space V', K is a compact
subset of Vand T € Fy (V) then there exist R € Fy (V) and S € Fyyq i (V) such that

T =R+0S, Fg(T)=|R|+I5]: O

2. SLICING

2.1. Notations.

We denote by Uan oriented Euclidean space of dimension N.

We denote by U an open subset of U'.

We denote by F' : U — R" a locally Lipschitz map.

We denote by (1g; the canonical volume form on U determined by the Euclidean metric and

the orientation.

e We denote by (x!,...,2") the canonical Euclidean coordinates on R™, and by w,, the vo-
lume of the unit ball in R".

e Forr > 0and y € R™ we set

]‘ n
= S lpn® Q= da' A A da™,

where 1¢ denotes the characteristic function of a set S C R".
Observe that €2, defines a O-current d, € Qo(R")

1
(f, 0yr) = / f(z)dz! - dz™, Vf e CoL(R™),
B(y,r)

wpr™

that converges as  — 0 to the current [y] defined by the Dirac measure concentrated at y.
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2.2. A baby case. Suppose that the map F' is smooth, and M C U is a smooth compact, orientable
manifold with boundary of dimension m > n. Suppose that y € R™ is a regular value for F'|;; and
F|apr. Then the fiber F~1(y) N M is compact manifold of dimension m — n with boundary

O(F Hy)nM)=F'y)noM.
This manifold is also orientable because its normal bundle in M is trivial.
For r > 0 sufficiently small any point z € B(y, ) is a regular value of F'|;; and thus
Tyr=F ' (B(y,r)) N M

is a tubular neighborhood of F~!(y) N M fibered in manifolds with boundary.
Fix an orientation [orj)s] on M and denote by F*(dy,) N [M, or)] the (m — n)-dimensional
current in U given by

PG on)) = [ F(@) e
(M,orr)

1 * m—n
= / F*(Q) ANp, Vpe Qe ().
(Ty,eyorlﬂ)

Wy, T

Proposition 2.1. If orp is the orientation on F~'(y) N M such that F*Q A orp = or); along

F~Y(y), then
lir%F*(5y7r) N[M,ory) = [F ! (y) N M, ory]
weakly, i.e.,
1 / _
lim F*(Q /\g0:/ w, Ve Q" (U). (2.1)
N0 Wy ™ (Ty,r0rnr) ( ) (F=1(y)NnM,orF) v ( )

Proof. For simplicity we assume that y is the origin in R". We discuss first the case m > n. We
denote by u' the pullback of z° to M via F. Then F'~1(0) is described by the equalities

wl=...=u"=0.

Then

F*Q=du' A Adu™
Observe that the equality (2.1) hold for all form ¢ such that supp ¢ N F~1(0) = ) because, for
r > 0 sufficiently small, the restriction of ¢ to the tube Tg . is trivial. Thus we assume that supp ¢ N
F~1(0) # (). Via partitions of unity we can reduce the problem to the situation when ¢ is supported
on a tiny neighborhood N of a point p € F~1(0) where there exist smooth function u"*!, ... u™
with the following properties,

e The collection of function (u',...,u”, u"! ... u™) defines local coordinates for M on
N.
e The restrictions of u 1, ... 4™ to F~1(0) NN define local coordinates for ~1(0) on ).

e The orientation of M is given by the m-form du' A --- A du™ and the orientation orp is
given by the (m — n)-form du™*1 A - A du™.
We write
— 1 00 _ . .
p= Z prdu’, pr € CouN), I={1<1i1 < <dpyp <m}.
|[I|I=m—n
We have
F () Np= cpnﬂ,m,mdul A Adu™
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We regard ¢, 41,... m as a smooth, compactly supported function on R™. For every & = (... 2"
in R™ we set
1 1 1
[p]e = / Ont1,m(@, o ™) du™ T du™,
We deduce from the Fubini theorem that

1 * 1 n r—0
[ P@ne= [ st = [ 0
WnT (Ty,rsorar) WnTr B(0,e) (F—1(0),0rF)

The case m = n is simpler. In this case we have

[F7H0)NM,orpl = Y epbp
PEF~1(0)

where €, = +1if DF : Tp,M — R™ preserves/reverses orientations, and d, denotes the Dirac
measure concentrated at p. O

2.3. Lipschitzian pullbacks. Suppose that 7' € F',,, i(U), where K is a compact subset of U. We
would like to give a meaning to the current F*(),, . N'T" when F'is only a locally Lipschitz map. To
achieve this, we begin by giving a new description of this current when F' is smooth. Suppose that
n € Q"(R™) is a smooth n-form. In this case, for any ¢ € Q™ (U) we have

(p, F'nNT) = (F'nUp,T) = (—1)"" (e U F*y, T)

= (—1)""(FT o N T) = (=1)"" M (n, Fu(p N T)).
Lemma 2.2. For any smooth form ¢ € Q""" (W) the current p NT is flat and n-dimensional.

Proof. According to Example 1.12(b) we can find compactly supported, integrable forms
e LYW, AN"™U"), o e LYU,AN"™1U™)
such that
T=7rNn[U,ory|+0(cnN[U,ory]), Fr(T)< |7z ry + Mol Lok
We have
eNT=(TUp)NT+enadlcn[U,ory).

Note that for any o € 2" (U) we have

(@, N0 N [U,ory))) = (o Ud(p Ua), [U, ory))

= (0 UdpUa),[U,ory)) £ (0 Up Uda), [U, ory))

= <Oé, (U U d@) n [U7 OTU]> + <a7 a( (U U ()0> n [U7 OTUD >
We deduce
eNT=(TUp+0cUdp)N[U,ory]l+0((cUy)N[U,oryl).

The above proof implies that
Fr(pnT) < el (Il + llollzr) +lldell pe @ 17l )
for any compactly supported integrable forms
e LYW, AN"™U"), o e LY U, AN"™"1U™),

such that
T=1rN[U,ory]+90(cnN[U,oryl).
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Invoking Proposition 1.11 we deduce from the above that
Fr(enT) < (llellpee ) + ldell oo (1)) F(T) < 2F (@) F e (T). (2.2)

Using the above lemma we deduce that the current Fy. (¢ N T') € €, (R™) is flat. Invoking Corollary
1.13 we deduce that there exists a compactly supported, integrable n-field {7, : R™ — A"R" such
that

Fi(oNT) =¢&pp AN dH" ().

We can thus write for any smooth n-form n € Q™(R")

(o, F'nNT) = (—1)"m=m) /R N(€r,p)dH", Vo € Q™ (W). (2.3)

Note that the right-hand-side of the above equality makes sense for locally Lipschitz maps F' and
bounded measurable forms 7. We take (2.3) as definition of F™*n N T ,where {7, is determined
uniquely by the equality

Er o NdH™ = Fy(oNT).

We can rewrite (2.3) as

(o, F*(nNT) ) = (=1)"™ ="y, F(pNT)), ¥ne L>®(R", A"(R")*), (2.4)
Vi € Qo " (U).
Using (1.16) we deduce that since F,(¢ NT) is flat and top dimensional it has finite mass and
[E(pNT)|l = Fr(pnT) < 2max(L, 1) L F e (0) Fx (T), (2.5)

where L denotes the Lipschitz constant of F'| . Using this in (2.4) we deduce that
(o F'n0T ) < |l @my | Ele NT)|| < 2max(Lp, 1) LEF i (T) |10 oo gy F i (),

Hence
FK(F*U ﬂT) < 2maX(LF, 1) %FK(T)HT]HLoo(Rn)

Observe next that for any ¢ € Q™ "~1(U) we have
(0, 0(F'nNT)) = {dp, F'nNT) = (=1)"" " (n, F.(dp N T)).
Using the identity (1.1) we deduce that
dpNT =+0(eNT)+eNIT
so that
Fi(dpNT)=20F.(pNT)+ F.(pnaT).
Note that Fi,.(¢ NT) € Qp11(R™) = {0} so that
F.dpNT)=+xF.,(eNnadT), (2.6)
which shows that
I(FnNT)=+nnoT. (2.7)
The correct sign is determined from (1.1) by assuming that ) is a smooth n-form on R™ and observing
that dF*n = F*dn = 0.
Note that if 7" is normal, then so is ¢ N'T" and
le AT+ 0 N )| < NIl pee ey (171 + 19T1)).-
We deduce that F*n N T is also normal and

IF*n N Tk + 10F* n VD)l < [0l o (e (I TN+ 10T ). (2.8)
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Using (1.14) and (2.6) we deduce that if 7" is normal, G : U — R™ is another locally Lipschitz con-
stant and L ¢ is the largest of the Lipschitz constants of F'|x and G|k, then for any n € Q™ "(U)

IF(eNT) = Gu(eNT)|| = F(Fu(¢nT) = G.(nNT))
<|IF = Glleow) (Liglle N T + Ly o N 0T

<|NF = Glleo) Il oo (x) (LI Tl +L7;v,_clHaT|| )-

We deduce as before
Fi(FnT—GqnT) < |IF = Glloogo Inll o (Lhal Tl + LEd0T] ), @9)
VT € N, k(U). We gather all of the above observations in our next result.

Proposition 2.3. (a) If T' € F, k(W) and 1 is a bounded, measurable n-form on R", then F* Nn €
F,,_, k(W). If additionally T € N, (W), then F* Nn € Np—p k(W)

(b)IfT € Fr x(U), m > n and n; are bounded measurable n-forms on R™ such that

Jim n;(y) =n(y) aeye FEK),

sup ||| oo 5y < 00,
J

then
lim Fg(F'nNT—FnNT)=0.

j—oo
(c)If
lim Fg(T; —T) =0,

J—00

and 1 is a bounded, measurable n-form on R™ then
lim Fg(F*nNT; — F'nnT) =0.
j—oo

(d)If T € Ny, k(U), nis a bounded, measurable n-form on R"™ and F; : U — R" are smooth maps
such that

jlinélo | F; — Fllcoxy =0 and sup HDFjHCO(K) < 00,
- j

then

lim FK(F]’-knﬁT—F*nﬂT):O. O

j—oo
2.4. Slicing. Suppose that " € F',,, x(U), m > n. For any y € R™ and any r > 0 we set

F Y y)n, T :=F*Qy, NT.
We will sometime use the alternate notation
(T, Fy)r = F ' (y) N, T.

We obtain in this fashion a continuous map

R™ > Yy— Fﬁl(y) maT S men,K(u)‘
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Theorem 2.4. Let T € F,,, kW) and F : U — R™ a locally Lipschitzian map, n < m.
(a) There exists a negligible set Z C R such that for any y € R™ \ Z the weak limit

lim F~Yy) N, T
lim F(y) N
exists. It defines a current denoted by F~1(y)NT € Qp_m(UW) supported on F~1(y) N K and called

the F-slice of T over y. We will some time use the alternate notation (T, F,y) to denote the F slice
overy.

(b) For ¢ € Q™ ™(U) we have

(n,F 1 (2)NT) = Qér,(2)) ae zeR,
where Q = dx' A --- Adxz™ € A(R™)*.
Proof. For every ¢ € Q""" (U) we have

cpt
1 1

—1 _ _ n
(o) 00 T) = (Lo @ BenD) = oo [ afer e

We need to extract some additional information about {7,
Using Proposition 1.15 we can find currents R € F, 7(0), S € F,41 g (U) of finite mass such
that

T =R+0S, Fg(T)=|R[+I5].

For ¢ € Q¢ " (U) we have
©oNT =pNR+pNas.

n
cpt

(w, Fu(pNT)) = (F'w,oNT) = (F'w, o N R) + (F'w,p N JS)

If F' is smooth, then for any w € QF , (R™) we have

(dw = 0)

—

:<g0UF*w,R>+(dg0UF*w,S>:/<<pUF*w,R>d,uR+/<d<pUF*w,§>d,u5.
u u

For every y € R™ we set

pr(y) = sup [{((pUF*w)p, Bp)|, psly) = sup [((dpUF*w)p, Sp).
F(p)=y F(p)=y

We deduce
[(w, F(pNT))| < / Fprdur +/ F*psdps
U U

=/ pR(y)dF*uR(yH/ ps(Y)dFups(y).
R™ R

There exists a universal constant Cy > 0 such that
pr(Y) < CLE| @l =lwyl, pr(y) < CLET gl pelwyl, Vo, Vo,
where L denotes the Lipschitz constant of F'|x. We deduce

| (w, F(enT)) | < Collllon o | (Lsz3 /R wyldFupn(y) + Lyt /R IwyldF*Ms(y)>-(2-10)

An approximation argument shows that the above inequality continues to hold for any locally Lips-
chitz map F' and any bounded measurable n form w.
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Using [6, Thm. 4.7] we deduce that there exists a negligible subset A C R”™ such that for any
y € R™\ A the limits

© =i F, B(y, , © =i
r(Y) lim = nr(B(y,r)), Os(y) lim =

F*IUS(B(yar))
exits and are finite. For ¢ > 0 we set

Or(y,r) =

Fair(B(w.r) + - Fos (Bly.)).

wpr™

Fix a countable subset I C Q" (U) such that for any ¢ € Q™7"(U) there exits a sequence ; in
JF such that

lim [|o; — ¢|lc1(x) = 0.
J]—00

This implies classically (see e.g. [6, Thm. 4.7], [7, Thm 11.1]) that there exists a negligible subset
Z, C R™ such that for any y € R" \ Z,, the limit

1 .
< ]]-B(y,r)Qv F*((/O N T) > - 71‘{,% W /B(y,r) Q(&T,g@)dj{

exists and it is equal to (&7, (y)). The set

li F1 LT =1
Tl\né(so, (y) N, T) i

zZ=Au| 2
pedF

is negligible. We deduce from (2.10) that there exists a constant C; > 0 such that, for any ¢y, ¢1 €
Q05" (U), any r > 0, and any y € R™ \ Z we have

cpt
| (po, F~H(y) " T) — (o1, FH(y) N, T) | < Cllo — ¢1llcr O (y, 7). 2.11)
To finish (a) it suffices to prove that for any y € R™ \ Z and any ¢ € Q¢ (U) the function

(0,1] 2 7+ (Au(r) :== (p, F X (y) N, T) € R

as a finite limit as » — 0. We will achieve this by showing that for any ¢ > 0 there exists r = () > 0
such that

|[A,(r') — Ap(r")] <&, YO <r',r" <r(e).
Set

My := sup Or(y,r),
re(0,1)
and choose ¢’ € F such that
, 5
Mylle — ¢'llerxy < 3

Since the limit lim,\ o A, () exists and it is finite, there exists () € (0, 1) such that

1A (1) — Ay (7)) < % Y0 < o1 < r(e).

(2.12)

Then
[Ap(r') = Ap(r")]| < [Ap(r') — A ()] + [Ap (1) = A (") + [Agr (") — Ap(r")]
(use (2.11))

e (2.12)
<l = ¢llcrx)Or(y, ') + 3 Flle— OllerOr(y,r") < e

This proves (a). Part (b) follows from classical density results, e.g. [6, Thm. 4.7] or [7, Thm 11.1]. O
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The ideas in the above proof lead to the following additional information about slices. For details
we refert to [3, Thm. 4.3.2].

Theorem 2.5. Under the same assumptions as in Theorem 2.4 the following hold for any function
® € L>°(R™).

(a) For any ¢ € Qg " (W) we have

[ ew)e. Fl@)nT) = . F@@)n1).

(b) If ||T|| < oo then
@Q)NT=F(®)N(FQNT),

/R ()| ) N TN () = 5 (#0) AT
<L} /u F*(@)dyr,

/Rn </u fd“F%y)nT) dH"(y) = /uf(U)duF*mT(u), VfeL®U).

(c)IfT € Np (W) then F~Y(y) NT € Ny k(W) for a.e. y € R™
(d) FY(y)NT € Fp_p k(W) forae. y € R™
(e) If K is a Lipschitz neighborhood retract in U, then the function
RSy F Y y)NT € Fpyn (W),
is summable with respect to the norm F i and
Fr(F Y y)nT—-F Y y)n,T) < /B( | Fr(F Y y)nT —F Y(z)NT)dH"(z) — 0,
y,r
as p\, 0, fora.e. y € R™
() If G : R™ — R" is locally Lipschitz, then
(GoF) Y 2)nT = Z sign det DyG - F~*(y) N T.
yeG~1(z)
(g) If V is an open subset of a finite dimensional Euclidean space V and G : U — V,and H : V — R"
are locally Lipschitz maps, then
Gi((HoG) (®Q)NT ) = H*(PQ) N G4(T),
Gy((Ho G Hy)n T) = H Y y)NG.T forae yecR"
g

Theorem 2.6. Suppose that F : U — R" and G : U — R are locally Lipchitz maps and T €
F,, k(W), m > n+ v. Define the cartesian product

FxG:U—=R"xR", (FxG)(u)=(F(u),G(u))
Then for a.e. (y,z) € R" x R” we have
(FxG) Yy,z)nT =G z)n (F_l(y) NT).
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2.5. An alternative approach to slicing. Suppose that f : U — R is a locally Lipschitz map and
T € Ny, k (U) is a normal current of dimension m > 1. For r € R we set

<Ta f T+> = (aT)|{f>r} - a(T’{f>7‘} )>

(T, f,r=) = 0(Tlipary) = OT)l(p<ry
= (D) (s2ry = (Tlis2ry )
For all but countably many r-s we have
pr({f =0}) + por({f=0}) =0
so that
(T, f,r+) =(T, f,r=)
for all but countable many r € R.

Proposition 2.7. For almost all v € R we have
1
ST =S (T, for+) + (T, =) ). (2.13)

Proof. Let us first observe that for every Lipschitz function v : R — R we have the equality

fdy)NT = f*()NdT —=d( f*(v)NT).

Indeed, this is true for smooth f and g, and by smoothing we can extend this to general f and ~.
Note that d~y is a bounded measurable form on R and f*(dv) N T can be defined as in Subsection
2.3. Define 7, , : R — R to be the Lipschitz approximation of the Heaviside function t — H (¢t —r)
depicted in Figure 1

FIGURE 1. A Lipschitzian approximation of the Heaviside function

Then )
]]-['r—l-h,oo) < Yr.h < ]]-[T',OO)’ d’Yh,r = Eﬂ(r,r—l-h]dta
and

1 *
Ef dt N T|rcparsn — (T, f,r+)
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= f*(d’YT,h) nT-— <T7 /s T+> = ('Yr,h of— IL{f>r})(aT) _a( (’W,h of— IL{f>7"})T )
=R =—-S

Hence

F(f*(dyp) VT = (T, for+) )< IR + 18I < (por +pr )({r < f <7 +h}).

It follows that for almost all » we have
. 1 )
%{%F( Ef*dt NT v prsn — T, fyr+) ): %{%(MaT + MT)({T <f<r+h})=0
We obtain similarly that, for almost all r, we have
. 1
K% F( Ef*dt NT|p—h<fer — (T, f,r—) )= 0.
To conclude observe that for almost all » we have

1 * * —
ﬁ ( frden T|7“—h<f<r + frdtn T‘r<f<r+h) =f 1(T) Np T
O

Combining the above proposition with Theorem 2.6 we can produce alternative description of the
type (2.13) for normal currents 7' € IN,,,(U), and locally Lipschitz maps f : U — R", 1 <n < m.
For integer multiplicity rectifiable currents we can give an even more explicit description of the
slicing process. Recall that a current 7' € €,,,(U) is called rectifiable if the following hold.
e It is representable by integration.
e There exists a countably m-rectifiable set M = Mr C U and a locally J{"-integrable
function 07 : M — R such that

pr = 07 - H™|ar.

e For H™-a.e. point p € M there exists a basis e1(p), . . ., e, (p) of the approximate tangent
space T, M such that

—

T=ei(p)N-Nen(p).
We denote this current by [M, f, 6]. The rectifiable current 7" is said to have integer multiplicity
if Op(p) € Z for H™ -a.e. p € M.

Proposition 2.8. Suppose that T = [M, T, 0] € Q,,(U) is a normal integer multiplicity rectifiable
m-curent. We set fnr = f|a,

M, :={pe M; Vflu(p) #0},
(a) For almost all v € R the set
M, = f~(r)yn M*
is countably (m — 1)-rectifiable, and for H™ ‘-a.e. p € M, both TyM, and ¥V fr;(p) exist. More-
over, for such r and p the approximate tangent space 1y, M, exists and

TpyM = TpM, & R(V fa).
We define T, (p) € A™U by the equality

—

Tw.9 (7,

m—1
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and we set

0, otherwise.

er(p):{ﬂp)a fp)=r, Viu(p)#0

(b) For almost any r € R we have
f_l(r) NT = [[MT,T;, 97"]]

Proof. Part (a) follows from the basic properties of countably rectifiable sets. We refer to [6, Lemma
28.1] for more details.

To prove (b) we fix a countable subset F C Qg’;t_l (U) that is dense in the C'*(supp T')-norm and

we prove that there exists a negligible subset Z C R wwith the following properties.
(i) Forany r € R\ Z both f~'(r) N T and [M,, T}, 0], ] are well defined.
(ii) Forany ¢ € ¥ and any r € R\ Z we have
(o, FH() N T) = (@, [Mr, T, 0as,]). 2.14)

Fix a negligible subset Zy C R such that » € R\ Zo both f~1(r) N'T and [M,, T}, 0| 5, ] are well
defined. We will show that for any ¢ € J there exists a negligible subset Z, C R\ Zj such that
(refeq: slice-rect) holds for any r € R\ (Zyp U Z,,). More precisely we have to show that

- . 1 ”
(o, [My, T, 0|01, ]) = lim —(Lgpcpapymy At Ao, T). (2.15)
rN\O h
We have

(Lgp<p<rimp Ao, T) = (< p<rinynmdf Ao, T)

Vi (p) ( dfas s0> (T,)0(p) dH™ (p)
P

1
/{r§f§r+h}ﬂM |V fr(p)|

=9,(P)

r+h
=/ (/ gga(p)df}fm_l(p)) dt
r M,
Now observe that

| 0w w) = [ ulTim)o(m)ase (o) = (0. [V T 4]
M; My

(use the co-area formula)

Hence

1

. 1 r+h .
E<ﬂ{r§f§7"+h}f dt Ao, T) = h/ (o, [My, Tt, 0,])dt

To prove (2.15) for a.e. r it thus suffices to show that the function
t— <<)O7 IIMraﬁv 9t]]>

is locally integrable. This is another application of the co-area formula

[ g 7da = [ ( / |9r|d9fm—1) = [ whulpaser
R R r M

< IV fumllzee /M 1013 = IV ful L= I T]-
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