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Introduction

These are the notes for the Fall 2008 Topics in topology class at the University of Notre Dame. I view
them as a “walk down memory lane” since I discuss several exciting topological developments that
took place during the fifties decade which radically changed the way we think about many issues.

The pretext for this journey is Milnor’s surprising paper [MiS6] in which he constructs exotic
smooth structures on the 7-sphere. The main invariant used by Milnor to distinguish between two
smooth structures on the same manifold was based on a formula that F. Hirzebruch had recently
discovered that related the signature of a smooth manifold to the integral of a certain polynomial in
the Pontryagin classes of the tangent bundle.

The goal of this class is easily stated: understand all the details of the very densely packed,
beautiful paper [Mi56]. From an academic point of view this has many very useful benefits because
it forces the aspiring geometer to learn a large chunk of the basic notions and tools that are part of
the everyday arsenal of the modern geometer/topologist: Poincaré duality, Thom isomorphism, Euler,
Chern and Pontryagin classes, cobordisms groups, signature formula. Moreover, such a journey has
to include some beautiful side-trips into the inner making of several concrete fundamental examples.
These can only enhance the appreciation and understanding of the subject.

The goal is a bit ambitious for a one-semester course, and much like the classic [MS] from which
I have drawn a lot of inspiration, I had to make some choices. Here is what I decided to leave out:

e The proofs of the various properties of U, N and x products.

e The proofs of the Poincaré duality theorem, the Thom isomorphism theorem, and of the
Leray-Hirsch theorem.

e The beautiful work of J.P. Serre on the cohomology of loops spaces, Serre classes of Abelian
groups and their applications to homotopy theory.

The first topic ought to be part of a first year graduate course in algebraic topology, and is pre-
sented in many easily accessible sources. The right technology for dealing with the last two topics
is that of spectral sequences, but given that the spectral sequences have a rather different flavor than
the rest of the arguments which are mostly geometrical, I decided it would be too much for anyone to
absorb in one semester.






Chapter 1

Singular homology and
cohomology

For later use we survey a few basic facts from algebraic topology. For more details we refer to
[Bre, Do, Hatchl, Spa].

1.1. The basic properties of singular homology and
cohomology

Aring R is called convenient if it is isomorphic to one of the rings Z, Q,R or F), := Z/p, p prime. In
the sequel we will work exclusively with convenient rings .

We denote by A,, the standard affine n-simplex
n
A, = {(to,,tn) S Rg—gl, Ztl = 1}
i=0

For every topological space X we denote by 8 (X) the set of singular k-simplices in X, i.e., the set
of continuous maps

(o Ak — X.
We denote by C (X, R) the singular chain complex of X with coefficients in the ring R,
Co(X,R)=EPCr(X,R), C(X,R)= @ R= P Rlo).
k>0 €8k (X) €8k (X)

Above, for every singular simplex o € 8;(X) we denoted by |o) the generator of Cy (X, R) associ-
ated to this singular simplex.

For every k > 1, and every ¢ = 0, ..., k we have a natural map
0; : Sk(X) — Sk,l(X), Sk(X) S0 0,0 € Skfl(X),
where for any (to,...,tx—1) € Ag_1 we have

8¢0‘(t0, ceey tk—l) = O‘(to, ey tiz1, 008, . 7tk—1)'

ﬁ—I



2 Singular homology and cohomology

The boundary operator 0 : C(X, R) — Cx_1(X, R) is then uniquely determined by
k

Olo) = > (~1)i0).

i=0
We denote by He(X, R) the homology of this complex. It is called the singular homology of X with
coefficients in R.

Every subspace A C X defines a subcomplex Co (A, R) C Co(X, R) and we denote by Co (X, A; R)
the quotient complex
Co(X,A;R) := Co(X,R)/Ce(A, R).
We denote by He(X, A;R) the homology of the complex Co(X, A;R). It is called the singular
homology of the pair (X, A) with coefficients in R. When R = Z we will drop the ring R from the
notation.

The singular homology enjoys several remarkable properties.

o If x denotes the topological space consisting of a single point, then

R k=0
Hils, R) = {o k>0,
e A continuous map of pairs f : (X, A) — (Y, B) induces a morphism
fo: Ho(X, A;R) — Hu(Y, B, R).
Two homotopic maps fy, f1 : (X, A) — (Y, B) induce identical morphisms, (fo). = (f1).. More-
over

(L(x.4)), = Lao(x,aR)-

o If (X, A) EN (Y,B) EN (Z,C) are continuous maps then the induced maps in homology satisfy
(go f)s=gso fu

e For any topological pair (X, A) we have a long exact sequence
- S H(AR) B Hy(X,R) 5 Hy(X,A;R) S Hy 1(A,R) — -+,

where i, and j, are induced by the natural maps (A4,0) < (X,0) N (X, A). This long exact
sequence is natural in the sense that given any continuous maps f : (X, A) (Y, B) the diagram
below is commutative for any k£ > 0.

Hyi1 (X, A;R) —2— Hy(A,R)
fx fx (1.1.1)

Hy1 (Y, B; R) —— Hy(B; R)

e If X is a topological space and B C A are subspaces of X, then we have a natural long exact
sequence

% H(A,B;R) 5 H.(X,B;R) &5 Hy(X, A;R) % Hy_1(A,B;R) — - --
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o (The universal coefficients theorem) For any topological pair (X, A) we have a natural isomorphism

Ho(X,A) ®z R — Ho(X, A;R).
Moreover, for every prime number p > 1 we have a non-canonical isomorphism of vector spaces over
Fp

Hy(X, A;F,) = Hy(X,A) @ F, @ Tor, ( Hy—1(X, A) ),

where for any Abelian group G, and any positive integer n we set

Tor,(G) :=={g € G; ng=0}.
o (Kiinneth theorem) If X,Y are topological spaces, A C X, B C Y, then for every k£ > 0 there
exists a natural injection

x: @ Hi(X,A;R) @ Hy(Y, B;R) — Hi((X,A) x (Y, B); R)
i+j=k
where
(X,A) x (V,B) = (X xY,AxYUX x B).

If R is a field, then the cross product x defined above is an isomorphism. If R = 7Z, then we have a
short exact sequence

0— P Hi(X,A;R) @ H;(Y,B;R) = Hy((X,A) x (Y, B); R) —
i+j=k
- P Hi(X)«Hj(Y)—0, (1.1.2)
itj=k—1
where the torsion product G« H of two Abelian groups G, H is uniquely determined by the following
properties.
GxH=ZHxG, GxH =0, ifGor H is torsion free,

(@Gz) x H = @Gi x H, (Z/n)* (Z/m) = Tor,(Z/m) = Z/ged(m,n), Ym,n € Z>;.
el il
The sequence (1.1.2) is non-canonically split and thus we have a non-canonical isomorphism
Hy(X xY) ( P Hi(x ®ZHj(Y)> ® ( D HZ-(X)*HJ»(Y)).

it+j=k itj=k—1

Remark 1.1.1. For any two topological spaces X, Y we have a “reflection”
r: X xY =Y xX, (z,y)— (y,2).

Let us point out a rather subtle fact. If « € H;(X, R), b € H;(Y, R) then

r(a x b) = (=1)7b x a.

“ 2

In other words, the cross product“x” is not commutative, but rather super-commutative. O

A very important property of singular homology is the excision property. This requires a more
detailed treatment.

Suppose X is a topological spaces and A, B are subspaces of X. Note that the complexes Cq(A)
and C,(B) are subcomplexes of Ce(A U B) and thus we can form the subcomplex Co(A) + Co(B)



4 Singular homology and cohomology

generated by these two subcomplexes. We say that the that the collection of subsets {A, B} is an
excisive couple if the natural inclusion

Cu(A) + Co(B) — Co(AU B)

is a quasi-isomorphism, i.e., it induces an isomorphism in homology. We have the following nontriv-
ial examples of excisive couples.

Example 1.1.2. (a) For any subset S C A U B we denote by int 4,55 the interior of S with respect
to the subspace topology on AU B. If AU B = intqup A U int4up B, then { A, B)} is an excisive
couple.

(b) If there exists a CW structure on A U B such that A and B are (closed) subcomplexes, then
{A, B} is an excisive couple. O

Theorem 1.1.3. Suppose that { A, B} is an excisive couple. Then the natural morphism
Ho(A,ANB;R) - H (AU B, A; R) (1.1.3)
is an isomorphism called excision isomorphism. Moreover, we have a natural long exact sequence
. o Hy(ANB,R) - Hu.(A,R) & Hy(B,R) ~» H.(AUB,R) % H,_1(ANB,R) — ---

called the Mayer-Vietoris sequence. O

Corollary 1.1.4. Consider a topological pair (X, A), and U a subset of X such that clU C int A.
Then the natural isomorphism

Ho(X \U, A\ U;R) — Ho(X, A; R)

is an isomorphism.

Proof. Apply the isomorphism (1.1.3) to the excisive couple (A, B) = (4, X \ U). O

More generally, two pairs (X1, A1), (X2, A2) of subsets of a topological space X, A; C X; C X,
i = 1,2 is said to form an excisive couple if each of the couples { X1, 4}, { X2, Ao} is excisive. If
{(X1, A1), (X2, A2)} is an excisive couple of pairs, then we have a relative long-exact Mayer-Vietoris
sequence
= Hip(Xa N Xy, Ay N Ags R) — Hi(Xq, A R) © Hi(Xa, A2; R) —
— Hy (X1 UX5, AU A9 R) — Hip 1(X1 N Xy, A1NAg;R) — -+ (1.1.4)

For a topological space X we define C*(X, R) to be the co-chain complex of R-modules dual to
Ce(X). More precisely, we have

C*(X, R) := Homgz (Ck(X), R) ).

The cochains @ € C*(X, R) are said to have degree k and we write this deg v = k. Note that we
have an isomorphism of R-modules

C*(X,R) = Homp(Cr(X,R), R).

If we denote by
(—,—): HomR(Ck(X, R),R)) x Cx(X,R) = R,
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the natural R-bilinear map defined by
HomR(C’k(X, R),R) x Cp(X,R) 3 (p,c®@r1) = r{p,c) :=r1p(c),
then the coboundary operator § : C*(X, R) — C*+1(X, R) is uniquely determined by the equality
(6p,c) := (p,dc), Yo € C*Y(X,R), ¢ € Cp(X,R).

Because of this defining property, we will often find it convenient to denote the coboundary operator
as an adjoint of 9, § = O7. The bilinear map (—, —) described above is called the Kronecker pairing.

We denote by H*(X, R) the cohomology of the complex C*(X, R). It is called the singular
cohomology of X with coefficients in R. The Kronecker pairing induces a bilinear map

(= —=)w s H*(X, R) x Hi(X,R) — R,

and we will continue to refer to it as the Kronecker pairing. This induces a morphism
k: H*(X, R) — Homy(H(X, R), R),

called the Kronecker morphism

Theorem 1.1.5 (Universal coefficients theorem for cohomology). Suppose that the topological space
X is of finite (homological) type, i.e., the homology groups Hy(X) are finitely generated Abelian
groups for any k > 0. We denote by Ty,(X) the torsion subgroup of Hy(X). Then the following hold.

(a) If the ring of coefficients R is a field, then the Kronecker morphism k is an isomorphism.
(b) If R = Z then we have a short exact sequence

0 — Homg, (T},—1(X),Q/Z) — H*(X) - Homy ( Hy(X),Z) — 0. (1.1.5)
The sequence splits, but non-canonically, so that we have a non-canonical isomorphism

H*(X) =2 Homy (Ty—1(X),Q/Z) ® Homg ( Hy(X), Z) O

If A is a subspace of the topological space, then the short exact sequence of chain complexes
0= Co(A) = Co(X) = Co(X,A) — 0
induces a short exact sequence of co-chain complexes
0 — Homyz(Ce(X, A),R) — C*(X,R) — C*(A,R) — 0.

We denote the co-chain complex Homyz, ( Co(X, A), R) by C*(X, A; R). Observe that it can be iden-
tified with the subcomplex of C*(X) consisting of cochains ¢ such that ¢(c) = 0 for any chain
c € Co(A).

A continuous map of topological pairs f : (X, A) — (Y, B) induces a morphism
#* . H*(Y,B;R) — H*(X, A: R)

called the pullback by f. Two homotopic maps induce identical pullbacks, and we have the functori-
ality properties

(gof)=frog’, I"=1
A topological pair (X, A) determines a natural long exact sequence

oo HMX, A;R) — H¥(X, R) — H*(A,R) % H* (X, A;R) — - -
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where the connecting morphism ¢ satisfies a naturality condition similar to (1.1.1). The excision prop-
erties formulated in Theorem 1.1.3 and Corollary 1.1.4 have an obvious cohomological counterpart
whose precise formulation can be safely left to the reader. In particular, under appropriate excisive
assumptions, we have a relative Mayer-Vietoris sequence

o= H¥(X1 U Xy, A UAg; R) — H¥(X 1, A1; R) ® H*(X,, Ay; R) —
— HM(X1 N X5, A; N Ag; R) — H Y (X1 U Xy, Ay UAy;R) — -+ (1.1.6)

1.2. Products

Although the cohomology groups of a space are completely determined by the homology groups,
the cohomology groups posses additional algebraic structures, which have a rather subtle topological
origin, and are not determined by the homology groups alone.

The first such additional structure is given by the cup product. To define it, and formulate its main
properties we need to introduce some notation. Fix a topological space X.

First, let us define the front and back face operators
Fy, By, : 8,(X) — 8k(X).
Observe that we have two canonical linear inclusions
iy s REFL oy ROHL
ix(to, ... tx) = (to, ..., 15, 0,...,0) € R™L ju(to,...,tx) = (0,...,0,t0, ..., tx) € R*TL

which restrict to linear inclusions i, jr : Ax < A,. For a singular simplex o : A,, — X we set
Fyo = 0 o} and Bro = o o ji. These face operators induce linear maps

Given two cochains a € C*(X, R), B € C*(X, R) we define the cup product o U 8 € C*+(X, R)
by the equality'
(aU B, c) = (o, Fie) - (B, Byc), Ve € Cryo(X).

This cup product satisfies the conditions

5(U B) = (ba) U B+ (—1)*Ea U (68),

(@UB)Uy=aU(BUy),

for any cocycles «, 3, . This implies that the cup product induces an associative product

U: H*(X,R) x H*(X,R) — H*(X, R).
This product on cohomology groups® is super-commutative, i.e.,

aUB=(-D*BUawa, Vae H*(X,R), g HX,R).

We have thus obtained a structure of super-commutative ring with 1 on H*(X, R). The ring H*(X)
is called the cohomology ring of X. This is a much more refined topological invariant of a space, and
its computation is much more difficult than the computation of the cohomology group structure.

I This definition agrees with the definition in [Hatchl, §3.2], and [Spa, §5.6]. It differs by a sign, (fl)u , from the definition in
[Bre, VI.4] and [MS, App.A].

2We want 1o emphasize that the above equality does not hold at cochain level.
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Let us observe that if A is a subspace of X,
aeCFX,A;R) c CH(X,R), BeC!X,A;R) c CX,R)

then the cochain o U /3 also belongs to the subcomplex C*(X, A; R). In particular, we have an
associative and super-commutative product

U: H*(X,A;R) x H*(X,A;R) — H*(X, A; R)

We obtain in this fashion a ring structure on H*(X, A; R). The ring H®(X, A) is called the cohomol-
ogy ring of the pair (X, A).

We can be even more precise. Suppose (A, B) is an excisive couple. If
aeCF(X,A;R), BeCYX,B;R),
then o U 3 belongs to the subcomplex
C*(X,A;R)NC*(X,B;R) C C*(X,AUB;R).

Because (A, B) is excisive, the inclusion C*(X, A; R) N C*(X,B;R) — C*(X,AUB;R)is a
quasi-isomorphism. We obtain in this fashion an extraordinary cup product

U: H*(X,A;R) x HY(X,B;R) — H*™(X, AU B;R), (A, B) excisive couple.  (1.2.1)
Finally, we define the cap product
N:C*X,R) X Cou(X,R) = Cp_i(X, R)
uniquely determined by the equality
(a, BN¢) = (aUB,c), Yae C™"¥(X R), feCFX,R), ceCpn(X,R).
More precisely, for every singular m-simplex o € 8,,(X) and any 8 € C*(X, R) we have
BN lo) = (B, Byo) - |Fin-k0).
Then
ABNe)=(=1)""* 6B Ne+ BN (de), (1.2.2)
and thus we obtain a R-bilinear map
N: H*X,R) x Hyp(X,R) = Hp 1 (X, R).
More generally, we have cap products
N:HYX,A;R) x Hy,(X, A; R) — Hypy_ (X, R)

and
H*(X,A;R) x Hy(X,AUB;R) = H,,_1(X, B; R)

if the couple (A, B) is excisive. If we denote by 1x € Hy(X, R) the canonical 0-cocycle (which
maps every O-simplex to 1), then we have the equality

(o, ¢) = (1x,aNe)e, Yo HYX,R),ce Hy(X,R), k> 0. (1.2.3)

which give an alternate description to the Kronecker pairing. We list in the proposition below some
basic properties of the cap product.
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Proposition 1.2.1. Let X be a topological space, and A1, Ao, A3 C X. Set A = A1 UA3U As. Then
forany o; € H*(X,A;; R), i = 1,2 and any c € Ho(X, A; R) we have

a1 N(azNe) = (a1 Uaz)Ne,
if the appropriate excisive assumptions are made.

If f : X = Y is a continuous map, and B; are subsets of Y such that B; D f(A4;), i = 1,2.
Then we have projection formula

L(f*B10e) = B1N fue, V01 € H*(Y,B1; R), c € Ho(X, A1 U Ag; R), (1.2.4)

if the appropriate excisive assumptions are made. O

1.3. Local homology and cohomology

For any closed subset C' of topological space X, we set
HE(X,R) := Ho(X,\C;R)., HYX,R) := H*(X,X \ C;R)
We say that H{ (X, R) is the local homology of X along C and that He,(X, R) is the local cohomol-
ogy of X along C. Let us justify the usage of the attribute local. For any neighborhood N of C in X
we have X \ N C X\ C and thus, excising X \ N, we deduce that the inclusion induced isomorphism
Ho(N,N\C;R) = Ho(X, X \ C; R)

is an isomorphism. In other words,

HE(N,R) = HY(X,R) for any closed neighborhood N of C'in X.
This shows that Y (X, R) depends only on the behavior of X in an arbitrarily small neighborhood
of C, whence the attribute local.

From the relative long Mayer-Vietoris sequence (1.1.4) we deduce that for any closed sets C, Cy €
X we have a long exact sequence
o= H'Y(X,R) — HOY (X, R) ® H (X, R) — HO'"* (X, R) — HO'W (X, R) — - -
(1.3.1)
Observe that if C; C Co then X \ C1 D X \ Cy, and thus we have a restriction map
por.c,  HE2(X, R) — HEY(X).

Example 1.3.1. Suppose X = R", and C is the closed set consisting of a single point xg. We set
H2o(R") := H{"}(R"). Then

Z k=
HP(R") = " (13.2)
0 k#n.
We begin with the case n = 1. We only need to prove that H;°(R) = Z. Assume zo = 0. Let
I = [—1,1]. By excision and homotopy invariance we deduce that

HJ°(R) = Ho(1,0I).
From the long exact sequence of the pair (I, 01) we obtain the exact sequence
0= Hy(I) > Hi(I,0I) % Hy(dI) % Ho(I) — 0 = Ho(I,I).
The interval [ is connected and we have a canonical isomorphism

Z — Ho(I), Z > n— nlt),
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where ¢ is an arbitrary point in I regarded in the obvious fashion as a singular O-simplex. We also
have a canonical isomorphism

7235 (4,k) v~ j| — 1) + k|]1) € Ho(dI)
The morphism ¢, can then be described as
Jl=1) + k1) = G+ R
so that ker i, = Z. This groups has two generators g, = |1) — | —1)andg_ = | — 1) — [1).
The Mayer-Vietoris connecting 0 : Hy(I,0I) — Hy(91) induces an isomorphism
0: H(I,0I) — keri..

Thus, either of the elements O~ 'g is a generator of H;(I,0I). Let us observe that 9~'g, can be
represented by the singular chain

H1 - AL — [—1, 1], A1 D (to,tl) — 11 —1p € [0, 1], (1.3.3)
because O|u1) = g, . We say that |p4) is the canonical generator of Hy(1,01).
Now observe that
(R™,R™\ 0) = (R"',R""1\ 0) x (R,R\ 0)
and using Kiinneth theorem we deduce (1.3.2). Moreover, we can inductively describe a canonical
generator y,, of HX°(R™) described by the equality

Hn = Hn—1 X HU1.
Note more generally that if C' is a compact convex subset of R, then for any convenient ring R we
have
R, k=
HE@®R" Ry ={"" " (1.3.4)
0, k#n.
O






Chapter 2

Poincaré duality

In this section, we want to describe, without proofs, several versions of the Poincaré duality theorem,
and then discuss a few applications.

2.1. Manifolds and orientability

Recall that a topological manifold of dimension n is a Hausdorff paracompact space M such that
every point has an open neighborhood homeomorphic to R”. The integer n is called the dimension of
M.

For every convenient ring R and any closed subset C' C M we set
Om(C,R) := HY (M, R).
As indicated in the previous section, any inclusion C; C C5 determines a restriction map
pcy,Cy -t OM(CQ, R) — OM(Cl, R).
Note that for every x € M we can choose an open neighborhood U, and a homeomorphism
v, :U, — R",
and we have
(1.3.4)

Opm(z,R)=H;(M,R) =2 H;(Uz,R) = R.
In particular, the above equality proves that the dimension is a topological invariant. More generally,
if K C Uy is a compact neighborhood of z such that ¥, (K) is convex, then

Om(K,R) = R. 2.1.1)

We will refer to such neighborhoods of x as compact convex neighborhoods. We have the following
result, [Hatchl, Lemma 3.27].

Lemma 2.1.1. For any ring R, and any compact set K C M we have
HE(M,R) =0, Vi>n=dimM.
Moreover if u € HE(M, R) = Oy (K, R) then
p=0< pyx(p) =0€ Op(z,R), Vo € K.

|
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Definition 2.1.2. (a) An R-orientation of M at x is an isomorphism of R-modules p, : R —
Opr(z, R). Such an isomorphism is uniquely determined by the element p,(1) € Ops(x, R). For
simplicity, we will identify 1, with 1, (1).

(b) An orientation of M along the closed subset C C M is family of orientations

{1e € Om(ce, R); c€C}

depending continuously on ¢ in the following sense. For every ¢y € C there exists a compact convex
neighborhood Ky and px, € Opr (Ko, R) such that

He = pC,Ko(:uKo)a Vee CN KO-
We will denote by Or (M, C) the collection of R-orientations of M along C'. For simplicity, we set
Orp(M) :=Orr(M,M). Weset Or(M) = Orz(M).
(¢) The manifold M is called R-orientable along C'if it admits R-orientations along C'. The manifold

M is called R-orientable if it admits an orientation along itself. When R = Z we will drop the prefix
R from the above terminology and we will refer simply as orientation, orientability. O

Proposition 2.1.3. (a) The manifold M is R-orientable along a compact connected K subset if and
only if
Oum(K,R) 2 R.
Moreover, for any orientation |1 € Orp(K, R) there exists a unique generator ug € Op(K, R)
such that
e = paok (1K), Vo € K.

Conversely, any generator g of Op (K, R) defines an orientation p of M along K defined by the
above equality.

(b) Any manifold is Fy-orientable along any closed subset. O

Exercise 2.1.4. Prove Proposition 2.1.3. Hint: Use (2.1.1), Lemma 2.1.1 and the Mayer-Vietoris
sequence (1.3.1). O

To any manifold M we can associate its orientation cover w : M — M. This is a double cover
of M defined as follows.

As a set M is the disjoint union

M= || Oou(z),

where O7(x)* denotes the set of generators of the infinite cyclic group Oy (z). Hence, Op(z)*
consists of two elements and therefore the natural projection

T |_| Op(z)* =M, peOy(x) —»n(p) ==z

18 two-to-one.
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To describe the natural topology on M we need to introduce some notations. For every Lo € M
and every compact convex neighborhood K of zy = m(up), there exists a unique generator ux €
O (K) such that pg k, (1tK,) = po. For x € Ky we set po(z) = pz, ko (LK, ), and we define

IN(MO = {uo(x); x € Ky }

We declare a subset U C M to be open if and only if, for every p € U there exists a compact convex
neighborhood K of 7(x) we have K,, C U. With this topology on M themap 7 : M — M isa
double cover.

Proposition 2.1.5. A manifold M is orientable if and only if the orientation double cover M — M
is trivial. Moreover, there exists a bijection between the collection of sections of this cover, and the
orientations of M. O

Exercise 2.1.6. (a) Prove Proposition 2.1.5.

(b) Prove that any simply connected manifold is orientable. a

Proposition 2.1.7. Suppose M is a connected orientable manifold. Consider an orientation | €
Or (M) described by a family pu, € Oy (x), x € M. For any homeomorphism f : M — N we
define f.u to be the family

feb = {f*,um €ON(f(2)); w e M}

Then the family f.u is also an orientation on N. a

Exercise 2.1.8. Prove Proposition 2.1.7. O

Exercise 2.1.9. Suppose that M is a connected, orientable manifold. For any orientation p = {uw €
Onm(z); = € M } we define

—p={—py € Op(z); z€M}.

A homeomorphism f : M — M is called orientation preserving (resp. reversing) if there exists an
orientation y of M such that f,pu = p (resp. fip = —p).
(a) Prove that the following statements are equivalent

(al) The homeomorphism f is orientation preserving (resp. reversing).

(a2) For any orientation p on M we have f.u = p (resp. fopr = —p).

(a3) There exists an orientation p on M and x € M such that fip, = g, (resp fipe =

—f(w))-

(b) Suppose A : R™ — R” is an invertible linear transformation. Prove that A is orientation preserv-
ing of and only if det A = 0. O
Exercise 2.1.10. Suppose M is a connected smooth n-dimensional manifold. Prove that the following

statements are equivalent.

(a) The manifold M is orientable in the sense of Definition 2.1.2.
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(b) There exists a smooth coordinate atlas (Uy)aec4 With coordinates (z%,) along U, such that
on the overlap U,z = U, N Ug we have

i
ox!,

: ) > 0.
axg 1<i,j<n

det <

(c) There exists a nowhere vanishing degree n-form w € Q"(M).

Hint: Consult [N1, Sec. 3.4.2]. O

2.2. Various versions of Poincaré duality

Before we state the theorem, we need to recall an algebraic construction. A directed set is a partially
order set (poset) (I, <) such that

Vi,jel, dkel, k=1,j. 2.2.1)

An inductive family of R-modules parameterized by a directed set [ is a collection of R-modules
(M;)icr, and morphisms ¢;; € Homp(M;, M;), one such morphism for each i < j, such that
ii = Ly and @r; = @ © @ji, Vi < j < k. The inductive limit (or colimit) of such a family is the
R-module denoted hﬂie s M; and defined as follows.

As a set, hﬂz‘e s M is the quotient of the disjoint union U;cy M; modulo the equivalence relation
M;>x;~xj € My <= 3k = 14,5: pri(x;) = @rj(z;).
The condition (2.2.1) guarantees that this is an equivalence relation. If we denote by [z;] the equiva-
lence class of [z;] then we define
[s] + [25] = [spmi(wi) + Pr;(;)]
where k£ is any element k& > ¢, j. Again (2.2.1) implies that this operation is well defined and induces
an R-module structure on li%miG ; M;. The natural map
M; > z;— [z;] € hglMZ
icl

is a morphism of R-module. It is denoted by ¢; and it is called the natural morphism M; —

i€l
The inductive limit construction has the following universality property. If ¢; : M; — M, ¢ € I,
is a family of morphisms of R-modules such that for any ¢ < j the diagram below is commutative

M
’V \‘”f
- M;

Pji

M;
then there exists a unique morphism of R-modules

1#11&1MZ—>M
iel
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such that for any ¢ € I the diagram below is commutative.

hgrle %

_
i€l M
M;

If K is a compact subset of a topological manifold M, then the collection N of neighborhoods of
K in M has a natural partial order < satisfying (2.2.1). More precisely, given neighborhoods U, V' of
K wedeclare U < V if U D V. For every ¢ > 0 we have an inductive family of R-modules
H'(U,R), U € Ng,
where for every U O V D K we define oy, : H (U, R) — H'(V, R) to be the pullback induced by
the natural inclusion V' < U. The inductive limit
lim H'(U,R)
UeNk
is called the i-th Cech cohomology of K with coefficients in R and it is denoted by H’ (K,R).

If K is not “too wild” then the Cech cohomology of K coincides with the singular cohomology.
For example, this happens if K is weakly locally contractible, i.e., for any x € K and any neighbor-
hood V of x € K there exists a smaller neighborhood U of x in K such that the inclusion U — V is
homotopically trivial.

Suppose that M is a connected n-dimensional manifold, and K is a compact subset such that
M is R-orientable along K. Fix an R-orientation y € Orgr(M, K) defined by an element pux €
H"(M,M \ K;R).
For any neighborhood U € N we have an excision isomorphism
H,(U,U\K;R) = H,(M,M\ K;R)

and thus pjc determines a natural element Y. € H,(U,U \ K;R). The cap product with ¥
redetermines a morphism

N - H(U,R) — H, (U, U\ K;R) = HX ,(M,R).

Moreover, if U D V then the diagram below is commutative

Hrlz{—i(Ma R)

Wy QK

H'(U,R) H'(V,R)

pV,U

Passing to inductive limit we obtain a morphism H*(K, R) — HX (M, R) which, for simplicity, we
denote by Ny . It coincides with the cap product with px when H* = H ). We have the following
fundamental result. For a proof we refer to [Bre, VL.8], [Do, VIIL.7] or [Hatchl, Sec. 3.3].

Theorem 2.2.1 (Poincaré duality). If the n-dimensional manifold M is R-orientable along the com-
pact set K, then any orientation ux € Ory (K, R) determines isomorphisms

Nux : H(K,R) — HEX (M,R), Vi=0,...,n. O
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Remark 2.2.2. (a) Let us observe that if K; C K5 are two compact subsets of the manifold M of
dimension n, then we have a commutative diagram

. Ny
Hi(Ka, R) —2 HX2,(M, R)
(2.2.2)
. K
where the vertical arrows are the restriction maps. Loosely speaking, if a cohomology class ¢ €

H*(K) “extends” to a cohomology class on Ko, then the Poincaré dual of ¢ can also be extended to
Ks.

(b) When the compact K is a deformation retract of one of its open neighborhoods U in M, and U is
R-orientable then we have another duality

HyY (M, R) ™ Hy(K).
For a proof we refer to [Iv, Thm. 1X.4.7]. O

If M happens to be compact, and we choose K = M in the above theorem, we deduce the
classical version of the Poincaré duality.

Corollary 2.2.3. If M is a compact, R-orientable n-dimensional manifold, and py; € Hyp, (M, R) is
an R-orientation on M then the map
Npar - H¥(M, R) — H,,_,(M, R)

is an isomorphism for any 0 < k < n. O

Recall that a manifold with boundary is a topological pair (M,0M) satisfying the following
conditions.

e The setint (M) := M\ OM is a topological manifold. Its dimension is called the dimension
of the manifold with boundary.
e The set OM is closed in M and it is called the boundary. 1t is a manifold of dimension
dim OM = dimint (M) — 1.
e There exists an open neighborhood N of OM in M and a homeomorphism
U:(-1,0] x OM — N
such that ¥ ({0} x OM) = OM. Such a neighborhood is called a neck of the boundary.
Given a manifold with boundary (M, M) and a neck N of M, we can form the noncompact
manifold M by attaching the cylinder C' = (—1, 1) x 9M to the neck along the portion (—1, 0] x 9M.
We will refer to M as the neck extension of the manifold with boundary.
A manifold with boundary is called R-orientable if it admits an R-orientable neck extension.
Suppose that (M, M) is a compact R-orientable n-dimensional manifold with boundary. An

orientation on a neck extension M induces an orientation on M described by an element

v € HY (M, R) = Hy(M,0M; R).
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Figure 2.1. A neck extension of a manifold with boundary.

If 0 : Hy(M,0M,R) — H,_1(0M, R) is the connecting morphism in the long exact sequence of
the pair (M, OM) then (see [Bre, Lemma VI1.9.1]) the element Oups € H,—1(OM, R) defines an
orientation on M. We will refer to it as the induced orientation and we will denote it by pgpy.

Theorem 2.2.4 (Poincaré-Lefschetz duality). Suppose that (M,0M) is a compact, n-dimensional
R-orientable manifold with boundary. If py € Hy,(M,0M; R) is an R-orientation class, then for
every 0 < k < n the map

Npar - HE(M, R) — H,_(M,0M; R) (2.2.3)

is an isomorphism of R-modules. If i : OM — M denotes the natural inclusion, then the diagram
below

- i (71)17.—1@—15
H"(OM, R)

H*(M, R) H*Y(M,0M; R)

N Npam N

Hn—l—k(M’ R)

(2

Hn—k(Ma OM; R) T’ H(nfl)fk(an R)
is commutative.

Proof. The commutativity is an immediate consequence of the boundary formula (1.2.2) and the
definition of the connecting morphism.

Applying Theorem 2.2.1 to the manifold M and the compact set K = M C Mwe conclude that
the morphism (2.2.3) is an isomorphism. O

Corollary 2.2.5. If (M,0M) is an compact, R-orientable, n-dimensional manifold with boundary
and ppyr € Hy (M, 0M; R) is an orientation class on M then the morphism
Nuar : H¥(M,0M; R) — H,_(M, R)
is an isomorphism.
Proof. For simplicity, we drop the ring R from notation. The isomorphism follows from the five

lemma applied to the commutative diagram below relating the homological and cohomological long
exact sequences of the pair (M, dM) in which all but the dotted morphisms Ngps = HI (M, M) —
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H,,_;(M) are isomorphisms.

i* (-n)"*1s

H*(OM)

~-H’“(M) H’““(M)m

Mg Npan Npnr Npns

e Hn—k(M’ 8M) T) H(nfl)fk((?M) Hn—l—k(M) ——— n—k—l(Ma 8M) te

(2

O

2.3. Intersection theory
Suppose M is a compact, connected, R-orientable n-dimensional manifold. We fix an orientation
class pyr € H, (M, R). We denote by P D) the inverse of the Poincaré duality isomorphism

Nuas - HF(M, R) — H(M, R).

More precisely PDjy is a the morphism PD); : Hy(M,R) — H" *(M, R) uniquely defined by
the equality

PDM(C) Nuy =c¢, Yeée Hk(M, R)
The Poincaré dual of a cycle ¢ € Hy(M, R) is the cohomology class PDys(c) € H" *(M, R).
When no confusion is possible we will use the simpler notation ¢! := PD(c). Note that

ph, =1y € HO(M, R), (2.3.1)
where 1) is the canonical element in H(M, R).

Exercise 2.3.1. Prove the equality (2.3.1). O

For any o € H¥(M, R) we have
(a, ) = (o, ¢ N ) = (@ U El g e
If ¢; € Hy, (M, R), i = 0,1, then we define co ® c1 € H,,_(,41,)(M, R) by the equality
coecy :(cg)UcJ{)ﬂ,uM:cEr]ﬂcl. (2.3.2)
The cycle cg e c; is called the intersection cycle of cy and c¢;. The resulting map
HkO(M, R) x Hy, (M,R) — Hn—(k0+k1)(M> R), (co,c1) — CE[) Ner.
is R-bilinear and it is called the infersection pairing in dimensions kg, k1.

An interesting case arises when n is even dimensional, n = 2k and kg = k1 = k. We obtain an
R-bilinear map

QM : Hk(M) R) X Hk(Mv R) — R, QM(COacl) = <1M’C-(r) ﬂcl)ﬁ = <CE) UCJ{MUM>H~

Let us point out that if z € Hy(C, R) is a O-cycle, then we can write z as a finite formal linear

combination
z= Z rilxi),
i
where r; € R and x; are points in M regarded in the obvious fashion as 0-simplices. Then

<]_]\/[7 Z>k = ZT’I
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The form Q ; is skew-symmetric if k is odd and symmetric if k is even. Observe that if ¢ € Hj, (M, R)
is a torsion element, i.e., roc = 0 for some ry # 0 then

Qulc,d) =0, V' € Hy(M,R),
because the convenient ring R is an integral domain. If we set
Hy (M) := H,(M, R)/Torsg Hy(M, R),
then we deduce that ()7 induces an R-bilinear map
Qum = Qumr - Hy(M, R) x Hy(M,R) — R,

called the R-intersection form of M. When R = Z we will refer to ) s simply as the intersection
form of the oriented manifold M . The intersection form defines an R-linear map

QY : Hy(M, R) — Hompg( Hy(M,R),R),

Hi(M,R) > c+— Q;r\/[c € Homp( Hy(M,R),R), QR/IC(CI) = Qu(c,d), V' € H,(M,R).
More explicitly,
Q;wc = k(") = ko PDy(c),
where K : Hk(M, R) — HomR( Hi(M,R), R) is the Kronecker morphism.
Theorem 2.3.2. Suppose M is a compact, connected R-oriented manifold of dimension n = 2k.

Then the intersection form Qs is R-nondegenerate, i.e., the morphism Q;rw is an isomorphism of
R-modules.

Proof. Let us first observe that M has finite homological type because M is homotopic to a compact
CW -complex, [Hatch1, Appendix A]. We distinguish two cases.

1. The ring R is a field R = Q,R,F,. Hy(M,R) = H;(M,R) is a finite dimensional R-vector
space, and from the universal coefficients theorem we deduce that the Kronecker morphism
k : H*(M,R) — Homp( Hy(M,R),R)
is an isomorphism of vector spaces. Hence QE\/[ is an isomorphism since it is the composition of two
isomorphisms.
2. R = Z. We have
Ql, = ko PDy - H(M) — H*(M) -5 Homg(Hy (M), Z) = Homg,(Hy(M), Z).

The morphism P.D}; induces an isomorphism between Hj,(M) — H" (M) /torsion, and the univer-
sal coefficients theorem implies that the Kronecker morphism induces an isomorphism

Kk : HE(M) /torsion — Homy(Hy(M),Z).
O

Suppose M is Z-orientable, dim M = 4k. From the universal coefficients theorem for homology
we deduce that M is also R-orientable, and we can regard H,, j»(M) as a lattice in H,, o(M,R), i.e.,
a subgroup of the vector space H, /o(M,R), such that a Z-basis of H, /2(M) is also a R-basis of
H,, /5(M,R). For simplicity we set

L:=H,;5(M), Lg =H,;(M,R), by :=dimg H,;»(M,R).
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By choosing a Z-basis ¢ := (¢;) of L we can represent (s by a matrix Q) = (qij)lgingbnm. This
matrix is symmetric because () is symmetric. The matrix () defines a Z-linear map

QV:Zbw> = 202 N “mje; =Y gimje,
J 2
which can be identified with the linear map QL. Thus det ) = £1.
The R-intersection form is a symmetric, bilinear nondegenerate from
QM,]R : LR X LR — R.
The Z-basis ¢ = (c;) of L defines a R-basis of L, and Qs r is represented by the symmetric matrix
Q. as above. The matrix ) has only real, nonzero eigenvalues. We denote by bff /2 (M, ¢) the number

of positive/negative eigenvalues of the matrix (). The numbers bf /2(M , ¢) are independent of the
choice of basis ¢ and we will denote them by b, (M )*. Their difference

TN = b:/Q(M) — b;/Q(M)

is called the signature of the manifold M. If M is not connected, then
™ = Z TM@)
‘

where M, are the connected components of M. We want to emphasize that the signature is an invari-
ant of compact, oriented manifolds whose dimensions are divisible by 4, and it would be appropriate
to denote it by 7a7;,,, to indicate the dependence on the orientation. If we change the orientation to
the opposite orientation, then the signature changes sign as well

TM,—ppn = —TMpps-

Remark 2.3.3. If M is a smooth, compact, oriented manifold of dimension M, then the singular
cohomology with real coefficients is naturally isomorphic with the DeRham cohomology of M, i.e.,
the cohomology of the DeRham complex,

0— QM) % Ql() S ...

Moreover, the cup product is described by the wedge product of forms. The intersection form Q7 g :
H?F(M,R) x H?*(M,R) — R can be given the alternate description

Q(a7/6):/ Oé/\ﬁ, \V/O[,BEQ2k(M), da:dﬁZO
M
For a proof we refer to [BT, II1.§14]. 0

Proposition 2.3.4 (Thom). Suppose (M,0M) is a compact, orientable manifold with boundary, and
dim M = 4k + 1. Fix an orientation class pp; € Hyxyr1(M,0M) and denote by oy the induced
orientation on the boundary. Then

TOM,pop = 0.

Proof. This equality is a consequence of two facts of rather different natures: an algebraic fact, and
a topological fact. First, let us introduce some terminology.
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If V is a finite dimensional real vector space and B : V x V' — R is a bilinear map, then a
subspace L C V is called lagrangian with respect to B if and only if

B(v,z) =0, Ve L <= v € L.
We have the following algebraic fact. Its proof is left to the reader as an exercise.

Lemma 2.3.5. Suppose @ : V x B — R is a bilinear, symmetric, nondegenerate form on the finite
dimensional real vector space V. Then the following statements are equivalent.

(a) The signature of Q) is zero.
(b) There exists a subspace of V which is lagrangian with respect to Q.
O

Lemma 2.3.6. We set V = H?*(0M,R) (2k = % dim M ), and we denote by Q the intersection form
onV

Q(a, B) = (@ U B, parr)s = (BU a, ionr) -
Let L C 'V be the image of the natural morphism

i* s H**(M,R) — H?*(M,R) = V.

Then L is lagrangian with respect to Q).

Proof. We have a commutative diagram

a*

H?*(M,R)

H2*(OM,R) —>— HZ*+1(M, OM;R)
Npar Nponr s (2.33)

H2k+1(M, 8M,R) T Hgk(aM,R) i
(

Hy, (M, R)

-k

Observe that L = ker § = Image (i*). We need to prove two things.
A.If g € L, then (g U aq, popr ) = 0, YV € L.
B.If ap € V and (o U oy, prons ) = 0, Yoy € L, then o € L.
A.Letaj € L, j = 0,1. Then 3&; € H* (M, R) such that i*&; = ;. We have
(i"6n Uitdo, ponr) s = (1761,9 o N pan)x
(use the commutativity of the left square in (2.3.3))
(1%, 0(6n N par)e = (61, 10(61 O par) e = 0,
since 7, o 9 = 0 due to the exactness of the bottom row in (2.3.3).
B. Suppose o € V' \ 0 and (a9 U i*Gny, pgns)w = 0, Vay € H**(M,R). Then
(i*6n, a0 N poar) e = 0, Véy € H* (M, R).
so that
(41,7 0 (0 N ponr))w = 0 Yéy € H* (M, R).
We deduce that i,0(apNpgar) = 0 because the Kronecker pairing H2* (M, R) — Hop,(M,R) — Ris
nondegenerate. From the commutativity of the right square in (2.3.3) we deduce that dcvg) N pps = 0.
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Using the Ponincaré-Lefschetz duality we deduce dag = 0, and from the exactness of the top line we
conclude that oy € L.

O
Proposition 2.3.4 is now a consequence of Lemma 2.3.5 and 2.3.6
O
Exercise 2.3.7. Prove Lemma 2.3.5. O

Definition 2.3.8. (a) Two smooth, compact n-dimensional manifolds My, M; are said to be cobor-
dant if there exists a smooth compact (n + 1)-dimensional manifold with boundary (]\/4\ L OM ) such
that MM is diffeomorphic to My LI M;.

(b) Two smooth, compact, oriented n-dimensional manifolds (Mo, o), (M, i1)  are s/aid to be ori-

entedly cobordant if there exists an a compact, oriented manifold with boundary (M, dM, j1), and an
orientation preserving diffeomorphism (see Figure 2.2)

(OM, 1) = (M, 1) U (Mo, — o).

We write this as My ~4 M. We say that M is an oriented cobordism connecting My to M;. The
manifold My is sometime referred to as the incoming boundary component while M is called the
outgoing boundary component. O

Figure 2.2. An oriented cobordism.

Observe that the cobordism relation is an equivalence relation. We denote by (2,, the cobordism
classes of compact n-dimensional manifolds, and by €2, the collection of oriented cobordism classes
of compact, oriented n-dimensional manifolds. For every compact, oriented n-dimensional manifold
(M, ppr), we denote by [M, pps] € QF its cobordism class.

Proposition 2.3.9. We define an operation + on Q. by setting
[Mo, po] + [My, pa] = [Mo U My, po U pua].

Then S is an Abelian group with neutral element [S™, jign], where jign denotes the orientation on
the sphere S™ as boundary of the unit ball in R"*'. Moreover

[M>MM]+[M7_,UM]:[SRMUS"]' U
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Exercise 2.3.10. Prove Proposition 2.3.9. O

Corollary 2.3.11. Suppose that (My, j1o) and (M, p1) are two compact, oriented manifolds of di-
mension n = 4k. If (My, o) and (M7, py1) are orientedly cobordant, then

TMo,po = TMy,p1-

In particular, the signature defines a group morphism 7 : Qi’k — 7.

Proof. Suppose (1\7 ,OM, ft) is an oriented cobordism between (M, 19) and (M, u1) so that
(OM,0p) = (M, p1) U (Mo, —pio)-
From Proposition 2.3.4 we deduce

0= Tont,op — "M, + TMo,—po = TMy 1 — TMo,po-

O

For uniformity we define the signature morphism 7 : ;7 — Z to be zero if n is not divisible by
4. We can now organize the direct sum
of =)

n>0

as a ring, in which the product operation is given by the cartesian product of oriented manifolds.
Exercise 2.3.12. Suppose (Mo, po), (M1, p1) are compact oriented manifolds. Then

T(Mox My,poxpu1) = T(Mouo) T(Mi,pu1)- =

The above exercise implies that the signature defines a morphism of rings
T:QF - Z.

In the remainder of this class we will try to elucidate the nature of this morphism. At this point we
do not have enough technology to compute the signature of even the most basic of manifolds such as
CP?*.

Here is a brief preview of things to come. We will discuss the Thom isomorphism and Thom
class, notions associated to vector bundles. We define the Euler class of a vector bundle and describe
its role in the Gysin sequence. As an application, we will compute the cohomology rings of projective
spaces.

This will allow us to introduce the Chern classes of a complex vector bundle using the elegant
approach due to Grothendieck. The Pontryagin classes are then easily defined in terms of Chern
classes. We then use the Pontryagin classes to construct Pontryagin numbers, which are oriented
cobordism invariants of oriented manifolds, or more formally, morphisms of groups

Q7 —Q

which are expressible as integrals of certain canonical forms on manifolds. A certain (infinite) linear
combination of such Pontryagin numbers produces a ring morphism

L:Qf-Q
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such that

L(CP*) = 70par
A clever argument using Thom’s cobordism work will allow us to conclude that L(M) = 7y, for any
compact oriented manifold M.



Chapter 3

Vector bundles and
classifying spaces

In this chapter we want to describe a few fundamental facts concerning vector bundles. Throughout
this chapter, the topological spaces will be tacitly assumed to be Hausdorff and paracompact.

3.1. Definition and examples of vector bundles

Loosely speaking, a topological vector bundle over a topological space B is a “continuous” fam-
ily (Ep)pep of vector spaces parameterized by the topological space B. The formal definition is a
mouthful, and requires a bit of extra terminology.

Given two continuous maps p; : X; — Y, ¢ = 0,1 we can form ropological fiber product is the
topological space

Xo xy X1 = {(z0,71) € Xo x X1; po(z0) = p1(z1) },

where the topology, is the topology as a subspace of Xy x X;. Observe that the fiber product is
equipped with natural maps

qi:Xo XyX1—>Xi, iZO,l,

and the resulting diagram below is commutative.

Xo Xy X1 L X1

Xo Y

Po
We denote by pg Xy p1 the natural map poqo = p1q1 : Xo Xy X1 — Y. We will refer to the above
diagram as the Cartesian diagram associated to the fibered product.
We let K denote one of the fields R or C. For every finite dimensional K vector space V, and any
topological space B we set
V=V xB,

and we denote by m = 7y, g the natural projection V 5 — B.
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Definition 3.1.1. Let r be a positive integer. A K-vector bundle of rank r over a topological space
B is a triplet (E, p, B), where E and B are topological spaces, and p : E — B is a continuous map
satisfying the following conditions.

(a) For every b € B, the fiber E, = p~1(b) is equipped with a structure of K-vector space
of dimension r depending continuously on b. More precisely, this means that there exist
continuous maps

+:ExpE—FE, -:KgxpFE—>FE
such that, for any b € B, the map + sends the fiber Ej, x E, = (p x g p)~1(b) to the fiber
Ep = p~1(b), the map - sends the fiber K x E, = (7 xpp) (b)) CKg xg Eto E, C E,
and the resulting structure (Ey, +, -) is a K-vector space of dimension 7.
(b) For any point b € B, there exists an open neighborhood U of b and a continuous map
Uy 2 p~Y(U) — K, such that for any b in B the map ¥ sends the fiber E}, to the fiber

K" x b and the resulting map is a linear isomorphism £, — K". The map W is called a local
trivialization.

The space FE is called the total space of the bundle, the space B is called the base of the bundle,
while p is called the canonical projection. Condition (b) is usually referred to as local triviality. A
line bundle is a rank 1 vector bundle. O

The notion of vector bundle is best understood by looking at a few examples.

Example 3.1.2 (Trivial vector bundles). For any topological space B the trivial K-vector bundle of
rank r over r is K'p % B. This can be visualized as the trivial family of vector spaces parameterized
by B: the same space K" for every b € B.In general, for any finite dimensional vector space V' we
denote by V g the trivial vector bundle V' x B — B. a

Example 3.1.3. Suppose p : E — DB is a vector bundle. For any subset S C B, we denote by
E|s — S the restriction of E to S. This is the vector bundle with total space E|s = p~1(S), and
canonical projection given by the restriction of P to E|g. g

Example 3.1.4. Suppose U, V' are K-vector spaces of dimensions dim V = n, dim U = n+r,r > 0.
Suppose that A : S — Homg (U, V), s — Ag, is a continuous map such that for any s € S the linear
map A, is onto. Then the family of vector spaces (ker As)ses can be organized as a vector bundle of
rank r over S. Define
E={(us)eUxS; Au=0}.
Then F is a closed subset of U x B and it is equipped with a canonical projection p : £ — B. The
fiber of p over B is naturally identified with the vector space ker A;. We want to prove that £/ bg
is a vector bundle. The condition (a) in Definition 3.1.1 is clearly satisfied so we only need to check
the local triviality condition (b).
Let s € S. Fix a basis (v1,...,v,) of V and a basis (e, ..., en; f1,..., fr) of U such that
Aspei = v;, Aggfj =0, VI<i<n, 1 <5<

These choices of bases produce isomorphisms U = K" ¢ K", V 2 K", Alinearmap A : U — V
can be identified via these isomorphisms with a pair of linear maps

A=Algn : K" 5 K", A® = Algr : K" — K™
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We have ASO = Ign and A = 0. For A : U — V we have
ker A = {(i:,xo) eK"a K", Az + A" = 0}.

We can find a small open neighborhood O of sq in S such that A, is invertible for any s € 0. If
s € O, then

(2,2°) € ker Ay = & = —A71A%0.
Now define @ : K" x O — Ep = p~1(0O) by the equality
K" x O3 (2% 5) = (A7 A% @ 20, 5) € ker A, x {s} C Ep.

Then @ is a bijection and its inverse ¥ : Ey — K satisfies the local triviality condition (b) in
Definition 3.1.1.

To see this general construction at work, consider the unit sphere

S"={FeR" |7 =1},
and define A : S — Hom(R"*! R) by setting
Azu=Zeou, VZe S, uweR"

where o denotes the canonical inner product in R”*!. Note that A; is surjective for any unit vector
Z. Hence the family ker A of kernels of the family (Az)zcs» defines a rank n vector bundle over S™.
It is none other than the tangent bundle of S™ since for any & € S™ the tangent space TzS™ can be
identified with the subspace of R" ! perpendicular to Z. O

Example 3.1.5. Suppose U,V are K vector spaces of dimensions dimU = m, dimV = n, and
A : S — Homg (U, V) is a continuous family of linear maps such that dim ker A, is independent of
s. We denote by r the common dimension of the vector spaces ker As. Then the family (ker Ag)ses
can be organized as a topological K-vector bundle of rank r. The total space is

E={(u,s)eUxS; Aqu=0}.

Clearly, condition (a) of Definition 3.1.1 is satisfied. To check the local triviality condition (b) we
proceed as follows. Fix inner products on U and V. (If K = C then we assume that these inner
products are Hermitian.) Let so € .S, and denote by Py the orthogonal projection onto Wy = A, (U).
The linear transformation

By, := PoAs, : U = Wy

is onto. Hence, there exists an open neighborhood N of sy such that By, = PyAs : U — Wy is
onto! for any s € N. Set Wy = A(Us) C V. We have dim Wy = dim W, for all s € S so that the
restriction of Py to Wy is an isomorphism P, : W, — W, for any s € N. Hence

ker B = ker A, Vs e U
and thus we deduce that
{)u,s) eUxN; Aqu=0}={(u,s) €eUxN; Bsu=0}.
This shows that locally we can replace the family A, with a family of surjective linear mappings.

This places us in the situation investigate in Example 3.1.4.

Lean you see why?



28 Vector bundles and classifying spaces

To see this result at work, consider a K-vector space of dimension n and denote by Gry (V') the
Grassmannian of K-vector subspaces of V' of dimension r. To topologize Gr, (V') we fix an inner
product on V' (hermitian if K = C)

(—,—):VxV =K
For every subspace U C V we denote by Py the orthogonal projection onto U, Let Qy = 1y — Py
so that Qs is the orthogonal projection onto U~ and ker Qy = U.
We denote by End%(V) the real vector space of selfadjoint endomorphisms of V, i.e., K-linear
maps A : V — V such that
(Avg,v1) = (vg, Avy), Yuvg,v1 € V.
Note that Q7 € End™ (V) so that we have an embedding
Gr, (V)3 U~ Qu € End™ (V).

We use this embedding to topologize Gr,.(V') as a subset of End™ (V). We now have a continuous
map

Q : Grk(V) — HOmK(Vv, V), U— QU
such that dimg ker Qu = r, VU € Gr, (V). Hence the collection of kernels {ker Qi } UeGr,
defines a rank r vector bundle over Gr, (V') with total space given by the incidence set

U ={(v,U) eV xGrp(V); ueV}.

This vector bundle is called the tautological or universal vector bundle over Gr,. (V') and we denote
itby U, /. We also set uﬂfjn = Uy gn. O

V)

Example 3.1.6 (Gluing cocycles). Suppose B is a topological space., and V is a K-vector space of
dimension r. A GL(V)-valued gluing cocycle on B consists of an open cover U = (U, )aeca of B
and a collection of continuous maps

98a : Uap — GL(V) = Autg(V), Uap :=Usa NUg
such that, for any o, 3,y € A, and any x € Uy, := U, N Ug N U, we have
Gya(®) = gy8(2) - gga(T). (3.1.1)

To such a gluing cocycle we associate in a canonical fashion a K-vector bundle of rank r over B
defined as follows. The total space E is the quotient of the disjoint union

Ume

acA
modulo the equivalence relation

V x Uy 3 (ta, o) ~ (ug,23) € VX U <= 0o =253 =, Ug = gBa(T)Ua-

The condition (3.1.1) implies that ~ is indeed an equivalence relation. We denote by [ug, o] the
equivalence class of (Uy, o). The natural projections p,, : Vy., — Uq are compatible with the
equivalence relation and thus define a continuous map

p:E—B
Note that if A € K and [uq, Zo], [ug, 5] € E are such that , = 23 = x we define

A [tgs To 1= [Aug, x4,
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[Ua, Ta) + [ug, 28] = [g8a(T)Ua + ug, ] = [Uq + gap(T)ug, z].
One can verify that these operations are well defined and define a vector bundle with total space E,
base B and natural projection p. We will refer to this bundle as the vector bundle defined by the
gluing cocycle and we will denote it by F (U, ges, V). O

Exercise 3.1.7. Fill in the missing details in the above example. O

Proposition 3.1.8. Any vector bundle is isomorphic to a vector bundle associated to a gluing cocycle.
d

Exercise 3.1.9. (a) Prove Proposition 3.1.8.

(b) Find a gluing cocycle description for the tautological bundle U; — CP*. O

Example 3.1.10 (The clutching construction). We want to describe a simple way of producing vector
bundles over the sphere S™ called the clutching construction. Soon we will see that this techniques
produces all the vector bundles over S™. For simplicity we consider only the case of complex vector
bundles.

This construction is a special case of the gluing cocycle construction. It associates to each con-
tinuous map

g: 8" = GL,(C), 5" '3p~ g(p) € GL,(C)

arank r complex vector bundle £, — S™. The map g is called the clutching map.

Consider the unit sphere
S" = {(a%2',...,2") e R"tY; Z lz'|* =1}.
i

For ¢ > 0 sufficiently small we set
Dt(e) ={(2"....,2") e S" 2> -}, D (e) ={(a°...,2") e 8™ 2" <e}.

Note that the open sets D*(¢) are fattened versions of the upper/lower hemispheres. The overlap
O. = DT(¢) N D~ (¢) is homeomorphic to the (open) cylinder (—¢,¢) x S™~!, where S"~! is
identified with the Equator {z° = 0} of the unit sphere S”.

The total space of E, is obtained by gluing the bundle Q]:,_(E) to the bundle QTD+(€) along Cfy_
using the gluing map

(C’”DJF(E) D C" x (—g,6) x 8" 13 (v,t,p) = (9(p)v,t,p) € C" x (—¢,6) x S* L C C’"D,(a).

We see that this is a special case of the gluing construction associated to the gluing construction
determined by the open cover

Up=D%(e), Uy =D (), goi(t,p) =9(p) = gro(t,p)~", V(t,p) € (—&,e)xS" ' =Upy. O

Definition 3.1.11. (a) Suppose F Y, Band F % B are two K-vector bundles over the same topo-
logical space B. Then a morphism of vector bundles from E to F'is a continuous map 7' : & — F
such that, for any b € B we have T'(E}) C Fj, and the induced map T}, : E, — F}, is a morphism of
K-vector spaces. We denote by Hom(E, F') the vector space of bundle morphisms £ — F'.
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(b) A bundle morphism 7' € Hom(E, F) is called an isomorphism if the map 7T is a homeomorphism.
We denote by V B (B) the collection of isomorphism classes of K-vector bundles of rank r over B.

(c) A K-vector bundle E of rank 7 over a topological space X is called trivializable if there exists an
isomorphism @ : £ — K. Such an isomorphism is called a trivialization of E.

(d) Suppose E 2 Bisa topological vector bundle. A continuous section of E over a subset S C B
is a continuous map u : S — FE such that u(s) € E,, Vb € B. Equivalently p o u = 1g. We denote
by I'(S, E) the space of continuous sections over S and we set I'(E) := I'(B, E). O

Observe that the space of sections of a K-vector bundle over S is naturally a module of the ring
of continuous functions S — K.

Example 3.1.12. (a) Every vector bundle £ — B admits at least one section, the zero section which
associates to each b € B the origin of the vector space Ej. In fact, the space I'(E) is very large,
infinite dimensional more precisely. For example, given any b € B there exists a section u of F/ such
that u(b) # 0. To see this, fix a neighborhood U of b such that E|;; is isomorphic to a trivial bundle.
Thus we can find a section s of I/ over U. Next, Tietze’s extension theorem implies that there exists
a continuous function f : B — R such that

supp f C U, f(b) = 1.
Then the section f - s over U extends by zero to a section of E over B.

(b) A section of the trivial vector bundle B’fg is a continuous map v : B — R*. A bundle morphism
T :RZ — R% is a continuous map 7" : B — Hom(R", R™). O

(c) Suppose E — B is a K-vector bundle. We have a natural isomorphism of K-vector spaces
I'E) — Hom(Kg, E),I'(B) > u+ L, € Hom(Kp, E)
Kp > (t,b) — tu(b) € E.

(d) If the K-vector bundle £ — B of rank r is described by a gluing cocycle (U,, 934 ), then a section
of E is described by a collection of continuous functions s, : U, — K" satisfying

35(%) = gga(x)sa(x), vaaﬂ? MRS Uaﬁ O

Definition 3.1.13. A vector subbundle of the K-vector bundle E % B is a K-vector bundle E, B B
with the following properties.

e The total space Ej is a subspace of E and py = p|g,.
e Forany b € B the fiber p; ' (b) is a vector subspace of Fj.

3.2. Functorial operations with vector bundles

We would like to explain how to generate in a natural fashion many new examples of vector bundles
from a collection of given bundles. A first group of operations are essentially algebraic in nature.
More precisely, all the natural operations with vector spaces (direct sum, duals, tensor products,
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exterior products etc.) have a vector bundle counterpart. Note that a vector space can be viewed as a
vector bundle over the topological space consisting of a single point.

Suppose E; 28, i = 0,1 are K-vector bundles of respective ranks 7;. Then the direct sum or
Whitney sum of Ey and F; is the vector bundle Fy & E; 2, S whose fiber over s € S is the direct
sum of the of the fibers Fy(s) and F (s) of Ey and respectively F; over s. The total space of Ey® E;
is the fibered product Ey x g E; given by the Cartesian diagram

Eo x5 Bl —— E,

E

P1

The natural projection p : Eg xg Fy — S is given by p = py o pg = po o p1. Note that p~1(s) =
Ey(s) x E1(s). Equivalently, if E; is described by the open cover U = (U, )qca (same open cover
for : = 0 and ¢ = 1) and gluing cocycle

9Ba,i - Uaﬁ — GL” (K),
then Ey & E is described by the same open cover U and gluing cocycle
98a,0 P 9gBa,1 - Uaﬁ — GLro-i-rl (K)
The tensor product of Fy and E; is the vector bundle Fy ®k FE; defined by the open cover U and
gluing cocycle
95a,0 & 9Ba,1 - Uaﬁ — GLron (K)
The dual vector bundle E is the vector bundle defined by the open cover U and gluing cocycle
-1
9Ba - Ua,B — GLro (K)v gﬁa(s) = (gﬁa,O(s)T) 5

where Af denotes the transpose of the matrix A. The exterior powers A* Ey are defined in a similar
fashion. The top exterior power A" Fy is called the determinant line bundle associated to Fj and it
is denoted by det Ej.

Exercise 3.2.1. Prove that
det(Ey @ E1) = det Ey ® det F. 0
Observe that a section A of the dual bundle £ defines a bundle morphism
Ly:Ey—Kg, Eo(s) v A(v) €K,, Vseb.
In particular we have a bilinear map
(—,—) = (=, —)s:T(Ey) x I'(Ey) — C(S,K)(= the space of continuous functions S — K),
Auys = (A(s),u(s)) €K, Vse S, Nel(Ey), ueTl(E).

More generally, a section u of Ej ®k E7 defines a I'(K g)-bilinear map

u:I'(Ey) x T'(Ey) = C(S,K) =T'(Kg).
The bundle Hom(FE)y, E1) is the bundle defined by the open cover U and gluing cocycle

980 : Uap — GL(HomK(KTO,K”) ),
950 ()T = 980.1(5)Tgpan(s) ", Vs €S, T € Homg (K™, K™).
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The sections of Homg (Ey, E1) is a bundle morphism Ey — Ej, i.e.,
]{OTTL(E‘Q7 El) = F( HOHI(E(), El) )

A special important case of these construction is the bundle Fj ®k FE;. Observe that we have a
canonical isomorphism, called the adjunction isomorphism

a:T'(E; ® E1) — Hom(Ey, E1),
uniquely defined by the following requirement.

For any A\ € I'(E{) and any v € I'(E}), then a(\ ® u) is the bundle morphism Ey — Ej such
that, for s € S, and v € Ey(s) then

a(A@u)(v) = (A(s),u(s) ) - v € Ei(s).

Exercise 3.2.2. Prove that the adjunction map a is well defined and is indeed an isomorphism. O

Proposition 3.2.3. For any topological space X we set Picyop(X) := V B{(X) = the set of isomor-
phism classes of complex line bundles over X. Then the tensor product operation

® : Picop(X) X Piciop(X) — Piceop(X)

defines an Abelian group structure on Pico,(X) in which the trivial line bundle is the identity ele-
ment, and the inverse of a line bundle L is its dual L* = Hom(L, C). The group Pic;o,(X) is called
the topological Picard group of X. g

Exercise 3.2.4. Prove Proposition 3.2.3. O

For every complex vector bundle E — S we denote by E — S the complex vector bundle with
the same total space and canonical projection as F, but such that, for every s € S the complex vector
space E, is the complex conjugate of Es. We will refer to E as the complex vector bundle conjugate
to E. This means that in E; the multiplication by a complex scalar \ coincides with the multiplication
by \in E,.

Definition 3.2.5. If £ — S is a real vector bundle, then a metric on E is a section g € I'(E* ®g E*)
such that, for every s € .S, the bilinear form g, defines an Euclidean product on E.

If E — S is a complex vector bundle, then a hermitian metric on E is a section h € I'( E* ®¢ E*)
such that, for every s € S, the form hg defines a Hermitian inner product on F. ( The form hs(—, —)
is linear in the first variable and conjugate linear in the second variable.) O

Exercise 3.2.6. (a) Prove that any vector bundle ¥ — S over a paracompact vector space admits
metrics.

(b) Suppose E — S is a real (respectively complex) vector bundle of rank n. Prove that .S can be
described using an open cover U = (U, )qc 4 and a gluing cocycle

98a : Uap — O(n), (respectively ggqo : Uag — U(n)). O

Proposition 3.2.7. Suppose E = S is a K-vector bundle equipped with a metric (hermitian if K =
C). For any vector sub-bundle F' — S we set

1. . L
Fri={veE; veFy, CEyy}
Then F* is also a sub-bundle of E of rank rank F- = rank E — rank F and F & F+ =~ E. a
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Another versatile operation is the pullback operation. It is topological in nature.

P

Suppose we are give a K-vector bundle of rank r over S, £ — S and a continuous map f : T' —
S. Then we can form a K-vector bundle of rank r over T', f*E % T uniquely determined by the
fibered product £ x g T' with Cartesian diagram

FFE=ExsT —— 1T

I

S

f

B p

The total space is T' X g E and the canonical projection is g. The map f induces an isomorphism
between the fiber (f*E); = ¢~'(t) and the fiber E .

If the bundle E % S is described by the gluing cocycle (Us; g8a)a,se 4, then f*E is described
by the gIUing cocycle (Va = fﬁl(Ua)v f*g,Ba = 9pa © f)
Example 3.2.8. (a) Suppose M is a smooth n-dimensional manifold of a real Euclidean space V.

Then for every x € M the tangent space 1),/ can be canonically identified with a n-dimensional
subspace of V. We obtain in this fashion a map

M — Gr,(V), M>zw— T,M € Gr,(V)

called the Gauss map of the embedding, and it is denoted by yps. This map is clearly continuous
(even smooth) and we have a bundle isomorphism

T*M = iU,
where U,, — Gr, (V) is the tautological vector bundle over Gr,, (V).

(b) Suppose that V' is a vector space and U C V is a vector subspace. For n > dim U we denote
by U,, 1 (respectively U, r7) the tautological vector bundle over Gr,, (V') (respectively Gr,,(U)). We
have a natural inclusion

i =1ipn: Grp(U) = Gr,(V).

Clearly iy, is continuous. Note that iy U, v = U, 1. O

Proposition 3.2.9. Suppose fo, f1 : Y — X are homotopic continuous maps. Then for every K-
vector bundle E 2 X of rank n the pullbacks Eq = 1O E, By = f{E are isomorphic vector bundles.

Proof. We follow the strategy in [Hatch2, §1.2] and [Hu, §3.4]. For simplicity we consider only the
special case when Y is compact. We need two auxiliary results.

Lemma 3.2.10. Suppose that E — [a,b] X Z is a K-vector bundle of rank n over the topological
space Z. Then the following statements are equivalent.
(a) The vector bundle E is trivializable.

(b) There exists ¢ € [a,b] such that the restrictions of E to [a,c] X Z and [c,b] X Z are trivial-
izable.
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Proof. The implication (a) = (b) is obvious. To prove (b) = (a) we fix trivializations
VU_: Elggxz = K gxz: Y+ 1 Elienxz = Kigpxzs

and set
) _ -1
(I)'i?xz_)K?x27 q)—\IJ—’cXZO\I’+ |c><Z-

We can regard & as a continuous map ® : Z — GL,,(K). We extend it as a continuous map

D :[e,b] x Z = GL,(K), ®(t,2) = d(2).

n

We regard @ as a bundle isomorphism & : K pixy = Kig pxz- Now define ¥ - E' — Ky ./ to be

lIj|[aac]><Z =V, \Il|[c,b]><Z =QoV,.
O

Lemma 3.2.11. Suppose that Z is a paracompact space, and E — [0,1] x Z is a K-vector bundle
of rank n. Then for every point z € Z there exists an open neighborhood U, of z in Z such that
Eljo,1)xu, is trivializable.

Proof. For every ¢ € [0, 1] there exists open interval I; C R centered at ¢, and an open neighborhood
Uy of z in Z such that I}z, .y, is trivializable. The collection (It)te[o,l] is an open cover of the unit
interval so we can find a sufficiently large positive integer v such that any subinterval of [0, 1] of

length < % is contained in one of the intervals ;. We can find ¢1, .. .,t, € [0, 1] such that
k-1 k
[ ,]Cltk, Vk=1,...,v.
v v

We set
N
Uz = ﬂ Utk'
k=1

We deduce that the restriction of E to any of the cylinders [b E] x U,, 1 < k < v, is trivializable.

v 'v
Lemma 3.2.10 implies that the restriction of E to [0, 1] x U, is trivializable as well.

O

We can now finish the proof of Proposition 3.2.9. Consider a homotopy F' : [0,1] x Y — X

between fp and f1, i.e., fi(y) = F(k,y), Yy € Y, k = 0,1. Denote by E the bundle F*E over
[0,1] x X. For ¢ € [0, 1] we denote by i, the inclusion

it Y = [0,1] XY, x— (ty).
Then
Ey=iyE, E1=14FE.
It suffices to prove that zSE and f{E are isomorphic.

Using Lemma 3.2.11 we deduce that there exists an open cover U = (U;);es of Y and trivializa-
tions

Vo : Elpyxv; = K 1yxv;

Since Y is compact, we can assume [ is finite, I = {1,2,...,v}. Observe that the trivialization ¥;
defines linear isomorphism

Ui(t,y) : By — K, Ve [0,1], y € Ui
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Fix a partition of unity subordinated to the cover U, that is, continuous functions p; : ¥ — [0, 1],
1 < < v such that

suppp; C Ui, Y _pi= 1.

i=1
We set

to(y) =0, ti(y) = piy), Vi=1,...,v.
J<i
Note that tg(y) = 0and t,(y) = 1,Vy € Y. Forany i € [ and any y € Y we define
Hi(y) : Ev i)y = Etiy)
as follows. If p;(y) = 0, so that t;_1(y) = t;(y), then we set H;(y) = 1. If p;(y) > 0, theny € U;

and we define H;(y) as the composition

Wi (ti—1,y)

E(tifl(y)vy) K"

We let T}, : E(O,y) — E(l,y) denote the composition H,(y) o --- Hi(y). The collection (T},)ycy
defines a vector bundle isomorphism 7" : Eg — Ej. O

Corollary 3.2.12. Any vector bundle E over a contractible space X is trivializable.

Proof. Since X is contractible, there exists x9 € X such that the constant map ¢, : X — X,
Czo(x) = 20, Vo € X is homotopic to the identity map 1 x. Hence

~J * ~J
E=c E=Ey .

O

Exercise 3.2.13. Recall the clutching construction in Example 3.1.10 which associates to each con-
tinuous map g : 5”1 — GLy(C) a rank N complex vector bundle E;, — S™. Prove that any rank
N complex vector bundle over S™ can be obtained via the clutching construction. O

3.3. The classification of vector bundles

In this section we want to show that the situations described in Example 3.2.8 are special manifesta-
tions of a general phenomenon. The following is the main result of this section.

Theorem 3.3.1. (a) For any K-vector bundle £ 5 x of rank n over a compact space X there exists
a finite dimensional vector space V and a continuous map

v: X = Gr,(V)
such that the vector bundle v*WY is isomorphic to E.

(b) If Vi, Vi are two finite dimensional vector spaces and 7y, : X — Gr,(Vy), k = 0,1, are two
continuous maps. Then the following statements are equivalent.

(bl) Vector bundles ygu& are isomorphic.

(b2) there exists a finite dimensional vector space V containing both Vi and V1 as subspaces
such that if ji, : Gry,(Vy) — Gry(V) denotes the canonical inclusion, then jo o g is
homotopic to ji o vy, as maps X — Gr, (V).
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Proof. (a) Fix a finite open cover (U, )aca such that E is trivializable over U,. Next, choose a
partition of unity (pq)acaA, i.e., continuous functions

Po s X = [0,1], supp pa C Uy, Zpa(m) =1, Ve e X
acA

Since FE is trivializable over U, we can find continuous sections of E|;,

ef,...,ep Uy = E

such that for any x € U, the collection (ef*(z))1<i<p is a basis of E,. The section p,ef over U,
extends by O to a section u, ; of E over X. Note that for every € X the vectors u, ;(x) € E, span
the fiber E,. Denote by V' the finite dimensional subspace of I'(X) spanned by the sections u ;,
acAl<i<w.

We have a canonical bundle morphism
ev:Vy = E VxX>3(zx)—ov(r)eE,.

This map is surjective. If we fix a metric on V then the map ev induces an isomorphism between the
bundle (ker ev)* and E. Now observe that

(ker ev)t = I*U,
where T': X — Gr,, (V) is the map = — (ker ev, )t € Gr, (V).

(b) The implication (b2) = (bl) is obvious because j}:ux = u,‘fk. We only need to prove the
implication (b1) = (b2).

Suppose v, : X — Gr,(Vy), k = 0,1 are two continuous maps such that the bundles Ey =
YUY and By = ~;UYT are isomorphic. Then we can regard Ej, as a subbundle of Vi - In particular,
for every z € X, the fiber Ey(x) of Ej over x can be identified with an n-dimensional subspace of
Vi. WesetV .= Vy V.

Suppose A : Ey — Ej is a bundle isomorphism. Then for every « € X, the graph of A, is a
subspace of Ey(z) @ F1(x)

L4, = {(v,Azv); v € Ey(z) } C V.

We obtain in this fashion a continuous map I'4 : X — Gr,, (V). Consider the homeomorphism
&mnammezfj
Forevery x € X and ¢ € [0,1) we set
Lty = Tyya, € Gr(V).
Observe that Lo, = Ey(x) and

lim L; , = lim I';4, = Ej(x) uniformly with respect to z € X. 3.3.1)
t "1 5—00

We obtain in this fashion a continuous function L : [0, 1] x X — Grg(V') such that
Ly = Ey(z), Ve X, k=0,1.
Now observe that the map L : X — Gr, (V') can be identified with the composition

X 2 Gr, (Vi) 25 Gra(V).
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Exercise 3.3.2. Prove the claim (3.3.1). O

We can rephrase the statements in Theorem 3.3.1 in a more concise from using the infinite di-
mensional Grassmannian. Let H be a separable K-Hilbert space. We denote by Gr,, = Grk the
collection of m-dimensional K-subspaces of H. We regard it as a subset of the space of bounded
self-adjoint operators on H by associating to a subspace in H the orthogonal projection onto that
subspace. As such, Gr,, is equipped with a natural topology, called the projector topology. Note
that, for any subspace V' C H we obtain a tautological continuous embedding

Gr, (V) = Grp,(H).

Exercise 3.3.3. (a) Suppose (U,),>1 is a sequence of m-dimensional subspaces of the separable
Hilbert space H. Then U, converges to U € Gr,,(H) in the projector topology if and only if there

exists a basis {e1, ..., ey} of U and bases {e;(v), ..., en,(v)} of U, such that
lim |e;(v) —e;| =0, Yi=1,...,m.
V—r00

(b) Suppose f : X — Gr,,(H) is a continuous map. Show that if X is compact then there exists
a finite dimensional subspace V' C H such that f and a map g : X — Gr,,(H) such that f is
homotopic to g and g(X) C Gr,, (V). 0

For any topological spaces S, T we denote by [S, T the set of homotopy classes of continuous
maps S — T'. From Theorem 3.3.1 and Exercise 3.3.3 we obtain the following result.

Corollary 3.3.4. For any compact® space X the pullback construction
[X,GrX] 5 f— f U, € VBR(X)
defines a bijection [ X, GrX] — V BR(X). 0

Observe that the correspondence X +— V B (X) is a contravariant functor from the category of
topological spaces to the category of sets, where for every continuous map f : X — Y the induced
morphisms V BR (Y) — VBg(X) is the pullback map. Because of the above corollary we will
often refer to the infinite Grassmannian Grﬁ as the classifying space for the functor V By
Exercise 3.3.5. Prove that the clutching construction of Example 3.1.10 defines a bijection

[S" !, GLy(C)] 2 g+ E, € VBY(S™).
In particular, this shows that
Tn-1(GLN(C)) 2 7, (Gr%). 0

2Corollary 3.3.4 is true for any paracompact space X .






Chapter 4

The Thom isomorphism,
the Euler class and the
Gysin sequence

This chapter is devoted to a result central to all of our future considerations, namely the Thom iso-
morphism theorem. Our presentation is greatly inspired by [MS].

4.1. The Thom isomorphism

Suppose R is a convenient ring. For every closed subset S of a topological space X we denote by
HZ(X, R) the local cohomology of X along S,

H(X,R):=H*(X,X\S;R)
We have a natural cup product
U: H3(X,R) x H*(X,R) - HZ™ (X, R),
a cap product
HE(X,R) x H?(X,R) — H,_i(X,R)
and a Mayer-Vietoris sequence
-+ — Hg rs,(X,R) — HE (X,R) ® HE, (X, R) — H%, ,5,(X,R) - H{Hg (X, R) _24 .1.1)

For a vector bundle p : £ — B we regard the base B as a closed subset of the total space E via the
embedding given by the zero section ( : B — E. Observe that we have isomorphisms

p«: Ho(E,R) — Ho(B,R), p*: H*(B,R) — H*(E,R).

Definition 4.1.1. (a) A real vector bundle E - B of rank n over B is called homologically R-
orientable if there exists a cohomology class ® € HE(E, R) such that for every b € B the class
i, ®p € Hijy, (Ep, R) is a generator of the free R-module H {0y (Ep, R). Here, the map iy, is the natural
inclusion Fy, — E. The class ® g is called a Thom class (with coefficients in R).

39
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(b) A real vector bundle E 2 B of rank n over B is called orientable if the determinant line bundle
det & = A"FE — B is trivializable. a

Theorem 4.1.2 (Thom isomorphism theorem). Suppose E Y B is an R-orientable rank n real
vector bundle over B, and ®p € Hjy(E, R) is a Thom class with coefficients in R. Then, for every
k > 0 the maps

dpn: HP(E,R) — Hy_n(E,R) and ®pU: H*(E,R) — HE™(E, R)

are isomorphisms of R-modules. The resulting isomorphism

Te: HB(E,R) 225 Hy_,(E,R) 2 Hy_,.(B,R)

and
TE . H*B,R) X5 H*B,R) 225 HY (B, R)

are called the homological (respectively cohomological) Thom morphisms.

Outline of the proof. The proof is carried in several conceptually distinct steps. We outline them
below and we refer to [MS, §10] for more details.

Step 1. A direct computation proves the theorem is true for trivial bundles.

Step 2. An inductive argument, based on the Mayer-Vietoris sequence proves that the theorem is true
if B can be covered by finitely many open sets Uy, . . ., U, such that the restriction to £ to any U; is
trivializable. In particular, the theorem is true for any compact base B.

Step 3. For any space X we have
Ho(X,R) & hAqH.(K, R),
K

where the inductive limit is over all the compact subsets of X ordered by inclusion. This implies that
the homological Thom isomorphism is true for any R and any base B.

Step 4. If R is a field, R = F,,Q,R,C, then the cohomological Thom map is an isomorphism.
This follows by passing to limits over compacts as in Step 3 and using the universal coefficients
isomorphism

H'(X,R) ~Hompg(H;(X,R),R,),
which is due to the fact that R is a field.

Step 5. Assume B is connected. If E is Z-orientable, then E' is R-orientable for any field R. At this
point one needs to use the homological Thom isomorphism over Z to conclude that H? | (E,Z) = 0.
The universal coefficients theorem implies that

H%(E) = Hom( HP(E),Z) = Hom( Ho(B),Z) = Z.

This implies that the natural morphism H3(E,Z) — Hp(E, R) maps a Z-Thom class ®g to an
R-Thom class, for any field Z.

Step 6. Conclusion. Suppose that E is Z-orientable. One shows that the fact that if the cohomological
Thom morphism is isomorphism for any field R, then it is an isomorphism for R = Z. This is a purely
algebraic result, based on the fact that the singular homology with integral coefficients of a space X
is the homology of a chain complex of free Abelian groups. g
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We need to have simple criteria for recognizing when a vector bundle is homologically R-
orientable. Here is a first result.

Theorem 4.1.3. Any real bundle is homologically Fa-orientable.

Idea of Proof. Follow Steps 1,2.4, in the proof of Theorem 4.1.2. O

To investigate the geometric meaning of the Z-orientability condition we first need to elucidate
the geometric orientability condition. First some terminology.

We define a frame of a finite dimensional real vector space V to be a linearly ordered basis
e := (e1,...,e,),n =dimV. We denote by F(V) the set of frames of V. We say that two frames
e, f € F(V) are identically oriented, and we write this e ~ f if there exists 7' € GL(V) such that

detT >0, (f1,...,fn,) =Te=(Tey,...,Te,).

9

The relation “~” is an equivalence relation. An equivalence class of “~” is called an orientation of
V. We denote by Or (V) the set of orientations on V. Observe that Or (V) is a set consisting of two
elements.

Recall that det V' = A™V. We define a map det : F(V) — F(det V') by setting
Fo(e1,...,e,) —~ det(er,...,e,) :=er A Aey.
Observe that this map is surjective and satisfies the equivariance condition
detTe =detT -dete, Ye € F(V), T € GL(V).

This shows that the set of orientations on V' can be identified with the set of orientations on the
determinant line det V. The latter, can be identified with the set of path components of the punctured
line det V' \ {0}. Thus, we can specify an orientation on V' by specifying a nonzero vector in det V.

Proposition 4.1.4. Suppose E — X is a rank n-real vector bundle over a paracompact space X.
Then the following statements are equivalent.

(a) The vector bundle is geometrically orientable.
(b) The vector bundle E can be described by an open cover (Uy)aca and a gluing cocycle
9Ba - Uaﬁ — GLR(TL)

such that
det ggo(x) >0, Vo,B € A, x € Uyg. (4.1.2)

Proof. We denote by e the canonical basis of R”, and by §,, the group of permutations of {1, ..., n}.
For every permutation ¢ € 8,, we define 7, € GLg(n) by

Ty(ei) = eynyi), Vi=1,...,n.
Note that
det T, = e(p)x,
where ¢(y) = =+ is the signature of the permutation (.

(a) = (b). Fix a trivializing open cover (U, )q,c and local trivializations

U, : By, — R" x U,.
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We obtain in this fashion a gluing cocycle ggo = Vs 0 W, L. A section of det E is then described by
a collection of continuous functions
do : Uy = R
satisfying the compatibility conditions
dg(z) = det ggo(z)da(x), Va,B €A, x € Uyg.
Since FE is geometrically orientable we can find such a collection satisfying
do(z) #0, Ya e A, z € U,.

Now we can find locally constant maps ¢, : U, — 8, such that

e(pa(z))da(z) >0

Using these maps we obtain new trivializations

O, : By, > R" x Uy, ®a=T,,0V,.
Clearly the gluing cocycle ®45 o ®_ ! satisfies the positivity constraint (4.1.2).

(b) = (a) Choose a trivializing locally finite cover (U,) with trivializations ¥, : Ey, —

R™ x U, such that the resulting gluing cocycle g, satisfies the positivity condition (4.1.2). Now
choose a partition of unity (74 )ac4 subordinated to the cover (U, )qeca. Thus each 7, is a continuous
nonnegative function on X such that suppn, C U,, Va € A and Za No = 1. Define

Wo € T(Uy,det E), wy = U, (z)dete.
Note that on the overlap U, g these two nowhere vanishing sections differ by a multiplicative factor

Wa = Aagwg.
Observe that
dete = A g det(¥, o0 \llgl)(g)
so that
Aap(x) = det ggo(x) > 0, Vo € Uyp
Now define w € I'(X, det E') by setting
w = Z NaWq -
(0%

This is a nowhere vanishing section because of the above positivity. O

If E — X is a geometrically orientable real vector bundle of rank r, then we can define an
equivalence relation on the set of nowhere vanishing sections of det E by declaring two sections
wo,w; € I'(det E') equivalent if and only if there exists a continuous function A : X — (0, c0) such
that

w1 = )\wo.
An equivalence class of nowhere vanishing sections of det E is called a geometric orientation of E.
We denote by Or(E) the set of geometric orientations of E. Observe that any geometric orienta-
tion w on FE defines an orientation w, in each fiber F,, and in particular, a canonical generator of
H fo} (Ey, Z), which for simplicity we continue to denote by w,.

Note that if we fix a metric g on £/ we obtain a metric on det E. We denote by X £ the closed
subset of det £’ consisting of all the vectors of length one in all the fibers of det E. The natural
projection Xg — X is a double cover of X, called the orientation double cover determined by
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E. We see that F is geometrically orientable if and only if the orientation double cover is trivial.
Moreover, in this case, a choice of orientation on F' is equivalent to a choice of a section of the
orientation cover.

Theorem 4.1.5. If E — X is a rank r geometrically orientable real vector bundle over the paracom-
pact vector space X, then E is homologically R-orientable for any convenient ring R. Moreover, any
geometric orientation w on E determines a canonical Thom class ®., € H' (E,7) uniquely defined
by the requirement that the restriction of ®,, to the fiber E, is the generator w, of H fo}(Ew> Z). O

The proof of this theorem follows closely the proof of Theorem 4.1.2. For more details we refer
[MS, §10].

Remark 4.1.6. Theorem 4.1.5 has a sort converse: any homologically Z-orientable vector bundle is
geometrically orientable, and the above correspondence between geometric orientations and Thom
classes with integral coefficients is a bijection. O

Example 4.1.7. Suppose £ — X is a complex vector bundle of (complex) rank r described by the
open cover U = (U, )qea and the gluing cocycle

9Ba - Ua,@ — GLT((C)

We can regard it in a tautological fashion as a real vector bundle of (real) rank 2r. We denote this real
vector bundle by Er. Let i : GL,(C) — GL2,(R) be the tautological inclusion obtained by thinking
of a complex linear map as a real linear map. Then the real vector bundle Ep is described by the open
cover U and the gluing cocycle

9ha =10 gga : Uap = GLop(R).
Since GL,(C) is connected, we deduce that i ( GL,(C) ) lies in the component of GLa, (R) containing
1. The linear automorphisms in this component have positive determinant so that
det gga(x) >0, Va,B € A, x € Upyg.
This proves that the real vector bundle tautologically determined by a complex vector bundle is geo-
metrically orientable.

In fact, this real vector bundle carries a natural geometric orientation. To describe it, observe that
if V' is a complex vector space of dimension 7, then for any complex frame e = (ey,...,e,) we
obtain a real basis

ep = (e, fi=itel,....e,, f,=1te.), i =+v—1
We set
detp e := det eg.
For any complex linear automorphism 7" of V' we have detg T'e = | det T]Z detg e, where det T € C

is the determinant of the automorphism 7". This shows that a complex structure on V' canonically
determines an equivalence class of real frames on V', and thus a canonical orientation. O

Suppose that E; %X, i = 0,1 are two geometrically oriented real vector bundles over X
of ranks r;. We denote by ®p, < Hgg (E;) the Thom classes determined by the orientations. We
fix nowhere vanishing sections w; € y(det £;) defining the orientations of these bundles. Then the
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direct sum E @ E; admits a natural orientation given by the nowhere vanishing sect w € I'(det(Ep®
Ep)) =2T(det Ey ® det E7) given by

w = wg Qw1
We denote by @, g, the Thom class determined by this orientation on g & E;. To relate this Thom
class to the Thom classes ® g, we need to recall that Ejy @ Ej is defined by the Cartesian diagram

Eo®E, = Eyxx By — 2 B,

q0 Po
Ey m X
Then
Pror = %PE, Uq PE, - 4.1.3)

To see this, note first that the above result is valid when X consists of a single point. This means that
for a general X, and any = € X, the restriction of ¢j® g, U ¢f @, to the fiber Ey(z) & Ej(x) is the
generator of Hgg?” (Eo(x) @ E1(x)) defined by w(x). This is precisely the meaning of (4.1.3).
4.2. Fiber bundles

Definition 4.2.1. (a) A fiber bundle over the topological space X with model fiber a topological space
F is atriplet (E, X, p), where p : E — X is a continuous map such that for any point x € X there
exists a neighborhood U and a homeomorphism W : Ey := p~!(U) — F x U such that the diagram
below is commutative.

FxU

U
Above, 7 denotes the natural projection F' x U — U. The map ¥ with the above property is called a

local trivialization. The fiber over x € X is the subspace E, := p~1({z}). The space E is called
the fotal space. Often we will use the more refined notation

FoEDLX
to denote a fiber bundle with model fiber F, total space E and base X.

(b) A section of a fiber bundle F P X over a subset A C X is a continuous maps u : A — E such
that u(a) € E,, Va € A.

(c) Two fiber bundles over the same topological space X, E; % X,i=0,1, are called isomorphic if
there exists a homeomorphism ® : Ey — Ej such that the diagram below is commutative.

Ey 2 Eq

mN .
X

Example 4.2.2. For every topological spaces F' and X we denote by F'x the trivial bundle
FxX5X.

A bundle is called trivializable if it is isomorphic to a trivial bundle. O
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Example 4.2.3. (a) Any vector bundle is a fiber bundle with model fiber homeomorphic to a vector
space.

(b) Suppose £ %, X is a real vector bundle of rank 7. Then any metric g on E defines a bundle
D(E, g) — X with standard fiber a closed r-dimensional disk. The total space D(E, g) is the closed
subset of £/

D(E,g) = |J D(Es, g)
zeX

where D(E,, g) denotes the closed unit disk in the Euclidean vector space (F,, g). If go and ¢, are
two metrics on E then the corresponding bundles D(E, g;) are isomorphic. The isomorphism class
of these bundles is called the unit disk bundle associated to the vector bundle F/, and we denote it by
D(E).

Similarly, we can define the unit sphere bundle associated to F, and we denote it by S(E). We
will find convenient to think of the total space of S(FE) as closed subset of D(E).

(c) Suppose F 2, X is a K-vector bundle of rank r. We denote by P(E) — X the fiber bundle whose
fiber over x € X is the projective space P(E,) of one dimensional K-subspaces of E,. Equivalently,
the total space is the quotient of the S(F) modulo the equivalence relation

pr~g<=dJreX, NeK* pqgeS(Ey), p=XAg.

We can define in a similar fashion the bundle Gr,,(E) whose fiber over x € X the Grassmannian
Gr,,,(E,) of m-dimensional K-subspaces of F,. O

The Thom isomorphism is closely related to the Poincaré duality. Suppose M is a compact
smooth orientable manifold of dimension n, and £ — M is a (geometrically) orientable smooth real
vector bundle of rank r over M. We fix an orientation on M, with orientation class py; € Hy, (M),
and a geometric orientation of the vector bundle F, with associated Thom class ® .

The unit disk bundle D(E) associated to £ is a smooth manifold with boundary, 0D(E) =
S(M). The total space of D(E) has an orientation induced from the orientation on A/ and the orien-
tation of E via the fiber-first orientation convention. We denote by pug € Hyir ( D(E),0D(E) ) the
fundamental class determined by the orientation of D(E). We have a Poincaré duality isomorphism

HYD(E),0D(E)) = Hyiy—i( D(E)).
We denote by
PDg : Hyyr_1(E) — H*(D(E),0D(E))
the inverse of the above isomorphism. For simplicity, we set
¢ == PDg(c), Ve € Hy(E) <= ¢! Nugp =c.

Let ( : M — D(FE) be the natural inclusion of M in E as zero section. We define

g = (Gopunr)' € H'(D(E),0D(E)) <= np N pp = Geptar-
Observe that the inclusion (D(E),0D(E)) — (E, E'\ ((E)) induces an isomorphism

H*(D(E),0D(E)) = H*(E,E\{(M)) = Hy/(E).

We can thus also regard 7,/ as a local cohomology class, nys € Hj,(E).
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Proposition 4.2.4. The morphism T : H* (E) - H ktr ( D(E),0D(E) ) defined by
H*(D(E)) 3 a—npUa € H"(D(E),0D(E),)
is an isomorphism.
Proof. We have
neUa==xaUng
= +PDg((aUng) Nur)=+£PDp(an (np Npr) = £PDe(aN )
(use the projection formula (1.2.4))
=+PDg(CTanpar)

This shows that 7 coincides with the composition of morphisms
H (D(E)) < Hoop(M) ™ H, (M) 5 H, () ™28 B (D(E),0D(E)).

the morphisms (, and * are isomorphisms since ¢ is a homotopy inverse of the natural projection
7w : D(E) — M, and the morphisms Nuys and PDpg are isomorphisms by the Poincaré duality
theorem.

O

By composing the isomorphism 7 with the isomorphism 7* : H*(M) — H¥(E) we obtain an
isomorphism

H*(M) — H*"(D(E),0D(E)) = H}"(E), a~ nEUr*a

This resembles very much the Thom isomorphism T¥. The next result pretty much explains this
coincidence.

Proposition 4.2.5. The class ng € H};(E) is a Thom class for E with integral coefficients. O

For a proof of this fact we refer to [Bre, Cor.VI.11.6].

Remark 4.2.6. (a) Under appropriate sign conventions for the cap and cup product the class ng
coincides with the class ® 5. In other words, if we think of the Thom class as a cohomology class
¢p € H'(D(E),0D(E)), then it can be identified with 7, the Poincaré dual of the the homology
class determined by the inclusion of M in D(E) as zero section.

(b) If f : My — M is a map between compact oriented manifolds, possibly with boundary, such that
f(OMy) C OM; then we have two umkehr (or Gysin) maps

frs H™7M(Mo) — H™F(My), '+ Hpy (M) = Hypng—i(Mo)

defined by the commutative diagrams

fx
Hk(Mo,aMo) — Hk(Ml,aMl)
Oty Oy -

Hmo*k(Mo) T) ml—k(Ml)
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and /
Hml—k‘(M1> E— mo—k‘(MO)

Neary N

H*(M,y, oM7) — H*(My, 0My)

The proof of Proposition 4.2.4 shows that if £ — M is a rank r geometrically oriented real vector
bundle over a compact, oriented smooth manifold M then the Thom isomorphism can be identified
with the Gysin map ¢, : H*(M) — H**"( D(E),0D(E)), where ¢ : M — E is the zero section. (]

4.3. The Gysin sequence and the Euler class

Let R be a convenient ring, and suppose that E —» X is homologically R-oriented real vector
bundle of rank r with Thom class ®r. We denote by D(E) and respectively S(E) the associ-
ated unit disk and respectively unit sphere bundles. Let ( : X — FE denote the zero section,
and by ®r the Thom class determined by geometric orientation of E. We regard @ as a rel-
ative cohomology class & € H"(D(E),0D(E); R) and the Thom morphism as a morphism
T H*(X) — H*"(D(E),0D(E),)

TE . H*(X,R) - H*'"(D(E),0D(E);R), a— ®zUr*a.
Observe that we have a natural morphism

m : H*(S(E),R) - H*~V(X R)

defined by the composition

H*(S(E), R) 5 B (D(E),0D(E); R) "= HF-7 (X, R),

where ¢ is the connecting morphism in the cohomological long exact sequence of the pair (D(E), 0D(E)).
The morphism 7 is usually referred to as the Gysin morphism or the integration along fibers mor-
phism.

Observe that H*(S(E), R) has a natural structure of right module over the cohomology ring
H*(X, R) given by

H*(S(E),R) x H*(X,R) > (o, ) = aUn" s € H*(S(E), R).
Lemma 4.3.1. The morphisms
7™ : H*(X,R) — H*(S(E),R), m:H*(S(E),R) — H* ""D(X,R)
are morphisms of H®(X, R)-modules. 0

Proof. The fact that 7* is a morphism of H*(X, R)-modules follows from the fact that 7* is a mor-
phism of cohomology rings. To prove that 7 is a morphism of modules we consider 8 € H*(X, R),
a € HY(S(E), R). Then

m(a-f) =m(aurB) = (TF)'s(aun*s).
The connecting morphism is a derivation for the cup product, i.e.,

d(aUur*B) =d0(a) U™ B L aU (d77B).
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We now observe that 67*3 = 0 because 7*3 € H*(D(FE), R) and the composition
H*(D(E), R) — H*(S(E), R) > H*"'(D(E), S(E); R)
is trivial. Hence
m(a-B) = ()7 ((6a) U*B).
If we write doe = ®p U %y, v = m (o) € H1"(S, R) then we get
m(a-B) =7 U B = (ma) U B,
O

Definition 4.3.2. The Euler class of the homologically R-oriented real vector bundle £ = X of rank
r with Thom class ® is the cohomology class

e(F) e H'(X,R), e(E)=("og,
where ( : X — E denotes the zero section. a

Proposition 4.3.3. Suppose EE — X is a geometrically oriented real vector bundle of odd rank r.
Then

2e(E) =0 e H'(X,Z).

Proof. Observe that any section u of E is homotopic to the zero section. Hence
e(E) = C*(I)E = u*tIDE = (—u)*([)E

On the other hand, since F has off rank, the automorphisms oneg of E is orientation reversing so
that

(—u)*®p =u"(—-1)"Pp = —u"Pp = —e(E)
O

Theorem 4.3.4 (Gysin). If R is a convenient ring and E = X is a homologically R-oriented real
vector bundle of rank r then we have a long exact sequence of right H*( X, R)-modules

o H*X,R) Y grvh(x, R) T HTYR(S(E), R) 5 HFY(X,R) < --- .

Proof. Consider the following diagram (where for simplicity we dropped the ring R from our nota-
tions)

7 (S(E)) —— H*"*Y(D(E), S(E))

H*"(D(E),S(E)) —— H*"(D(E))

TE * 1 TE

H*(X)
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The top row is a segment of the long exact sequence of the pair (D(E), S(E)). The morphism 7* is an
isomorphism with inverse (*. The morphisms «, 3, v are defined so that the diagram is commutative.
More precisely

a=(m)"toi*oTE, b=j*on*, c¢=(TF)1od)=m.
Observe that for any o € H*(X) we have
ala) =(C"(PpUT a) =e(F)U( 1" (a) = e(E) Ua.
D
Example 4.3.5 (The integral cohomology ring of CP”, 1 < o0). We consider first the case
n

<n
n < oo. Consider the universal complex line bundle U — CP™. Its total space is the incidence
relation

U={(v,L) € (C"T\0) xCP"; velL}
The associated sphere bundle has total space

SU) ={(v,L)eW; |v|=1}.

We have natural map S(U) — S?"*! = unit sphere in C"*! given by (u,L) + u. This map is
continuous an bijective and thus a homeomorphism since both S(U) and S?**! are compact.

We now regard U as an oriented real vector bundle U of rank 2 over CP" and we denote by e
its Euler class

e = e(Ug) € H*(CP", 7).
The Gysin sequence of the sphere bundle S(U) — CP™ takes the form
o HRL (G20 i} H*(CP™) SN H*2(CP) L HF (g2t Ty
We deduce that if 0 < k& < 2n — 1 then we have isomorphism
eU : H*(CP") — H*"2(CP™).
This proves that
H?*(CP") = HY(CP") Uer, 1>k <n.

Arguing similarly we deduce that H2**+!(CP") = 0, for any k. We deduce that the cohomology
ring of CP™ is a commutative ring with a single generator e of degree 2 satisfying the conditions
el =0,ie.,

H*(CP") = Z[e]/(e™™), dege = 2.

When n = oo we have a similar circle bundle S* < S> — CP" but in this case the total space is
contractible. Arguing as above we deduce that the cohomology ring of CP*° is

H*(CP*,Z) = Z]u|, degu = 2. 0

The Euler class has several functoriality properties that will come in handy later.



50 The Thom isomorphism, the Euler class and the Gysin sequence

Suppose E 2 Xisa homologically R-oriented real vector bundle of rank r with Thom class
® . Then for any continuous maps f : Y — X we have a Cartesian diagram

ExxY=fFE 2>y

f f

E

X

™

Then f *®p is a Thom class for f*FE and induces a homology R-orientation. We denote this Thom
class by @ ¢« . If ¢ denotes the zero section of £ and ¢y denotes the zero section of f*E then

folf=Cof = fro( =(jof"
‘We deduce that
e(f*E)= f"e(F) € H"(Y,R). 4.3.1)

Suppose that E; 2 X are homologically R-oriented real vector bundles of ranks 7;, 2 = 0, 1. Denote
by ® g, the corresponding Thom classes. Then, as we have seen before, we have a Cartesian diagram

Ey® Ey = Eg xx B1 —— E
qo0 Po

El p1 X

Then q;® g, U ¢f PE, is a Thom class for £y & Eq which we denote by ® g ¢, . From the equality
(4.1.3) we deduce that

e(Ey @ Ey) = e(Ey) Ue(Ey) € HOT (X, R). (4.3.2)
We present last the most important feature of the Euler class, namely its interpretation as a mea-
sure of nontriviality of a vector bundle. We begin by introducing a relative version of Euler class.

Suppose E — X is a geometrically oriented real vector bundle of rank r and ® € H"(E, E\ X)
the associated Thom class. Suppose v : X — FE is a section of £ and A C X is a subset such that
u(a) # 0, Va € A. Then u defines a continuous map of pairs

u: (X,A)— (E,E\ X)
We set
e(E,ula) :=u"Pg € H' (X, A),
and we refer to it as the relative Euler class (modulo the nowhere vanishing section u|4 € I'(A4, E).

One can see easily thatif v : X — FE is a nother section of £ that is nowhere vanishing on A and
it is homotopic to u| 4 in the space of such sections, then

e(E,ula) = e(E,v|a).
If € : H*(X, A) — H*(X) is the natural (extension by zero) morphism then
Ee(F,ula) =e(E).

Proposition 4.3.6. Suppose EE — X is an oriented real vector bundle of rank r with Thom class ®g
which admits a nowhere vanishing section u : X — E. Thene(E) =0 € H"(X,Z).
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Proof. The section u defines a relative Euler class
e(B,u)e H'(X,X) =0
which extends to e(E) € H"(X). This extension is therefore trivial. Hence e(E) = 0.
O

The above result implies that if an oriented real vector bundle has nontrvial Euler class, then
the bundle cannot admit nowhere vanishing sections, and in particular, it cannot be trivial. The
computations in Example 4.3.5 imply that the universal line bundle over a complex projective space
is not trivial.

4.4. The Leray-Hirsch isomorphism

In this brief section we formulate a generalization of Thom’s isomorphism theorem that we will need
later. Let us first observe that for any fiber bundle E = B and any convenient ring R the cohomology
H*(E, R) is naturally a right module over the cohomology ring H*(B, R) via the rule

H*(E,R) x H*(B,R) > (o, ) » aUT*3 € H*(E,R).

Theorem 4.4.1 (Leray-Hirsch). Let R be a convenient ring and F' — E — B a fiber bundle with
model fiber F satisfying the following conditions.

(a) The cohomology H®(F, R) of the model fiber F is a finitely generated free R-module.

(b) There exists cohomology classes uy,...,un € H*(E, R) such that for any v € X, there
restrictions to the fiber E, define an R-basis of the cohomology H®*(E,, R).

Then then H*(E, R) is a free H*(B, R)-module, and uy, . . . ,uy is a basis of this module. O

When the bundle E is of finite type, i.e., there exists a finite open cover (U;)1<i<y, such that Ey, is
trivializable, then the above theorem follows by a simple application of the Mayer-Vietoris theorem.
For example, when B is compact, then any fiber bundle over B is of finite type. The general result is
obtained from the finite type case by a limiting process. For more details we refer to [Hatchl, Thm.
4D.1].

Example 4.4.2. Suppose E — X is a complex vector bundle of rank r. We denote by P(E) = X the
associated bundle of projective spaces, whose ﬁber over z is the projective space IP’( ) consisting of
one-dimensional subspaces of E,. We denote by E the pullback of E to P(E), E = n*E.

The pullback E is a bundle over P(E) such that for every x € X and every line L, C E, the
fiber of E over L, is the space F,. We denote by Up the complex line subbundle of E over P(E)
whose fiber over L, € P(E), is the one dimensional subspace L, of ELZ. The restriction of Ug
to the fiber P(E,,) is none other than the universal line bundle over the projective space P(E;). Let
u € H%(P(E)) denote the Euler class of U viewed as a rank 2 oriented real vector bundle.

The computations in Example 4.3.5 show that the restrictions of the cohomology classes 1, u, . .., u" !
to any fiber P(E,) of P(F) form an integral basis of the the cohomology of P(E,). From the Leray-
Hirsch theorem we deduce that the morphism

H*(X)& & H*(X) > H*(P(E)),
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(Bos -+ Br—1) = T Bo +u U™ By + -+ u' T U B
is an isomorphism of H*®(X )-modules. O



Chapter 5

The construction of Chern
classes a la Grothendieck

5.1. The first Chern class

Every complex line bundle . — X can be regarded as an oriented rank two bundle. As such it has a
well defined Euler class which is an element of H?(X). This element is called the first Chern class
of the complex line bundle L and it is denoted by ¢ (L).

Proposition 5.1.1. The first Chern class is a function c; that associates to each complex line bundle
L — X a cohomology class c1(L) € H*(X,Z) such that the following hold.

(a) For any continuous map f : X — 'Y, and any complex line bundle L — Y we have
a(f°L) = fre(L).
(b) For any 1 < n < oo the first Chern class of the universal line bundle U, , — CP" is a
generator of H*(CP", 7).

Proof. Property (a) follows from (4.3.1) while (b) follows from the computations in Example 4.3.5.
a

We would like to give a homotopic description of the first Chern class. Note first that the space
CP*° is an Eilenberg-MacLane space K (Z,2). Indeed this follows from the long exact homotopy
sequence of the fibre bundle S' < S$°° — CP> in which the total space S°° is contractible. Thus

Z i+1=2

0 otherwise

i1 (CP") = my(S') = {

Denote by u € H?(C) the first Chern class of U »,. We know that u is a generator of H?(CP>).
Since CP* is a K(Z, 2) we deduce that for any CW-complex X the map
[X,CP®] 3 f+— fru c H*(X,7Z)

is a bijection.
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On the other hand, according to Corollary 3.3.4 the map
[X,CP>] > f s f*Us o € VB C(X)
is also a bijection. Since ¢;(f*U; o) = f*u, we deduce that the map
c1: VBL(X) = H*(X,Z), L+ ci(L)
is a bijection. On the other hand, the tensor product introduces a group structure on VBSC(X ). We

denoted this group Picy,,(X) and we referred to it as the topological Picard group.

Proposition 5.1.2. For any paracompact space X the first Chern class ¢, : VBL(X) — H?(X,7Z)
is a morphism of groups. In particular, if X is a CW -complex then the Chern class defines a group
isomorphism
c1 ¢ Picop(X) — H*(X,7Z),
ie.,
c1(L1 ® Ly) = c1(L1) + c1(Lg), VL1,L1 € VBE(X). (5.1.1)
In particular, if X is homotopy equivalent to a C'W -complex then the first Chern class defines an
isomorphism ci : Picyop(X) — H?(X,7).
Proof. We follow the proof in [Hatch2, Prop. 3.10] and we begin by proving a special case of (5.1.1).
For simplicity we set U := U; .. We let GG, G'1 and G2 be three copies of CIP>° and we denote
by m;, ¢ = 1, 2 the canonical projection
G1 X G2 — G, (1'1,1'2) = Z;.
WesetU; = 7U € VBY(Gy x G1), u; = iU € H?(Gy x G2),i = 1,2. We want to prove that
cl(ul ® UQ) = U] + Us. (5.1.2)
Fix p € G and consider the wedge
G1V Gy =Gy X{p}U{p} X Go C G1 x Gs.

The inclusion i : G1 V G2 — G1 x G4 induces an injection i* H?(G1 x Ga) — H?*(G1V G2) so it
suffices to prove
c1 (i*ul ® ’i*UQ)) =i*c (u1 &® UQ) =7 "uq + 1 us. (5.1.3)

If we denote by jib the inclusion G — G V Ga, then

Yo,y € H(G1V Ga): z =y <= jiz =jly, jiz=jsy.
Now observe that

Jr(*uy +i"ug) = u, Vk=1,2
and
Jii U = C, jyi"Uy = C.

Hence

JrEU @ " Ug) 2 U, jrer (U @ 7 Ug) = u, VE=1,2.
This concludes the proof of (5.1.2).

Suppose now that L;, Lo are two complex line bundles over the paracompact space X. Then
there exist continuous maps fr, : X — G, k = 1,1 such that L;, = f;U. We denote by A the
diagonal map

A: X > XxX, 2 (z,2).
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Then L1 ® Lo the pullback of the complex line bundle U; ® Us — G1 X G via the map

XS xxx 8 xa,
For k = 1,2 we denote by pi, : X x X — X the projection (x1,x2) — x. Using (5.1.2) we deduce
that
ci((fi x f2)" (U @ Uz) ) = pifi () + p5f3 (u) = piei(L) + prer(La).
Hence
c1(L1 ® Lo) = A" (piei(L1) +piei(La) = e1(Ln) + c2(La2))
because pi, © A = 1x. This completes the proof of (5.1.1) and of the proposition as well.

O
From (5.1.1) we deduce that for any paracompact space X we have
c1(L*) = —c1(L), VL € VB, (X). (5.1.4)
Indeed, this follows from the isomorphism L ® L* = Cy.
5.2. The Chern classes: uniqueness and a priori
investigations
Theorem 5.2.1. There exists at most one sequences of functions C = {cy,ca, ..., Cp, ...} that asso-

ciate to any paracompact space X and any isomorphism class of complex vector bundles E — X a
sequence of cohomology classes

c(F) € H¥*(X,Z), k=1,2,--

» <

with the following properties.
(a) The class c1(E) is the first Chern class of E when E is a complex line bundle.
(b) cx(E) =0, Yk > rank (E).
(¢) For any continuous map f : Y — X and any vector bundle E — X we have
a(f7(E) = ffer(E), Vk=>1.
(d) For any paracompact space X and any complex vector bundles Fy, E1 — X we have

cx(Bo® Er) = Y ci(Bo) Uc;(Er), Yk > 1.
i+j=k

Proof. Before we present the proof, we need to introduce some simplifying notations. Observe that
all the classes c, belong to the subring
Heven(X) — @ H2k(X) C H.(X)
k>0

This is a commutative ring with respect to the cup product, and for simplicity we will denote the
multiplication by the traditional -.

For any sequence C as in the statement of the theorem, and any complex vector bundle £ — X
we denote by Cg(t) the polynomial

Cr(t) i= 1+ c1(E)t + ca( )2 + - - € H"(X)[t].
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The identity (d) can be rewritten in the more compact form

Crowm (t) = Cry (1) - Cr, (1).
Suppose two sequences € and € with the properties (a)-(d). We have to prove that Cg(t) = €’ (¢)
for any complex vector bundle E.
The properties (a) and (b) imply that
Cr(t) = € (t), for any complex line bundle L.
Property (d) implies that if F is a direct sum of line bundles,
E=01®--- &Ly zi=ci1(L;), 1<i<,

then

T
Cu(t) = JJ(1 + tas) = €(1).
i=1
In particular, we deduce that
h(E) =op(r,...,m) = > @ m, (5.2.1)
1<ig << <r
Thus, cx(F) is the k-th elementary symmetric polynomial in the variables x;. To conclude we need
to use the following elegant and very useful trick.

Lemma 5.2.2 (Splitting Principle). For any complex vector bundle E2 — X there exists a continuous
map f Y — X with the following properties.

o The induced map f* : H*(X,Z) — H*(Y') is injective.
o the pulled back bundle f*E splits as a direct sum of line bundles
[fE=L1® - ® L, r=rank(E).

Amap f : Y — X with the above properties is called a splitting map for the vector bundle
E—X.

Let us complete the proof of Theorem 5.2.1 assuming the Splitting Principle. If £ — X is a
complex vector bundle, we choose a splitting map f : Y — X. Then

Cren(t) = Chp(t)

because f*F is a direct sum of vector bundle. From (c¢) we deduce that

f*Cy(t) = Cpp(t) = Chp(t) = fCp(t),
and the equality Cx(t) = eC';(t) now follows from the injectivity of f*.
O

Proof of the Splitting Principle We argue inductively on the rank of the vector bundle. The Splitting
Principle is clearly true for all line bundles (just take 1 x : X — X as splitting space). We assume the
statement is true for all vector bundles of rank < r and we prove it for vector bundles of rank r 4 1.

Let E — X be a complex vector bundle of rank » + 1 and consider the associate bundle of
projective spaces

CP" - P(E) > X
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We fix a Hermitian metric on E. This induces a metric on E = 7*E. As explained in Example 4.4.2
the projection 7 induces an injection in cohomology and moreover, the universal line bundle Ug is a
sub-bundle of F. We have a direct sum decomposition E=1U E D UE, where UE has rank r. The
inductive assumption implies the existence of a splitting map g : Y — P(FE) for Uﬁ. Then the map
f=mog:Y — X isasplitting map for E. O

Definition 5.2.3. A sequence of maps (cj) as in Theorem 5.2.1 is called a system Chern classes. The
mapping ci is called the k-th Chern class. The polynomial

Cr(t) =Y cp(E)" € H(B)[t], co(E) =1,
k>0

is called the Chern polynomial of E determined by the system of Chern classes. O
In the remainder of this section we will work under the assumption that Chern classes do exist,
and try to extract as much information about them as possible.

Proposition 5.2.4. If they exist, the Chern class satisfy the following additional properties.
(a) If the vector bundle FE is trivializable then ci(FE) = 0, Vk > 1.

(b) For any complex vector bundle E — X of complex rank r we have
cr(E) = e(ER)

where ER denotes the bundle E viewed in the canonical way as an oriented real vector

bundle.
(c) For any complex line bundle L — X and any complex vector bundle E — X of rank r we
have
-
(L®E)=> cp(BE)x ", (5.2.2)
k=0

where x = c1(L), co(E) =1 € H(X).
(d) For any complex vector bundle E — X of rank r we have
c1(E) = ci(det E)
where det E is the determinant line bundle of E, det E = A" E.

Proof. (a) If the vector bundle E of rank r is trivializable then it is a direct sum of r trivial line
bundles. Hence

Cr(T) = Cc, (1) =1,
where at the last step we invoked Proposition 4.3.6 which implies that C¢(¢) = 1.
(b) If F is a direct sum of complex line bundles, £ = L; & - - - & L, then

cr(E) =ci1(L) - c1(Ly)

and, on the other hand,

e(Br) "2V e((L))z) - e((Lo)r) = cr(Lr) - er(Ly).
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In general, we choose a splitting map Y’ 1y X for E. Then f*E splits as a direct sum of complex
line bundles and by the above argument we deduce

frer(E) = e (f'E) = e(f"Er) = ["e(ER).

The desired conclusion now follows from the fact that f* : H*(X) — H*®(Y') is injective.

(c) We first prove the equality (5.2.2) under the simplifying assumption that F is a direct sum of
line bundles

E=Li¢ - L,, Y = Cl(Lk).

Then
LRE=ZLRIL&---8L&®L,
and thus
N
GL@E = H 8L®Lk(t), GL®Lk(t) =1 +t61(L®Lk) =1 + (QZ + yk)t.
k=1
Hence
T T (r21) T
_ 0.4 _
a(LoB)=[[@+y) =Y ok, y)z"F =" a(BE)z .
k=1 k=0 k=0

To prove (5.2.2) in general we proceed as in (b) using a splitting map Y’ i> X for E.
(d) Observe that if E is a direct sum of line bundles

E=Li®---®L,, and z;:=c1(L;), V1<i<r
thendet E =2 L1 ® --- ® L, so that

ci(det E) = o1(x1,...,2p) =21+ -+ + 2 = c1(E).
The general case follows as before by using a splitting map for E.

O

Remark 5.2.5. Property (a) shows that the Chern classes provide a measure of the nontriviality of a
vector bundle. O

Corollary 5.2.6. For any paracompact space X, any rank r complex vector bundle E — X and any
complex line bundle L — X such that y = c¢1(L) we have

T

CT(HOHl(L, E) ) = Z(_l)kcr—k(E)yk
k=0

Proof. Set x = ¢1(L*) = —y. Then

¢r(Hom(L, E)) = ¢.(L* @ E) (5.22) Z er_p(BE)x.
k=0
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Corollary 5.2.7. Suppose E — X is a rank r complex vector bundle and L. — X is a complex line
sub-bundle of E. If y = c¢1(L) then
T
S (1) k(B)y* = 0.

k=0

Proof. The inclusion ¢ : L — FE is a nowhere vanishing section of the complex vector bundle
F = Hom(L, E). From Corollary 5.2.6 and Proposition 4.3.6 we deduce
T
Z(_Ukcrfk(E)yk = ¢ (F) = e(Fr) = 0.
k=0
O

Remark 5.2.8. The above result has an amusing consequence. Suppose X is a CW-complex. We
denote by Ry the commutative ring H¢"*"*(X,Z). For any complex vector bundle £ we have a
polynomial
Ca(t) =) eri(E)tF € Re(t], r = rankc(E).
k=0
The above corollary implies that if the equation €%,(y) = 0 has no solution y € R% = H?*(X,Z) C
R x, then the vector bundle E has no line sub-bundles.

If we set Rg = Rp(g), then we can regard Rx as a subring of R, or equivalently, Rg as an
extension of R x. The proof of the splitting principle implies that C},(¢) has a root y in the extension
Rp, namely y = —c; (Ug) € RZ. 0

Corollary 5.2.9. Suppose E — X is a complex vector bundle of rank r, and P(FE) 5 X is its
projectivization. If Uy — P(E) is the universal line bundle and w = ¢1(Ug) then

T

Z(_l)kﬂ*crfk(E)Uk =0.

k=0

Proof. Observe that U is a line sub-bundle of 7*E. The conclusion now follows from Corollary
5.2.7.

O
5.3. Chern classes: existence

Theorem 5.3.1. There exists a system of Chern classes.

Proof. The starting point of our construction is Corollary 5.2.9. Suppose £ — X is a complex vector
bundle of rank r over X. We denote by P(E) = X the projectivization of E, by U the tautological
line bundle over P(E) and by w € H?(IP(E)) its first Chern class.

As shown in Example 4.4.2, for any cohomology class ¢ € H*(P(E) there exist classes 3; =
Bi(c) € H*(X), 0 <i <r — 1, uniquely determined by the equality

r—1
c= Z 7 Bru”.
k=0
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If we let ¢ = u" in the above, and use Corollary 5.2.9 as guide, we define the Chern classes of F to
be the unique cohomology classes ¢, (E) € H?*(X), such that
T
co(BE)=1, Y (=D, p(B)u* =0, cx(E) =0, Vk>r.
k=0

The properties (a)-(c) Theorem 5.2.1 are immediate. Only property (d) requires some work.

Suppose Ey =3 X, E1 53 X are complex vector bundles of ranks 7o and .W set E = Eq @ E;
and r = rog + r1. We continue to denote by 7; the canonical projections P(E;) — X. Note that we
have inclusions

P(Eo) & P(E), P(Ey) L P(E).
Moreover P(Ey) N P(E;) = (. Tautologically
JUp =Ug, i=0,1.
Setu = c1(Ug), Op = P(E) \ P(E1), O1 = P(E) \ P(Ep). Thus O; is an open neighborhood of
P(E;) and Og U 01 = P(E).

Define
T
wi = Y (~ 1) macy, w(Ei)ut € H¥(B(E)), i=0,1.

k=0

Note that
,
Wowr = Z(_l)% > wci(Bo)n*e;(Er) )uz.
(=0 itj=r—t

The equality

Croar (1) = Co(t)Ci(t)
is then equivalent to the equality
Wow1 = 0.

To prove this we will need the following topological fact whose proof will be given a bit later.

Lemma 5.3.2. P(FE;) is a deformation retract of O;, i = 0, 1. O

Observe that j;w; = 0 due to the definition of the Chern classes of E;. Hence w; is the image
of a relative class @; € H?"i(P(E),P(E;)) Invoking Lemma 5.3.2, we can regard &; as a class
@; € H?"i(P(E), 0;). Thus wow; is the image of the cohomology class

QoUW € H7(P(E), Og U Oy)
via the natural morphism H?"(P(E), Og U O1) — H?"(P(E)). We now observe that
H*(P(E),00U0;) =0
since Og U O = P(E). O

Proof of Lemma 5.3.2. Denote by P; the canonical projection P; : Fyg & F1 — FE;. Forevery x € X
we set O;(x) = P(E,) N O;. For every line ¢(x) € Og(z) we set £y(z) = Pol(x) C Ep(x). The line
{(x) intersects () trivially and thus we can find a linear map 7" = Ty, : fo(x) — E1(7) such
that /() is the graph of T viewed as a subset of {y(x) @ E1(x). The correspondence

Oo(z) 3 €(x) v Ty(zy € Hom(lo(z), Er (7))
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determines a homeomorphism between Og and the total space of the fibration
Hom (Ug,, moE1 ) — X

Under this homeomorphism the subset P(Ep) C O corresponds to the zero section of this vector
bundle. O

Exercise 5.3.3. (a) Suppose L — X is a complex line bundle. Prove that its conjugate L is isomor-
phic as a complex line bundle to the dual line bundle L*.

(b) Prove that for every complex vector bundle £ — X we have

cr(E) = (—Dkep(E), Vk>1.

Above, E denotes the conjugate complex vector bundle. a

Remark 5.3.4. There exists a real version of Theorem 5.3.1 More precisely there exists a unique
sequence of functions
W = {wl,wg,...,wn,...}
that associate to any paracompact space X, and any isomorphism class of real vector bundles £ — X
the sequence of cohomology classes
wp(F) € H¥(X,Fy), k=1,2,...
with the following properties.

(a) The class wy (E) is the Euler class of FE with Fa-coefficients if E is a real line bundle.

(b) wi(E) =0, Vk > rank (E).

(¢) For any continuous map f : Y — X, and any vector bundle £ — X we have

wi(f*E) = ffwr(E), Vk>1.
(d) For any paracompact space X and any real vector bundles Ey, E; — X we have
we(Bo® E1) = Y wi(Eo) Uw;(E).
it+j=k
The functions wy, are called the Stieffel-Whitney classes of a real vector bundle. The proof of this

theorem is identical to the proof of Theorem 5.2.1 +5.3.1. O

5.4. The localization formula and some of its
applications

Suppose M is a smooth compact, oriented n-dimensional manifold and £ — M is a (geometri-
cally) oriented smooth real vector bundle of rank ¢ < n. We would like to give a more geometric
interpretation of the Euler class e(F) in terms of zero loci of sections of E.

Suppose w is a smooth section of this vector bundle and xy € M is a zero of u, u(xg) = 0 € E,.
We fix a local trivialization of F on a neighborhood O of g, ¥ : E|9 — % o’ and we define
Avuzo : TogM — Eyy, TyoM 5 X — DV o u(X), (54.1)

where DV o v : T,y M — Eg, is the differential of the map W ou : O — E,,. The condition
u(zo) = 0 implies that the map A, ,, is independent of the choice of local trivialization ¥. We will
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refer to it as the differential of u at xg, or the adjunction morphism at xy. We want to emphasize that
this definition works only for zeros of u. We obtain in this fashion a bundle morphism

Ay TM|{u:0} — E‘{u:(}} 54.2)
called the adjunction morphism

We say that u is a regular section if for any x € u~1(0) the differential of u at z is a surjective
linear map T, M — E,.

If w is a regular section, then the implicit function theorem implies that zero set of u is a smooth
submanifold Z,, C M, codim; Z,, = c. Moreover Vx € Z,, we have

TypZy =ker(Ayz : ToM — Ey).

Now some terminology. For any smooth submanifold Z C the tangent bundle 7'Z is a subbundle of
T M|z, and dually, the cotangent bundle 7 7 is a quotient bundle of 7 M| ;. We denote by Tz M the
cokernel of the inclusion 7'Z < T'M|z, and by T*Z M the kernel of the surjection T*M |z — T*Z.
We thus have two short exact sequences of vector bundles

0-TZ—>TM|z -TzM — 0 (5.4.3a)

0 TEM — T*M|; — T*Z — 0. (5.4.3b)

The (quotient) bundle Tz M is called the normal bundle of the embedding Z — M, while the sub-
bundle 177 M is called the conormal bundle of the embedding Z — M.

Returning to our case at hand, we deduce that the differentials (Ay,z )y (x)—o determine a bundle
isomorphism

.Au : TzM — E|M,

and their duals (A}, ), (z)=0 define a bundle isomorphism Al E*|z =T, M.

In the sequence (5.4.3b) the bundle 7 M |z has an orientation induced by the orientation of M,
and the bundle 77 M has an orientation induced via Aj, from the orientation of £*. In particular,
by duality, we also get and orientation on the normal bundle 7 M, and we deduce that 77 has an

induced orientation given by the fiber-first convention
or (T*"M|z) =or (T;M) Nor (T*Z).
Thus Z is equipped with a natural orientation y,, € H,_.(Z)."! If we denote by i the natural inclusion

Z < M then we obtain a homology class 7., € Hy,_.(M). We denote this class by (u = 0). We
will refer to it as the homology class determined by the zero locus of u.

*
uU,T

Theorem 5.4.1 (Localization formula). Suppose that E — M is a smooth, real, oriented vector
bundle of rank c over the smooth compact oriented manifold M of dimension n. Then for every non-
degenerate smooth section u of E, the homology class determined by the zero locus of u is Poincaré
dual to the Euler class of E. (We say that the Euler class localizes along the zero locus of u.)

Proof. Denote by & € H¢(E,E \ M) the Thom class of E so that e(E) = u*®p. We fix a
Riemannian metric g on M. Set as above Z := v~ (0) and define
U.:={peM; dist(p,Z) <e}, M.:=M)\U..
The section u does not vanish on M. and we obtain a relative Euler class
Ne == e(E,uly.) € HS (M, M,)

L This orientation depends on the choice of u. For example, p—,, = (—1)¢py.
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satisfying
Ene =e(E) € HS(M), (5.4.4)
where € : H¢(M, M) — H¢(M) is the natural extension morphism.
The metric g induces a metric on the normal bundle T’z M so that we have an orthogonal decom-
position
TM|; =TZ & Tz M.
We denote by D.(Tz M) — Z the e-disk bundle over Z determined by this induced metric. We can

now regard Tz M as a subbundle of T M|z and the exponential map of the metric defines a smooth
map

exp, : De(TzM) — M.
For € > 0 sufficiently small, this induces a diffeomorphism of manifolds with boundary
exp, : De(Tz M) — Uk.
The projection 7 : D (Tz M) — Z defines a projection 7 : U. — Z. Moreover we can identify the

bundle E|y. with the pullback 73, (Ez) = E|y..

The bundle morphism A,, : Tz M — E defines a diffeomorphism from D.(Tz M) to a closed
neighborhood of Z in Ez. We denote this neighborhood Dz . (£). This neighborhood is canonically
a disk bundle over Z. Using the projection 7z : U. — Z we can pullback the disk bundle Dz . (F)
to a disk bundle Dy, — 7, E7.

If we denote by @, the Thom class of £z, then we can represent it as an element
Qp, . € HC(DZE(E), aDZE(E)) >~ HYEz,Ez \ Z).
From our orientation conventions we deduce that
Ai®p, c = Pr,m € HY(D:(TzM),0D(TzM) ) = H(U., dU.), (5.4.5)

where @7,/ is the Thom class of Tz M equipped with the orientation induced by A, from the
orientation of F.

On the other hand, we can view the section u|y. : U. — E as a section of 7, E; = Ey..
Identifying U, with D.(Tz M) via the exponential map we can also view the restriction to D.(Tz M)
of the bundle morphism A, as a section

Au: U = w5 Ey.

The map A, is essentially the differential of u so that, if ¢ is sufficiently small, the sections u|y, and
Ay|v. are homotopic as sections of 7%, E7 that do not vanish along OU..

Since the Thom class of 77, Ez is 7, ®f, . we conclude that
e(BE)|y. =u'nydp, . = Ainy®p, . = Aidp, . € HS(U.,dU.). (5.4.6)

In (5.4.4) we can choose 1. = u*n;,® g, .. Using the equality (5.4.5) we deduce thatn. € H¢(U,, 0U.)
can be identified with the Thom class of Tz M.

On the other hand, Proposition 4.2.5 implies that the Thom class of T’z M can be identified with
the Poincaré dual of the class (v = 0) € H,,_.(U.) relative to the Poincaré duality on the manifold
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with boundary (U, OU,). The localization formula now follows from the commutative diagram

Npar

H"(M) > e(E) € Hy—r(M)

& Tx

H(M, M) = H'(U.,0U.) 3 0. —— (u=0) € Hy_(UL)

€

O

Corollary 5.4.2. Suppose E — M is a complex vector bundle of rank r over the smooth, compact
oriented n-dimensional manifold M. Then for any nondegenerate section v : M — E the homology
class determined by its zero locus is Poincaré dual to the top Chern class c,(E). O

The above simple localization formula is quite useful for concrete computations, and it is one of
the main reasons why Chern classes are computationally friendlier than the Pontryagin classes that
we will define in the next chapter. We close this section with some important applications of this
formula.

Example 5.4.3 (The hyperplane line bundle). Consider the tautological line bundle U = U,, — CP".
We denote by H its dual, H = H,, := U*. The line bundle H is usually referred to as the hyperplane
line bundle.

Let us observe that any linear function o : C"*! — C induces a linear function a7 on any
one-dimensional subspace L C C"*!. We obtain in this fashion a correspondence

CP*">s L~ oy, € Hom(L,(C) = u*L =Xy

that defines a smooth section u,, of .

We choose linear coordinates 21, . . . , 2, on C**! such that

(21, vy Zntl) = Zn+l
Then the zero set of u,, is
Zo ={lz1,...,2n,0] € CP"}.
We claim that u,, is a nondegenerate section. Let ¢y € Z,. Assume for simplicity that z; (¢y) # 0.
Then, in the neighborhood O = {z; # 0} of ¢y we can use as coordinates the functions

N 210 _ Zn+1(0)
€2(€)_ Zl(g))"'ac—n-‘rl(g)_ Zl(g) :

The line ¢ C C™*! is spanned by the vector

U= (1,G00),...,¢r1(0)).

Hence, the collection (¥)¢co, defines a framing of U, |o,. Define wy € 3, to be the linear map
¢ — C uniquely determined by the equality w;(0y) =. The collection (wy)sc, defines a framing of
H|o,. Moreover

Ua (V) = Guy1(£) = Cugrwe (V).
This shows that the section u,, can be identified with the smooth function

0130 a(ffg) = <n+1(€) e C.
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This function is a linear submersion so that u, is nondegenerate. The orientation on the zero set
Z, is precisely the orientation as a complex submanifold. In fact, Z,, is a projective hyperplane in
CP"™. The homology class carried by Z,, is independent of the nonzero section «. It’s Poincaré dual
is denoted by [H| and it is called the hyperplane class. For this reason the line bundle X is called the
hyperplane line bundle. From the localization formula we deduce

c1(H) = —c1 (W) = [H] € H*(CP", Z).

If we consider the vector bundle

then ¢, (F) = c¢1(H)™. On the other hand, if we take the linearly independent linear functions
aty. 0 C" S C iz, ) =2, i=1,...,m,
We obtain a section u : uq, @ - - B uq, : CP" — E. Its zero set consists of a single point
bhy=[x1=0,...,2p,=0,2,41 #0] =1[0,...,0,1]

A simple computation as above shows that « is a nondegenerate section. The homology class as-
sociated to its zero locus is represented by the 0-cycle [(p]. This proves that the class [H]" €
H?"(CP",7Z) is the generator given by the complex orientation of CP". O

Corollary 5.4.4. The signature of the complex projective space CP?" equipped with the complex
orientation is Tep2n = L.

Proof. The middle homology is generated by the class [H]™ and [H]|"U[H]|™ = H?" is the canonical
generator of the top cohomology group determined by the orientation. Thus, in the basis [H]" of
H?"(CP?") the intersection form is represented by the 1 x 1 matrix [1].

O

Example 5.4.5 (The Chern classes of TCP™). Since CP" is a complex manifold, the tangent bundle
has a natural complex structure and thus we can speak of Chern classes. We regard CP" as the space
of complex lines in the Euclidean space CP™. As such, the trivial vector bundle Q&JPE} has a canonical
metric. The universal line bundle U is naturally a subbundle of this trivial vector bundle. We denote
by U™ its orthogonal complement in C* 1. Let us first observe that we cave a canonical isomorphism
of complex vector bundles

I : Home (U, UL) = TCP™. (5.4.7)
To understand this isomorphism we fix L. € CP". Then any complex linear map A : L — L=+
determines a 1-dimensional subspace

Tp(A)={z®A, e LeL"; ze€ A}
Observe that I'r,(0) = L. The map A — I'1(A) is a diffeomorphism from the vector space
Homge (L, L') onto an open neighborhood of L in CP". We get a map
) ) d
Home (L, L1) 3 A T (A) € TL,CP", T1(A) = J7l=oTr(¢4).
The map Iy, is C-linear and bijective since the map A +— I"4(L) is a diffeomorphism onto its image.
The collection (I'z,) Lecpr defines the bundle isomorphism (5.4.7). We conclude that
TCP" =2 U @ U = H U .
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From the equality C"*! = U @ UL we deduce that
H P 2HeoCM2He (UoUT) 2 (Heol)e (HeoUt) =CoTCP™

so that
Gg.anrl (t) - GT(C]Pm (t)

Hence
Crepn (t) = Coc(t)™ ! = (14 [H]t)"" = (”;: 1) [H*tk, (5.4.8a)
k=0
cn(TCP™) = <"Z 1) (H]F, Vk=1,...n. (5.4.8b)
O

Example 5.4.6 (Oriented vector bundles over S*). We want to investigate two oriented vector bundles
of rank 4 over S*.

(a) The first such bundle is the tangent bundle E = T'S*. We describe S* as the subset
= {w: (zo,...,74) €R?; || :1}.
The tangent space to S* at & can be identified with the subspace
(x)t = {u€R5; ulax}
We denote by P,, the orthogonal projection onto (z)-. Observe that
Pry =y~ (y.x)z, Yy eR’,
where (—, —) denotes the canonical inner product on R5.

We denote by e, . .., e4 the canonical basis of R® and we form the vector field
V.8t 5 TS* x+— Pgeo.

We will prove that V' is a nondegenerate smooth section of 7.4 and then we will compute the cycle
determined by the zero locus of this section.

Note first that the zero locus of this section consists of two points, the North pole . = (1,0, ...,0)
and the South Pole x_ = (—1,0,...,0).
Near ;. we canuse ' = (1, ..., 24) as local coordinates. In these coordinates . is identified

with the origin of R*. Then, near x, we have
ro=V1-r2 r(@):=|z|=\ 23+ - +23

Moreover, the canonical orientation” of S* near x, is given by the frame (0,,,...,0,,). These
tangent vectors can be identified with the vectors in R® given by

O, 3:101 8%;@61 160-1-61, i=1,...,4
More explicitly
—_— $z . —
O, = 7meo +e, i=1,...,4 (5.4.9)

2This is the orientation of S* as boundary of the unit ball in R%.
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We can now find four smooth functions vy (x'), ..., vs(z’) defined in a neighborhood of 0 € R*,
such that near ;. we have
4 4
V(z) =) vilpseg— > 00y, L0y, Vji=1,... 4.
i=1 i=1

Using (5.4.9) we deduce that

4
1_T2 = 0i(02,,04,), Vi=1,...,4.
i=1

Now observe that
.m.l‘j
1—1r2

05 = ! Z:Z
0 i#j.

If we now introduce the 4 x 4-matrix H with entries H;; = z;x; we deduce that

(axpaxj) = + 51]7

where d;; is the Kronecker symbol

1 o 1 o
(1+1_T2H) ==
V4 T4
U1 Z1
<:>((]l+r2+0(3))H> Dl ==(1+724003)) | : |,
(o T4

where O(k) denotes a term which in norm is < const.r* near . Observe that H = O(2), r2H =
O(4) so that

((1 42 +O(3))H) =1+0(2).

If we set
U1
U=
(2
then we deduce
X1
v=—(1+0(2))
T4

We deduce that the differential at . = (0,0, 0, 0) of the map

RY> 2’ — i) e R?
is —1. This is precisely the adjunction morphism Ay, @ Ty, St = T, N S*in (5.4.1). In par-
ticular the map Ay, is orientation preserving. Arguing similarly, we deduce that the adjunction

amp Ayg_ : T, S* — T, S*is the identity map 715 S* — T, S* This shows that the cycle
determined by the zero locus of V' is

(V' =0) = [xy] + [-] € Ho(SY).
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If we denote by wy € H*(S*) the generator of the cyclic group H*(S*) determined by the canonical
orientation, we deduce from the localization formula that

e(TS%) = 2uw,. (5.4.10)

(b) Denote by H the (skew) field of quaternions. We consider the direct sum H? = H @& H which we
regard as a right H-vector space. We denote by HIP! the set of one dimensional (right) H-subspaces.
We can identify such a subspace with a pair [qo; ¢1], g0, ¢1 € H, |go| + |q1| # 0, where

[q0, q1] = [qot, qt], Vt € H\ 0.

The quaternionic projective line HIP! is a smooth 4-manifold that admits a coordinate atlas consisting
of two charts

The map H — HP! given by ¢ ~— [1,¢q] extends to a diffeomorphism S* — HP!. We have a
tautological quaternionic line bundle Uy — HIP' with total space

{ (quq17 [QO7Q1]) S H2 X HPI }

We denote by Ug; the quaternionic dual of Up. The fiber of this line bundle over the quaternionic line
L € HP! is the space Homy (L, H), of morphisms of right H-spaces.

Note that we have a natural isomorphism
H2 — HomH(H2a H)T7 (qo’ ql) = LQOJh
where for any zg, 1 € H we have

Lao,q1 (w0, 71) = qoo + 171

As in Example 5.4.3 we deduce that every element ¢’ € H? determines a smooth section ug of Ug. If

we choose ¢ = (1,0) we deduce exactly as in Example 5.4.3 that the section ug : HP! — Uj; has a

unique nondegenerate zero Lo = [0,1] € HP!. The quaternionic line bundle Uy is naturally an ori-

entable rank 4 real vector bundle over S*. It carries a natural orientation induced by the quaternionic

structure. We denote by e(U#) € H*(S?) its Euler class. From the localization formula we conclude
that®

e(Upy) = Fwy (5.4.11)

O

Let us point out that the computation in Example 5.4.6(a) proves something more general.
Corollary 5.4.7. Denote by w,, the canonical generator of H"(S™,7) induced by the canonical
orientation on S™. Then

2w, mn =0mod?2

e(TS") = (1 +(=1)") )w" = {0 n =1 mod 2. -

30ne can prove that the correct sign in (5.4.11) is +.



Chapter 6

Pontryagin classes and
Pontryagin numbers

In this chapter, as in the previous ones, the topological spaces will be assumed paracompact.

6.1. The Pontryagin classes of a real vector bundle

For a real vector bundle £ — X we denote by Ec — X its complexification, E¢c := Cy ®r E. It
becomes in an obvious fashion a complex vector bundle.

Equivalently, we can define E as the direct sum E & F, where for every z € X the action of ¢
on Ec(z) & E(x) ® E(x) is given by
E(z)® E(z) 3 (v1,v2) — (—va,v1) € E(z) ® E(x).
If we denote by (E¢)g the bundle E¢ viewed as a real vector bundle, then we have an isomorphism

of real vector bundles
(E(C)R =Fa L.

Definition 6.1.1. For every real vector bundle £ — X and for every £ > 1 we define the k-th
Pontryagin class of E the cohomology class

pr(E) = (—1)Feq(Ec) € H*(X,Z). 0
Proposition 6.1.2. For every oriented real vector bundle E — X of rank 2r. Then
pr(E) = e(E)?,
where e(E) € H?"(X) denotes the Euler class of E.
Proof. Denote by or,. the geometric orientation of (Ec)g as a complex vector bundle, and by or?

the geometric orientation of ( E¢)g induced from the orientation of E via the isomorphism (E¢)r =
E @ E. Since e( (E¢)R, or. ) = cor(Ec) we need to prove that

e( (Ec)r,or.) = (—1)"e(E)%.

On the other hand, we have
e((Ec)r,or’) = e(E)?
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so it suffices to show that or. = (—1)"or?.

Let z € X, choose a positively oriented frame eq, . . ., e2, of E(x). We regard E'(x) as a subspace
of Ec(x) and set
fr:i=1tex € Ec(x), k=1,...,2r
Then or, is defined by e; A fi ---ear A fo,, while or? is defined byei A---Neap A fi A+ A for.
Now observe that
eL A fiorea A for = (1) A Negr A fL A A o
and
14244+ (2r—1)=r(2r—1) =r mod 2.
O

From the naturality properties of the Chern classes we deduce that for every continuous map
f Y — X, and every real vector bundle £ — X we have

pe(f*E) = fpu(E), Vk=>1. (6.1.1)
For any topological space X we set

H*(X) := H*(X,Z)/Torsion.
Note that the cup product on H*(X) induces a cup product on H' (X).

For every real vector bundle £ — X we denote by pg(E) € Tt (X) the image of the k-th

Pontryagin class of E via the natural surjection H**(X,Z) — ﬁ%(X ). We will refer to py as the
k-th reduced Pontryagin class and we set

t)=> pp(E)*" € H'"(X), po(E)=1.
k>0
We say that Py is the (reduced) Pontryagin polynomial of E.

Proposition 6.1.3. For any pair of real vector bundles Fy, 1 — X we have
Proon (t) = Pr,y (1) - P, (1) (6.1.2)

Proof. For any complex vector bundle £ — X we denote by ¢x(E) the image of its k-th Chern class
in F%(X), and we set

Cr(t) =Y a(B)tF e H""(X).
k>0
The proposition is a consequence of the following identity.

Lemma 6.1.4. If E is a real vector bundle then
Pr(t) = Cr.(it) € Zli| @z H " (X)[t] (6.1.3)
Proof. From the equality
Cre (it) = Z( 1)*eor (Ec)t?" + ZZ )¥eori1(Ec)t?
k>0 k>0

we deduce that the equality (6.1.3) is equivalent with the equalities ¢ox+1(Ec) = 0, i.e., the odd
Chern classes of E¢ are torsion elements of H'*"(X,7Z). To see this we observe that we have
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an isomorphism of complex vector bundles Ec — Ec induced from the tautological isomorphism
Cx — Cx given by the conjugation map C — C, z — Zz. From Exercise 5.3.3 we deduce

—cort1(Ec) = corq1(Ec) = cars1(Ec) sothat 2co11(Ec) = 0.

If Ey, E are two real bundles then
{‘T)E()@EH (t) = é(Eo)c@(El)c(it) = é(Eo)c (lt> : é(El)C)(it) - {‘TDEO (t) ’ jDEl (t)
O

Corollary 6.1.5. The reduced Pontryagin classes are stable, i.e., for any real vector bundle E — X,
and any n > 0 we have
pe(E @ RY) = pp(E), Vk > 1.

Proof. Use the equality (6.1.3). a

Corollary 6.1.6. Prgn(t) = 1.

Proof. The equality follows from the isomorphisms
R = (TR gn 2 TS™ @ TgnR" ™ 2 TS™ @ Rgn
and the stability of the reduced Pontryagin classes.
O

Proposition 6.1.7. If E — X is a complex vector bundle and Eg denotes the same bundle but viewed
as a real vector bundle then

Pp, (t) = Cp(it)Cp(—it) (6.1.4)
=1 (c1(E)* —2c2(E) )t* + (2ca(E) + c2(E)* — 2¢1(B)c3(E) )t* + -+

Proof. The identity (6.1.4) is an immediate consequence of the bundle isomorphism
(ER)c X EQE. (6.1.5)
Indeed, we have - - - - -
Prp(s) = Cr(ts)Cx(is) = Cr(is)C(—1s)

To prove the isomorphism (6.1.5) we observe that the multiplication by % in the complex vector
bundle E defines a linear endomorphism on the real vector bundle Fr that we denote by J. The
endomorphism J satisfies the identity J? = —1 and extends to a complex linear endomorphism .J. of
(ER)c. Forevery x € X, the linear map J.(z) : Er(z) ® C — Eg(z) ® C has two eigenvalues =+4.
The corresponding eigenspaces

ker(z — J.(x)), ker(i+ J.(x))
are isomorphic as complex vector spaces with E(z) and respectively E(x). We obtain in this fashion
two subbundles

EY = ker(i — J.) = (Er)c, E%!':=ker(i + J.) — (Er)c.
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We have
EY @ E% = (Eg)c, E"' = E, B = E.
O
Corollary 6.1.8.
Propn(t) = (14 [HP2)™, [H]™ ' =0, (6.1.6)
Proof. From (5.4.8a) we deduce that
Crepn (t) = (1+ [H]t)"H!
so that
= = N . 1
Prepn(t) = Crepn (it) - Crepn (—it) = (14 [H*2)"
O

6.2. Pontryagin numbers

For every smooth manifold M we set
Pe(M) = pr(TM), Pu(t) == Pru(t).
We define a partition to be a finite weakly decreasing sequence I of positive integers
I={i1 >ip<--->1ip>1}.

We say that / is the length of the partition and w(I) := i1 + - - - 4 iy is the weight of the partition.
We denote by Part the set of all partitions, by Part(k) the set of partitions of weight k, and we
denote by p(k) its cardinality. Observe that to any finite sequence of positive integers (i1, . . ., 7) (no
monotonicity is assumed) we can associate a canonical partition (71, . . ., 4¢)\, obtained by rearranging
the terms of the sequence in decreasing order. Using this point of view we can define an operation

% : Part x Part — Part, (i1,...,%¢) * (j1,-- -5 0m) = (01,19, J1,- -, Jm)\, € Part.
Note that w(l * J) = w(l) +w(J), VI, J € Part.
For any smooth, compact oriented manifold M of dimension m,and any partition I = (i1, ...,is) €

Part(k) we set
_ 0 m # 4dw(I)
P {%(M) i M) m = du(D), ©2D

where (—, —) : H™(M) x H,,(M) — 7Z denotes the Kronecker pairing and [M] € H,, (M) denotes
the orientation class. The integers P;(M) are called the Pontryagin numbers of M. Observe that if
the dimension of M is not divisible by 4 then all the Pontryagin numbers are trivial.

Proposition 6.2.1. If the smooth compact oriented manifold M is the boundary of a smooth compact
manifold with boundary M, then all the Pontryagin numbers of M are trivial.

Proof. Clearly we can assume dim M = 4k. Choose an orientation class []\/4\ | € H4k+1(]\/4\ OM )

—

that induces the orientation [M] on M, i.e., O[M\ | = [M]. Let M be a neck extension of M. Observe

that the normal bundle T3 M is a trivial real line bundle so that

(TM)p; = Toy M & TM.
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From the stability of the reduced Pontryagin classes we deduce

where j : M < M denotes the natural inclusion. If I = (iy, . ..,is) € Part(k) then

= <]*(ﬁz1(M> o 'piz(M) )78[M] > = <8T]*(ﬁ11<M) o pze(M) )v [M] >’
where 9T : H4% (M) — H*%*+1(M,9M) is the connecting morphism in the long exact sequence of
the pair (M, OM ). Now observe that 9Tj* = 0 due to the exactness of the sequence

P t o~ e~
H*% (M) 25 H*% (M) 25 H*Y(M, 0M).

The above result shows that we can regard the Pontryagin numbers as morphism of groups
Pr:Qf, — Z, I € Part(k).

Note that P vanishes on the torsion elements of szk and thus Py is uniquely determined by the
induced morphism
Pr:Qf ®Q— Q.

Proposition 6.2.2. The Pontryagin numbers (Pr) IePart(k) Jorm a linearly independent subfamily of
the Q-vector space

Ek = HOmQ(Qj{k & Q, Q)
In particular, diim Q, ® Q > p(k).

Proof. To understand the origin of the main construction in the proof it is convenient to thing of the
Pontryagin polynomial of a manifold M of dimension & as a product of elementary polynomials

Po(M)+pr(M)z+ -+ pp(M)2F = (1 +712) - (1 +r2), 2=t

Thus, we would like to think of the Pontryagin classes as elementary symmetric polynomials in the
(possibly nonexistent) variables r;. Any other symmetric polynomial in these variables is then a
polynomial combination of the elementary ones. We use this idea to construct a new basis in the
vector space generated by the morphism Pr and the conclusion of the proposition will much more
transparent in this basis. Here are the details.

We denote by o; the i-th elementary symmetric polynomial in the variables 71, . . ., r. For every
partition I = (41,12, ...,1s) € Part we define
ST € Z[O’l, R ,Uk]

the symmetric polynomial
sp(o1, ... 0k) = Zr? eyt

Above, the sum is over all monomials equivalent to 7{' - - -7,/ where two monomials are declared

equivalent if one can be obtained from the other by a permutation of the variables 71, ..., rg.
2
591 = E riT; = 0102 — 303, S1,1 = g TiTj = 03.
i#j i<j

The following result should be obvious.
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Lemma 6.2.3. The polynomials (sy) IePart(k) Jorm a basis of the free Abelian group space of sym-
metric polynomials of degree d < k in the variables 1, . . ., with integral coefficients. O

We denote by & the ring of symmetric polynomials with integral coefficients, and by S% the sub-
group consisting of homogeneous polynomials of degree d. For any smooth manifold M of dimension
4k and any partition I of weight k& we set

sp(M) == s;(p(M),....px(M)), Sp(M):= (sp(M), unr),
where 1)y € Hy(M) denotes the orientation class of M. For every I € Part(k) we obtain in this
fashion morphisms of groups
S I Qik — 7

and thus Q-linear maps St : Qik, ® Q — Q. The above lemma shows that the linear subspace of =,
spanned by (S1) repart (k) is €qual to the linear subspace spanned by the linear maps P : Qik, ®Q —
Q. Thus is suffices to show that the functionals Sy are linearly independent. We will prove something
stronger. For every I = (i1, ...,1;) € Part(k) we set

CP* = CP*" x --- x CP*

and we denote by §4k((@) the subspace of Qik spanned by the cobordism classes of CP?!, I €

Part (k). We will show that the vector space {4;(Q) has dimension p(k) and that the functionals 57,
I € Part(k), form a basis of

E, := Homg(241,(Q), Q).
More precisely we will prove that

the p(k) x p(k) matrix [S[((C]P)J)][”]epart(k) is nonsingular. (6.2.2)

Lemma 6.2.4 (Thom). Suppose My and M, are smooth, compact oriented manifolds of dimensions
4ko and respectively 4ky. Then for every I € Part(ko + k1) we have

Sp(My x M) = > Sp,(Mo) - Sy, (M) (6.2.3)
(IO,Il)GPart(ko)XPart(kl), IoxI1=1

Proof. The above equality is a consequence of an universal identity involving symmetric polynomi-
als. To state this universal identity we need to introduce some more notation. We denote by o; the i-th

elementary symmetric polynomial in the variables ry, ..., 7, by o} the i-the symmetric polynomial
in the variables 7, ..., 77,, and by o’ the i-th elementary symmetric polynomial in the variables
o= Ty Js<n
J Tiin J>m.
From the equalities
n n n n
Yot =[[A+rit), Y oitl =] +7jt)
i=0 i=0 §=0 j=1
we deduce
ol = ) 0i0} (6.2.4)
itj=¢

The following is the universal identity alluded to above.
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Sublemma 6.2.5.
si(of) = Y ss(09)sk(0}), VI € Part(2n). (6.2.5)
JxK=I

Let us first show that Lemma 6.2.4 is a consequence of (6.2.5). Indeed, let n = kg + k1. We
denote by 7; the natural projection My x My — M;, 1 = 0,1. We set

P == pj(Mo x My), pi=m5pi(Mo), p; = mipi(My).

pi= > v}
itj=t

and since the variables o;, a} are algebraically independent we deduce from (6.2.5) that

st(Mo x My) = s1(pf) = Y ss(pj)ss(pf,)

Then

JxK=1I
We deduce
SI(MO X Ml) = Z <5J(pj)sK(p§c)vuMo X ,LLM1>
JxK=1I
= D (sa(p) ) - sk (0h),man) = Y Ss(Mo) - Sy(My).
JxK=I JxK=I

This proves the equality in Lemma 6.2.4. As for (6.2.5), it follows from the simple observation that
any monomial in the variables 7 can be written in a unique fashion as a product between a monomial

in the variables r; and a monomial in the variables 7“;-.

O

We can now prove (6.2.2). We define a partial order > on Part(k) by declaring I = J
I=(1>>2i>0)=J=(j1,> > Jjm > 0) € Part(k),
if
I=0Lx%---x1I,, I,€Part(j,), YVa=1,...,m.

From the product formula (6.2.3) we deduce that S;(CP?/) = 0 if J X I. This shows that the
matrix [S7(CP”)]; jepart(k) i upper triangular with respect to the above partial order on Part (k).
The diagonal elements are S7(CP?!). An inductive application of (6.2.3) shows that

¢
Stir,ig) (CP?1 x - x CP?*) = H S; (CP%v)
v=1

Thus the matrix [S;(CP”)]; jepart(k) is nonsingular if and only if S, (CP?") # 0, Vn. This is a
consequence of the following more precise result.

Lemma 6.2.6.
S, (CP?™) =2n+1, ¥n > 1.

Proof. Let o; be the i-th elementary symmetric polynomial in the variables r — 1,...,ry, N > n.
Set f(t) = Zz‘]\io oit?, o9 = 1 so that

fz) =] +r2).
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We then have the equality’

f/(z) o al 75 . m m o)
) = > e > (D)™™ (6.2.6)
i=1 m>0
If we let '
f(Z) _ Zpl((cﬂ;ﬂn)zz _ (1 + [H]22)2n+1, [H]2n+1 -0
i>0
We deduce 72
z -1
o @2n+ DHP (14 [HP2) " =) (1) sms1(M)z
m>0
We deduce that s,,(M) = (2n + 1)[H]?". O
The proof of Proposition 6.2.2 is complete. O

Corollary 6.2.7. The cobordism classes of the manifold CP?!, I € Part(k) are linearly independent
in the Q-vector space sz ® Q. O

L This is often referred to as Newron’s formula.



Chapter 7

The Hirzebruch signature
formula

We have now developed the topological language needed to state Hirzebruch’s signature theorem.
There are still two missing pieces needed in the proof. One is of a combinatorial nature and will be
described in this section, while the other, more serious, is the award winning work of R. Thom on
cobordisms. We will deal with this in Chapter 9.

7.1. Multiplicative sequences

To any commutative, graded Q-algebra
A =(PA", A" A" C AMT
n>0
we associate the ring of formal power series A®[[z]],
p e A[[:]Je=p() = 3 s, po € A",
n>0

We think of the elements of A™ as having degree n. The ring A®[[z]] contains a multiplicative semi-
group with 1,
A = {3 pue € A'TEl: =1}
n>0

Consider the commutative, graded Q-algebra & := Q[p1, p2, . . ., ]1, where the variable p,, has degree
n. An element of

K = K((pu)ns1; 2) € S[[2]

can be written as

K = Z K, ((pi)i>1)z", K, is homogeneous of degree n.
n>0

10ne should think of & as the ring of symmetric polynomials in an indefinite number of variables
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In particular, we deduce that Ky must be a constant and that K,, only depends on the variables
Dly--sPn, Vo > 1.

Definition 7.1.1. A multiplicative sequence (or m-sequence for brevity) is an element

K=1+Y Ku(p1,...,pn)z" € S[2]]#

n>1

such that, for any graded Q-algebra A® the map K : A*[[2]]# — A*[[z]]# given by

A*[Z)])* 3 a(z )—l—i—Zanz — K(a —l—i—ZK (a1,...,an)2" € A*[[2]]7,
n>1 n>1
is a morphism of semigroups with 1. O

For example, the above definition implies that if K is an m-sequence then for any commutative
Q-algebra R with 1, and any sequences (7,)n>0, (17)i>0 and (r7) ;>0 in 1 such that

ro=ry=ry=1and r, = g rir ;’,

i+j=n
we have
Ky(ri,...,mp) = Z Ki(ry, . .,m) K(r," 1), Vn.
1+j=n
Suppose
K=1 —i—ZKn(pl,...,pn)z”
is a multiplicative sequence. For every n > 1 the polynomial K,,(£,0...,0) € Q[{] is homogeneous

of degree n and thus it has the form

Kn(£,0...,0) = kn€", ky € Q.

We can now form the power series

) =1+ k" € Q¢

n>1
We will refer to ax (§) as the symbol of the multiplicative sequence K. Note that
ar(p1z) = K(1+ p12).

Proposition 7.1.2. A multiplicative sequence K is uniquely determined by its symbol ay (§).

Proof. Consider the graded ring

A® =Qlt1, ..., tn]
We denote by oy, the k-th elementary symmetric function in the variables ¢y, ..., t,. Then we have
the following equality in A®

and we deduce

1+zn:Kj(01,...,Uj)zj:I?<1+Zaj2j):H K(1+tz) HaKtz
i=1 =
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This uniquely determines the polynomials K; since the polynomials oy, are algebraically independent.
O

Proposition 7.1.3. For any power series
a(€) =1+ and" € Q[¢]
n>1

there exists a multiplicative sequence K = K® such that ag (§) = a(§).

Proof. The proof of the uniqueness result has in it the seeds of the proof of the existence result.
Consider the product

n n
[Tatiz) =14+ Ajuts, .. )27 + > Annlts, ... tn)2".
Jj=1

j=1 N>n

Observe that the polynomials A;,, are homogeneous of degree j and symmetric in the variables
t1,...,t, SO we can express them as polynomials in the elementary symmetric functions,

Aj,n(tla e ,tn) = ijn(O'l, e ,O’j), ] S n. (711)
Moreover, for j < n < N we have
ij(dl, ceey O'j) = Kj7N(O'1, ceey O'j)
For this reason we will denote by K(o1, ..., 0;) any of the polynomials K ,,, j < n.
If instead of the elementary symmetric polynomials o; we use the polynomials s7, I € Part(j)
introduced in the previous chapter, then we have
K; = Z arsSr(01, ..., 05), Q.. ip = Gip - G-
IePart(y)
Now define
K( (pZ)ZZh Z) =1 + ZKj(ph CIEa 7pj)2]7
j>1
where K; are the polynomials defined by (7.1.1), or equivalently,
K](plvvpj> = Z aISI(p17--~7pn)-
IePart(n)

If in some ring A®[[z]] we have an equality of the form

L+ phe" = (HZpizi) : (1+Zp§-zj),

n>1 i>1 j>1
then
ph=>_ pir
i+j=n
and from (6.2.5) we deduce

sipl) = > ss(p)sr ().
JxK=I
Coupled with the identity

aryg = ayay, VI,J € Part
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this implies

i+j=n
so that
(1—1—2]9" ”) —I?(l—l—Zpizi) IA((I—i—Zp;zJ)
n>1 i>1 j>1

Example 7.1.4. (a) The set Part(1) consists of single partition I = 1 and we have
Sl(tl,...,n):tl—i---'—l—tn:Jl. (7.1.2)
(b) The set Part(2) consists of two partitions, 2 and (1, 1). Then
S9 = Zt? = 0% — 209,
81,1 = Ztit]‘ = 09
1<j
(b) The set Part(3) consists of three partitions 3, (2,1), 13 := (1,1, 1) and we have

S111 =03, sg=» t7,
i
$21 = Zt?tj = thzt? = Zt]‘(SQ — t?)
J

i#] J i#]
= 8§9071 — 83 — U? — 20’10’2 — 83.

To express s3 in terms of the elementary symmetric functions we use Newton’s formule (6.2.6)

Zn:jajzjfl = (1 + ZUJZ]> ( Z( 1)msm+1zm).
j=1

m>0
We deduce
01 =81, 200 = —83+ 0151, 03 =83 — 8152 + 0251
so that
s3 = 0% — 30109 + 303 (7.1.3)
and
89,1 = 0102 — 303. (7.1.4)

Example 7.1.5. (a) Let a(z) = 1 + £. Then the multiplicative sequence with symbol a is
K=1+piz+p2®+--
Indeed,

n

n n
1 —l—ZKj(al,...,aj)zj = H(l +tjz) =1 +Zajzk
j=1 j=1

j=1
(b) Consider the series

08) = Ve +Z

2k£k
tanh f ’
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where b,, denote the Bernoulli numbers. They are defined by the following recurrence relation
n

> (7 )ty =0

=1

where by = 1, b1 = —%. We have by 1 = 0 for all j > 1. Equivalently

o,
et—l_z "l

n>0

Here are the values of b,, for n < 18.
n|0] 12| 4 6 8 110 12 14 16 18

_ 3615 | 43867
510 798

1 1 1 5 691

1
61 30142 30 | 66 | — 2730

bp | 1] —

IND| =
(SRS

We have ] i 5 . 5
(2)=1+-2— 2>+ 2%~ ! +0(2°).
C)=1t32= 57 o5 “mmne oy O
We denote by ¢, the coefficient of 2™ in the above expansion. If we denote by L the multiplicative

sequence with symbol £(&), then we have

Lo= > tsi(pi,....pn)-

IePart(n)
Here is the explicit description of L,, for n < 3. We have
712) 1
Ly = l1s1(p1) TP 3PL
1 1 7 1
Ly=/ I =——(p?-2 —py = —py — —p5.
2 = lasa + {1511 T (p1 — 2p2) + oP2 = 1zP2 — 5P

L3 = 3s111 + lal1591 + l353
(7.1.4),(7.1.3) 1 1 2 62 13 2

2 py— — -3 = (p?—3 3ps) = ——pg — —— =B,
o7 P3 135(]91102 p3) + 945(191 p1p2 + 3p3) 9453 945p2p1+ o1

O

7.2. Genera

Definition 7.2.1. A genus (or multiplicative genus) is a ring morphism v : Qf — Q, where QJ
denotes the oriented cobordism ring. O

For example, the signature function is a genus.

Proposition 7.2.2. Any multiplicative sequence K = (K, )n>1 defines a genus v = ~yx such that,
for any compact, oriented manifold M we have

v(M) =0, dimM # 0 mod 4,

VK(M) = <K(]51(M), . apn(M))a [M] >7
if dim M = 4n. Above, [M] denotes the orientation class of M. Moreover, if a(§) is the symbol of
K, then
v(CP?™) = the coefficient of €™ in the formal power series a(£2)*" 1. (7.2.1)
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Proof. Suppose My, M; are two compact, oriented smooth manifolds. We set M = My x M; and
we denote by ; the natural projection M — M;, ¢ = 0,1. We set

Pi(z) =1+ Zﬁk(Mi)zk, Plz) =1+ Zm(M)zk, i=0,1.
k>1 k>1
Then
TM = 7T My & wiTM,,

From the product formula (6.1.2) we deduce

P(2) = 1iPo(2) - 1Py (2).

(K(P(2)), [M]) = (K (P(2)), [Mo] x [Mi]) = (75K (Po(2)) - 7] K (P1(2)), [Mo] x [Mi])

= (K(Po(2)),[Mo]) - ( K(P1(2)),[Mi])
If we let z = 1 we deduce yx (Mo x My) = v (My) - vi (My). The linearity of vk is obvious.
Observe that

Vi (CP*) = ( K, (p1(CP?"), ..., p,(CP?")), [CP*"] )
To estimate this number we need to introduce a notation. For any formal power series

we denote by 37 u its n-th jet

Jhu = Z up 2"

k<n
and by [2"]u the coefficient of 2™ in the expansion of w, [z]"u := w,,. If we set
Pu(z) =1+ pp(CP™)z"
k>1
then
Ky = [2]"K(Pa(2)) = [2]"K (§2Pu())
On the other hand we deduce from (6.1.6) that

Do) = 42 (1+ [HPz)"
so that
K, = [2"K (§7(1+ [HP?2)"") = ]"K (1 + [H]?2) )
= (RO HP) ™ = Eral? O HP = (€7 (a(e)) "
Then

i (CP?™) = [€27)(a(€2) ) > ((H]?", [CP2")).
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A genus ~ extends to a ring morphism v : QF ® Q — Q. Consider the subring Q0 of QF
generated by the cobordism classes CP?", n > 1. To any ring morphism v : Qf ® Q — Q we form
the generating series

r ( ) =1+ Z r2nt2n7 r;n (CPZH)

n>1

t vy
r
R = v — _2n  42n+l1 - 1.
/0 =2 m1 0
n>0

Since the collection { CP?* x --- x CP**; (iy,...,4i) € Part(n)} forms a rational basis of

Q ., ® Q we deduce that the sequence 75, completely determines the restriction to Q+ ® Q of the
genus ~. Conversely, any sequence of rational numbers (72, ),>1 determines a unique morphism
v : QF ® Q — Q such that

We also set

p(CP*™) = ry,, Vn > 1.
We have thus established a bijection between formal power series

) =1+ rot™ € Q[]]*

n>1

and ring morphisms QO ® Q — Q.
Note that to every power series a € Q[[£]]* we can associate a multiplicative sequence K = K¢
whose symbol is a. We denote by v“ the genus determined by K¢, and we set

ri(t) =14y *(CP*)e*" € Q[I*))*
n>0
We obtain in this fashion a bijection
QUEN™ > a(§) — r*(t) € Q)

We would like to give a description of the inverse of this correspondence. This will require a detour
in classical combinatorics.

For any formal power series u =}, - unt" € R[[t]] we set
/ Un n+1
U = Z —
730 n+1
We can define in an obvious way the composition of two formal power series, u o v, [t°]v = 0,
2
uov(t) :U0+U1(Zvntn) +uz(Zvnt"> I

n>1 n>1

A formal power series u is called formally invertible if it has an expansion of the form
u(t) = uit +ust® + -+, up £0, ie, Lo #0.

In this case, a version of the implicit function theorem for formal series implies that we can find a
formal power series v = vt + vot? + - - - such that

uov=t=vou.
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The series v is called the formal inverse of u, and we denote it ul~!. The coefficients of v are found

via Lagrange inversion formula. We write u as a ratio u = ﬁ and then we have

[ty = %[t”_l]q(t)”. (7.2.2)

To keep the flow of arguments uninterrupted we will present the proof of this classical identity later
on.

Proposition 7.2.3. For any morphism -y : ﬁf ®Q — Q there exists a unique multiplicative sequence
K = K7 such that v = vi on QF @ Q. More precisely, K7 is the unique multiplicative sequence
whose symbol a., satisfies the equation

y (1]

t

Equivalently,

Proof. Observe first that R” is formally invertible because [t°]R? = 0 and [t|R” = 1. From (7.2.1)
we deduce

1
r;n [th]a(t2)2n+l : [t2n+1]R'y 5 : [th]a(t2)2n+1'
Observing that
1
[tQ”]RW =0= o [t2n*1]a(t2)2”

we deduce that )
[t"RY = —[t" Ya(t*)", Vn>1.
n

The Lagrange inversion formula implies that R” must be the formal inverse of ﬁ

We have thus produced several bijections
Q[[€]]* > a— K, € Multiplicative sequences; inverse, symbol map : K — a.
Hom(0f ©Q,Q) 37— 17 =1+ 3 4(CP")>" € Q]*.
n>1

Multiplicative sequences > K — vk € Hom <§f ® Q, Q); inverse : v +— K7.
At this point we want to invoke R.Thom’s results on the structure of the oriented cobordism ring. We
will discuss its proof in Chapter 9.
Theorem 7.2.4 (Thom cobordism theorem). (a) If n % 0 then Q. is a finite group.

(b) The group Q0 /Tors is a finitely generated free Abelian group of rank p(n) = |Part(n)| In
particular, we have
QWeQ=92Q. O

Putting together all the facts established so far we obtain the following result.
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Corollary 7.2.5. For any genus vy : Qf — Q there exists a unique multiplicative sequence K such
that, for any smooth, compact oriented manifold M of dimension 4n we have

V(M) = ( Kn(p1(M),...,pa(M)),[M]).
The symbol a(&) of K is related to the generating series
ri(t) =1+ ) y(CP*)*
n>1

via the equality

2\ _ t _ k Y
a(t?) = =k where R_/o r.
7.3. The signature formula

The signature function defines a morphism
T: QP 9Q—-Q

with generating function

1 1 1 1

o1 [t+1

The formal inverse of R can be obtained by solving for ¢ the equation

1 t+1 t+1 _1 et
u:210g( + )<:> + = Pt = & S = tanh(u)

so that

t—1 241  el4et

There exists a multiplicative sequence X' = K7 such that 7 = v on ﬁf ® Q. Using (7.2.4) we
deduce that the symbol a.; of K satisfies

2 § Ve

= — = = - = E s

€)= e = O = wancrg = ©
where /(&) is the power series investigated in Example 7.1.5(b). We denoted by L the associated
multiplicative sequence, and we will refer to the associated genus as the L-genus. We have thus

obtained the celebrated signature formula due to F. Hirzebruch.

Corollary 7.3.1 (Signature formula). For any compact oriented, smooth manifold M of dimension
4n we have

™ = <Ln(p1(M)7'~7pn(M))7 [M] >7
3

where L is the multiplicative sequence with symbol {(§) = tan‘hf( 7o and [M] € Hyn(M,Z) denotes

the generator determined by the orientation of M. For example,

™ = %<p1(M), (M), ifdim M = 4,

™ = 4—15<p2(M) — Tp1(M)?, [M]) ifdim M =8,
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™ = %%2}73(1\4)*13p2(M)p1(M)+2p1(M)3v[M]>' =

Example 7.3.2. We want to present a simple amusing application of the signature formula. Later on
we will discuss more complicated ones. In the sequel, for every topological space X we define its
k-th Betti number to be
bp(X) = dimg Hi (X, Q).

If all the Betti number of X are finite, then we define the Poincaré series of X to be the formal power
series

> b(X)tF € Z]t]

k>0

Given any sequence of nonnegative integers ap, ..., an,, ... finitely generated groups (Gp,)n>1

we can find a compact, connected, C'TV-complex X such that?

b(X) =ag, Vk>1
Given a sequence of nonnegative integers (aj)x>1, we can ask if can we find a smooth compact,
connected, orientable manifold M, dim M = m which such that
b(M) = ay,Vk > 1.
Clearly, we need to impose some restrictions on the numbers axgroups Gy,. First, we need to require
that there exists m > 0 such that a,, = 0, Vn > m. Secondly, Poincaré duality requires that
am =1, a; =am_;, Y0 <i<m.

We want to show that there is no, smooth, connected, orientable manifold M whose Poincaré poly-
nomial is

Pyr(t) = 141° + 12,
We argue by contradiction. If such an M existed, then dim M = 12. The middle Betti number is 1
so that the signature of M/ can only be +1. Since b,(M) = bg(M) = 0 we deduce that the reduced
Pontryagin classes p1 (M) and po(M) are trivial. From the signature formula we deduce

62
1= S (pa(M), [M]) = £945 = 62(ps (M), [M)).
This is impossible since 945 is an odd integer. O

7.4. The Lagrange inversion formula

In this last section, we give the promised proof of the Lagrange inversion formula.

Consider the ring of formal power series C[[t]] and the ring of formal Laurent series C[t~1,¢]],
where

acClt L t]l<=a=1t"b(t), NeZ, bt)eC[t].

For a € C[t™1,#]] and n € Z we denote by [t"]a the coefficient of ¢ in the expansion of a. The
coefficient [t~!]a is called the residue of a and it is denoted by Res a. Let us observe that C[t !, #]]
is a field, i.e., any nonzero Laurent series v has a multiplicative inverse «~'. We denote by D the
formal differentiation operator

Clt", (] —Ct ")), a s Da = %a.

2Can you prove this?
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Lemma 7.4.1 (Formal residue theorem). (a) For any Laurent series u € C[t~1, t]] we have
Res Du = 0.
(b) If u = ut + ust® + - - - € C[[t]] is formally invertible, i.e., u1 # 0 then
Resu 'Du = 1. O
Exercise 7.4.2. Prove the formal residue theorem. O

Suppose u = uyt + ust? + - - - is a formally invertible power series and v = v1t + vot? + - - -

its formal inverse, i.e., v(u(t)) = t. Then
t = viu+ vou® + - - -

so that,

1= Z kvpu1D,.
k>1

Multiplying both sides by u~" we deduce

u "= Z kvkukfnleu = nu,u”Du + Z
k>1 k#n

k
k—n

DuF—m.

Using the formal residue theorem we deduce

k
Resu™"™ = nv,, Res w 'Du + Z — Y ResDuF " = noy,
k—n
k#n
so that,
[t"o = [t u ™"
This clearly implies the Lagrange inversion formula (7.2.2).

18






Chapter 8

Milnor’s exotic spheres

In this chapter we want to describe one of Milnor’s methods of constructing exotic smooth structure
on the 7-sphere. In proving that these structures are indeed exotic Hirzebruch signature formula will
play an important role. Our presentation follows closely Milnor’s history making paper [MiS6].

8.1. An invariant of smooth rational homology
7-spheres

Denote by X7 the collection of orientation preserving diffeomorphism classes of oriented 7-dimensional
manifolds X satisfying the following conditions

(a) The manifold X is a Q-homology 7-sphere, i.e., H*(X,Q) = H*(S7, Q).
(b) There exists a compact, connected oriented 8-dimensional manifold with boundary X such

that 9.X is orientation preserving diffeomorphic to X!

Suppose X € X7 and Xisa compact, connected oriented 8-dimensional manifold bounding X.
Let [X]| € Hg(X, X, Z) the element determined by the orientation of X. We get a symmetric bilinear
form

Qg H'(X.X;Q) x HY(X, X;Q) » Q, Qgl(a. ) = (aUB,[X]),
and we denote by 75 its signature.
Since X is a Q-homology 7-sphere the inclusion j : ()A( ,0) — (X' , X ) induces isomorphisms
jHNX,X;Q) » HA(X,Q)
for any 1 < j < 6, so we can regard the Pontryagin class p; ()A( ) e H 4()? ,Q) as an element in
p(X) = ()" 'p(X) € HY(X, X;Q).
Recall that the second L-polynomial is

7 1,

Lay(p1,p2) = b2 P

IThe condition (b) is automatically satisfied because the oriented cobordism group Qf =o.
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Define )\()?, X) € Q/Z by setting.

AX, X) = 475(7)? — { Ly(p1(X),0), [X] >) mod Z = %(457)? +(p1(X)2 [X] >) mod Z.

Lemma 8.1.1. If X € X7 and )?0, X 1 are two compact, connected 8-dimensional manifolds bounding
X then
)\(Xg, X) = )\(Xl, X) S Q/Z

Proof. Denote by -X 1 the manifold X 1 equipped with the opposite orientation. By gluing )?0 to
— X along the common boundary X we obtain a smooth, compact oriented 8-dimensional manifold
Y = X9 Ux —Xj; see Figure 8.1.

Figure 8.1. Gluing two manifolds with identical boundary.

Using the relative Mayer-Vietoris long exact cohomological sequences (1.1.4) and (1.1.6) associ-
ated to the decomposition

(YY) = (Y, Xo) U (Y, X1), (V,X)=(Y,Xo)N(Y,X1),
the fact X is a Q-homology sphere, and the long exact sequences of the pair (Y, X ) we deduce
HY(Y,Q) = H'(Y.X;Q) = H'(Xo, X; Q) © H'(X1, X; Q).

On the other hand, from the Mayer-Vietoris sequences we obtain an isomorphism

Hy(Y, X:Z) — Hy(Xo, X;Z) ® Hs(X1, X3 2) 2 Z{[Xo]) © Z([Xa]), 8.1
while the long exact sequence of the pair (Y, X) yields the exact sequence

0— Hy(Y,Z) — Hs(Y,X,2) 2 H:(X,Z) = Z(X]).
Using the isomorphism (8.1.1) we can express the boundary operator 0 by
d(mo[Xo] + m1[X1) = mod|[Xo] + m19[X1] = (mo + m1)[X].
We deduce that the orientation class [Y] € Hg(Y, Z) can be identified with [Xo]—[X1] € Hs(Y, X; Z).
This implies that, over QQ, the intersection form of Y is isomorphic to the direct sum
Qv =Qg, ®Q_g, =Qz, @ (-Qz, )
so that,
TY = Tx, — TX,-
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Using the signature formula we deduce
1
7(V) = =(Tpa(Y) - (Y)%[Y])

so that

45 1 9 1 9

2o — 7)) = 2 ORIV + (200, V) = —2 (D)% V) mod Z (8.1.2)
since po(Y) € H3(Y, Z).

From the isomorphism
H4(Ya Q) = H4(Y7X7 Q) = H4()?05 X, @) D H4()?17X; Q)a
and the equalities
n(Y)lg, = p1(Xi),
we deduce that R R ~ N
(p1(Y)?%, [Y]) = (91(X0)*, [Xol) — (51(X1)?, [X3]).
Using this in (8.1.2) we deduce
45 1, = =~ P ~
= (7% = X)) = —;(<p1(X0)27 [Xo]) — (51(X1)?, [X4])) mod Z,
so that R R
A(Xo, X) = A\(X1,X) € Q/Z.
O

Lemma 8.1.1 shows that A induces a well defined map A : X7 — Q/Z
1

A(X) = -

(457 + (p1(X, [X])) mod Z = %(@1(2’ [X]) — 475 ) mod Z,

where X is any oriented 8-manifold that bounds X. Note A(ST) = A(D8,ST) = 0. We obtain the

following consequence.

Corollary 8.1.2. If X € Xy and \(X) # 0 then X is not diffeomorphic to the standard sphere S”.01

We can now describe Milnor’s strategy for detecting exotic 7-spheres. More precisely, we will

construct a manifold X € X7 such that X is homeomorphic to S7, but such that A\(X) # 0.

8.2. Disk bundles over the 4-sphere

We will seek our examples of exotic 7-spheres within a rather restricted class of 7-manifolds, namely

the total spaces of sphere bundles of certain rank 4 real vector bundles over the 4-sphere.

Consider the 4-sphere

4
St {(20...,2%) e R Z 2> =1}.
i=0
For every € > 0 we consider the regions
Dt = {(xo,...,ac4); 20 > —1 }, D™ = {(wo,...,x4); 20 < 1},
andsetC:= DT ND".
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We denote by E the equator {2 = 0} C S* oriented as boundary of the upper hemisphere. If
we identify the hyperplane {#° = 0} C R® with the space H of quaternions, then we can identify £
with the set of unit quaternions.

Via the stereographic projection from the South pole (respectively North Pole) we obtain a dif-
feomorphism
ug : DT — H (respectively u_ : D~ — H).
The maps w4 are related by the equalities
1 1
u P

For every continuous map g : C' — SO(4) we obtain a rank 4 oriented real vector bundle E(g) — S*
obtained by the clutching construction. More precisely, we glue KE+ — K‘b, over C' via the gluing
map

RYx DT 5 (vy,2) = (v_,z) = (9(z)vy,2) ER*x D™, z€C=D"ND".
For any k, j € Z we define g;, ; : C' — SO(4) by

1
=

| () [

We set By, ; = F(gx,;) and we set

erj = (e(Ery), [S"]) € Z, pj = (p1(Eny), [S) € Z.
The topological type of the bundle £}, ; is uniquely determined by the homotopy class of the restric-
tion to £ of g, ; and we have (see Exercise A.4.3)
erj = (k—73), prj=—2(k+j). (8.2.2)

We denote by X k,j the disk bundle of Ej, ; and by X}, ; the sphere bundle of Ej, ;. Then X k,j 1S an
oriented 8-dimensional manifold with boundary X}, ;. From Exercise A.3.1 we know thatif £ — j =
+1 then X}, ; has the same homology as the unit sphere S7. We set

G j(z)v (@) fvuy ()7, Yo e, ve H(=RY. (8.2.1)

Ey = Ek,kfla)?k = )?k,kfly Xp = Xp g1
so that H*(Xy,Z) = H*(S7,Z). In fact we can be much more precise.

Proposition 8.2.1. The T-dimensional manifold X, is homeomorphic to the unit sphere S”. O

The proof is not very hard, but it relies on some elementary Morse theory. Since the arguments in
the proof bare no relevance to our future considerations we will present the proof of this proposition
in a later section.

Proposition 8.2.2.
4
MXp) = ?( (2k — 1)* = 1) mod Z.

Proof. We denote by ®; the Thom class of Fy — St We regard it as a relative class &, €
H* (X}, Xp_1). If ¢ : S* — Ej, denotes the zero section then we deduce from Proposition 4.2.5
and Remark 4.2.6(a) that (,[S*] is the Poincaré dual of &y, i.e.,

G[SY = @y N [X]. (8.2.3)
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Denote by 7 the natural projection X » — S%. Then the image of ®;, under the morphism
5 HY( Xy, X3 Z) — HY(X4,Z)

is m*e(F},). Indeed, since the zero section ¢ : S* — X & 1s a homotopy equivalence with homotopy
inverse the natural projection 7 : X3 — S*, we deduce

CJ O = Py = e(Ey) = j O = 77 ) = m7e(Ek).
The intersection form () can be computed as follows
Q(@r, By) = (1 U D, [Xi]) = (571 U B, [X]) = (57, 1 0 [Xi])

(82:3) (7* @, C*[S)) = (7 e(Ey), ¢ [SY) = (e(Er), [SY]) = erp-1 = 1.

Hence the signature of X k1S
1.

TS =
Xk
Now observe that the tangent bundle of X & splits as a direct sum of two sub-bundles:

e The vertical sub-bundle VT'X, 1 consisting of vectors tangent to the fibers of Ej, — S4.
e The horizontal sub-bundle HT'X, . consisting of vector tangent to X r and perpendicular to
the vertical vectors with respect to a fixed Riemann metric on Xk.
Observing that
VTX, 2 7*E), and HT X = 7°TS%,
we deduce that
p1(Xy) = 7" p1(Ey) + m*p1(TS*) = 7°p1(Ey),
where p1(T'S*) = 0 since the tangent bundle of S* is stably trivial. If we denote by wy the generator
of H*(S4,7) determined by the orientation, wy N [S*] = 1 € Hy(S*), then (8.2.2) implies
pl(Ek> = —2(2k’ — 1)(,04, €(Ek) = W4.
We regard wy as a class in H*(X,) via the isomorphism 7*. Since (j*)~'7*e(E}),) = ®;, we deduce
P1(Xe) = (7°) "t p(Ey) = 2(2k — 1)@y,

and thus,

~

(91(Xp)?, [X5]) = 4(2k — 1)2Q(Dy, Bp) = 4(2k — 1),
We deduce that

MXg) = = ((p1(Xp)% [Xi]) —47¢, ) mod Z =  ((2k — 1)* — 1) mod Z.

|+
ENTISN

O

Corollary 8.2.3. If k £ 0,1 mod 7 then the manifold Xy, is homeomorphic but not diffeomorphic to
the unit sphere S”.

Proof. Note that
MXp) # 0=(2k — 1)1 mod 7<=2k — 1 # 41 mod 7<=k # 0,1 mod 7.
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Remark 8.2.4. Observe that A\(X%) = A\(Xy7) and

AXo) = A(X1) = 0, A(X2) = M(Xe) = 2, A(Xg) = A(Xs) = 2, A(Xp) = 7

This shows that amongst the smooth manifolds homeomorphic to S there are at least 4 different
diffeomorphism types. In fact Kervaire and Milnor have shown in [KM63] that there are precisely 28
diffeomorphism types. More precisely for every & > 1 consider the complex hypersurface Zj, in C?
given by the polynomial equation
z§+z%+z§+z§’+zgk71 =0.

Denote by Y(¢) the intersection of Z, with the sphere of radius e centered at the origin of C°.
Then the diffeomorphism type of the 7-manifold Y% () is independent of £ small. Moreover Y is
homeomorphic to S” for any k and Y}, is diffeomorphic to Y, if and only if & = ¢ mod 28. As a
curiosity, let us mention other conclusions of [KM63]. For example, there exist exactly 992 exotic

11-spheres and exactly 16256 exotic 15-spheres, while there exist only 8 exotic 9-spheres and 3 exotic
13-spheres. O

Proof of Proposition 8.2.1. The proof relies on the following result of G. Reeb.

Proposition 8.2.5. Suppose M is a compact, smooth manifold and f : M — R is a smooth function
that has only two critical points: a minimum xo and a maximum x1 such that the Hessians of f at
these points are nondegenerate. Then M is homeomorphic to S™.

Proof. Let ap := f(z0) and a; = f(x1) sothat ag < f(z) < a; forall z € M. We denote by b the
midpoint of the interval [ag, a1}, b = 1 (ag + a1). For any ¢ € R we set

{(f<ch={aeM; fl)<c}, {f>c}:={zeM; f(z)>c},

M.:={zeM; f(z)=c}.

Figure 8.2. A negative gradient flow with only two stationary points.

Now we need to invoke a classical result usually referred to as the Morse Lemma. For a proof we
refer to [N2, Thm. 1.12].
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Lemma 8.2.6. If xq is a critical point of the smooth function f : X — R, and the Hessian of f
at xg is nondegenereate, then then there exist coordinates (ul, .,u™), n = dimX, defined in a
neighborhood U of xg such that the following hold.

o ul(xg)=0,Vi=1,...,n

o flu= flzo) — 30 [ui>+ 2 D immt1 |u?|?, where m denotes the Morse index of o,
i.e., the number of negative eigenvalues of the Hessian of f at x.

O

Using Morse Lemma we can find neighborhood Uy and U; of xg, and respectively z1, coordinates
(u*) on Uy, and (v7) on Uy such that

I, e,
flue= a0+§ZW!27 f ‘U1:a1_52’v1‘2'
i j=1

This shows for ¢ > 0 sufficiently small we have diffeomorphisms

Ut =0t {f>a;—c} - D", (v',...,0") = —(v',...,0"),

U™ =0 :{f<ap+e}y— D", (u,...;0") — —(ul,... u").
where D" denotes the closed unit disk in R™. Set
M* =M \ {SL‘Q,CCl}.
Now fix a Riemann metric g on M, such that
g ‘Uoz Z(dui)27 g ‘U1: (dvj)2'
i
Denote by V f the gradient of f with respect to the metric g. In other words, V f is the unique vector
field on M such that
g(Vf, X)=df(X), VX € Vect(M).

We denote by ® : R x M — M, (t,z) > ®!(z), the flow determined by —V f. This flow has only

two stationary points, xg, 1, the function f decreases strictly along the nonconstant trajectories and
for any z € M* we have

tlgrolo ' () = o, tii{noo ! (r) = x1.
In fact, if z € Uy has coordinates (u’) then, ®/(z) € Up, V¢t > 0 and its coordinates are (e~‘u?).
Similarly, if € Uy has coordinates (v7), ®/(z) € Uy, ¥t < 0 and its coordinates are (e'v?). T
Now consider the vector field X € Vect(M™*),

1

X =
|V f[2

Vf

where for any vector field Y we denoted by |Y'|, the pointwise length of Y, |Y|, = \/g(Y,Y). If
~(t) is an integral curve of X then

SIOm) = -1,
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Indeed,

L 16(0) = G 0) = (X (1)) = 9(V 1, X) = (VIVf) =1,

VTG

If we denote by I'? the (partial flow) determined by X then we conclude that for any x € M, and any
t such that I'* is defined we have

f(T'z) = f(z) —t.
We deduce that for any « € M* the integral line ¢t — Iz exists for any t € ( f(z) — a1, f(z) —

ag ) The flow lines of I'* are perpendicular to the level sets {f = c} of f. In fact, ' induces
diffeomorphisms

I {f=ct = {f=c—t}, Vt<c—am.
Let
R:={ap+e< f<a —e}

Observe that we have a diffeomorphism ¥ : R — [ag + €, a1 — €] X M,, —, (see Figure 8.2)
Rozw (f(a:),Ff(m)_“ﬁa:r) € lap+e,a1 — ] X Mgy, -

As we have explained above, the level set M,, _. is diffeomorphic to a sphere S”~ 1. We deduce that
M is homeomorphic to a cylinder [ag + ¢, a3 — ] x S™~1 with the two ends coned off by two n-disks.
In other words, M is homeomorphic to S™.

O

To prove that X}, is homeomorphic to S” we use Proposition 8.2.5 so it suffices to construct a
smooth function on X, that has only two nondegenerate critical points. To achieve this we need to
recall the construction of X}. We identifies the regions D of the sphere S* with the vector space H
via stereographic projections

uy : DT — H,
and then we glue the sphere bundle S® x D to the sphere bundle S* x D~ via the gluing map

1 (k- 1
53 % (H\O) =) (U+,U+) — (’1}_7u_) = <WUiv+u+( 1)7 WU'F

Choose new coordinates (w_,q_) on S3 x D~ by setting w_ = v_, ¢ = u_(v_)"!. Then

)es3x(H\0).

Rewvy Req_
= . 8.24
(T4 P2~ (L Jo )17 a2y
Indeed
_ 1 11— 1 1 -
¢- =Reu_(v_)"t = T U (\uﬂuﬁ lv+1u+k) = —uierlquk.
|u] |u+]
Since v | = 1 we deduce Rev; = Re v} so that
1
Req. = — Reuwy.
|ut ]
One the other hand, |¢_| = \TIH This proves (8.2.4). Hence, the function f : X, — R given by

R Req_
flssxp+ = e—vzm’ flssxp- = e—q21/2
(1 + |uy]?) (1+1[g-1?)
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is well defined and smooth. Moreover, a simple computation shows that this function has only two
critical points (vy,u4) = (£1,0) and they are both nondegenerate.

O

Remark 8.2.7. From the proof of Proposition 8.2.5 one can conclude easily that any smooth n-
dimensional manifold can be obtained by gluing two closed n-dimensional disks using and orientation
preserving diffeomorphism ¢ of S"~! = 9D"™. We denote by % the manifold obtained in this
fashion. In particular, X7 is the standard n-sphere S™.

If we denote by Diff ™ (M) the group of orientation preserving diffeomorphism of a compact, con-
nected, oriented manifold M, we see that if , ¢ € Diff *(S™~1!) are in the same the path component
of 1 then X, is diffeomorphic to S™.

The fact that there exist exotic 7-sphere implies that Diff ™ (S%) is not connected, and in fact, it
has at least 28. components. This should be contrasted with low dimensional situations. For example
S. Smale has shown that Diff *(S2) is homotopy equivalent with the (connected) group SO(3), while
A. Hatcher has shown that Diff*(S2) is homotopy equivalent with the (connected) group SO(4).
For n > 7 it is shown in [ABK] that Diff (S™) is not dominated by any finite dimensional C'W -

complex. Recall that a space X is dominated by a space Y if there exist maps Y — X Y such that
roi~ 1. In particular, Diff * (S™) is not homotopy equivalent to a finite CW -complex if n > 7. O






Chapter 9

Thom’s work on
cobordisms

The goal of this chapter is to give outline a proof of Thom’s cobordism theorem 7.2.4. His strategy can
be summarized as follows. Via a geometric method (the Pontryagin-Thom construction) he identifies
the cobordism group Qin with the a homotopy group of a certain space (Thom space). To compute
this homotopy group, modulo torsion, he uses some techniques of Cartan and Serre! to reduce it to a
much simpler calculation of the homology groups with rational coefficients of certain Grassmannians.
This leads to Corollary 9.2.5 that states

dimg Q' ® Q =0, ifn # 0mod 4,

dimg €, ® Q < p(k) = | Part(k)|.

The opposite inequality is proved in Proposition 6.2.2. Thom’s work is considerably broader than the
slice we describe in this chapter. For more details we refer the reader to the very readable and very
rich classic source [Th54].

9.1. The Pontryagin-Thom construction

Consider the real Grassmannian Gry(R"™) of k-dimensional subspaces of R™. The universal vector
bundle Uy, is not (geometrically) orientable. We form the determinant line bundle det Uy, —
Gri(R™). The sphere bundle S(det Uy) is a two-to-one cover of Gry(R™) that we denote by
évrk(R") We can identify the points of é}k(R”) with the oriented k-dimensional subspaces of
R™, and we will refer to Gry, (R™) as the Grassmannian of oriented k-planes in R".

The Grassmannian Gr(R™) is a smooth manifold of dimension k(n — k) (see [N1, Example
1.2.20]) and Uy, 5, is a smooth vector bundle. The oriented Grassmannian CTrk(Rn) being a double
cover, is also a smooth manifold. We denote by ﬂk,n the pullback of Uy, ,, to CTI'k(R") The vector
bundle ﬂkn is canonically oriented and we will refer to it as the universal or tautological oriented

k-plane bundle over (E/I'k(R") For simplicity we set (Zrkn = (ffr/rk(R")

IWe won’t present the details of this beautiful theory of Serre, but we will mention some facts relevant to our specific goal.
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We denote by Dk,n and respectively S’km the disk and respectively sphere bundle associated to
Uy,,. The total space Bk,n is a compact oriented manifold with boundary GDk,n = S'k,n-

Definition 9.1.1. The Thom space of a real vector bundle ' — X is the one-point compactification
of the total space of FE, or equivalently,the quotient Th(E) := D(FE)/S(E). This space has a

distinguished point that we denote by *.> We denote by Thy,, the Thom space of Uy, j,. O

The Pontryagin-Thom construction yields explicit isomorphisms
7rk+n(ﬁk,N7*) = QF YN >k+n, k>n+1,

where 7, denotes the m-th homotopy group.

To describe this map we need to recall some facts of differential topology. For more details and
proofs we refer to [DFN-vol.2, Hir, Kos, W36].

Recall that a smooth map f : M — N is called an embedding if it is a homeomorphism onto
its image and its differentials df : T,M — Ty(x)N are injective for any x € M. Two embeddings
f,9: M — N are said to be isotopic if there exists a smooth map

F:[0,1]xM — N, (t,x)— Fy(zx) e N
such that Fy = f, F} = g and for any ¢ € (0, 1) the smooth map F; : M — N is also an embedding.
The map F' as above is called an isotopy.
Anisotopy F' : [0,1] x M — N, (t,z) — Fi(zx) is called an ambient isotopy if there exists an
isotopy H : [0,1] x N — N, (t,z) — H(z) such that
Hy=1y, F; = H;oFy, Vte [0, 1].

We say that the maps Fy and F are ambiently isotopic.

We define a tubular neighborhood of a submanifold N — M to be a triplet (U, E, ¥), where
U is an open neighborhood of NV in M, E' is a smooth vector bundle over NV and W is a diffeomor-
phism from the total space of the bundle £ diffeomorphically onto U, that maps the zero section of
I diffeomorphically onto the submanifold N. Observe that the differential of ¥ induces a bundle
isomorphism between E and the normal bundle T M. We will denote this isomorphism by W..
Often when referring to tubular neighborhoods we will omit the reference to the bundle E and the
diffeomorphism V.

Theorem 9.1.2 (Whitney-Thom). Suppose M is a compact n dimensional manifold. Then for any
v > 2n + 1 there exists embeddings f : M — RY. Moreover, if v > 2n + 2 any two embeddings
f,9: M — RY are ambiently isotopic. O

Suppose M and N are smooth manifolds with boundary. Then a neat embedding of N into M
is an embedding f : N — M, where N and M are neck extensions of N and M, such that the
following hold (see Figure 9.1).

e f(int(N)) Cint (M),
e The boundary OM C M intersects f (N) transversally and f(ON) = OM N f(N).

20bserve that the complement of X in T'h(E) is a contractible neighborhood of .
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neat embedding not a neat embedding

Figure 9.1. A neat and a non-neat embedding of a 1-dimensional manifold with boundary.

If f: N — M is a neat embedding of the manifold with boundary N into the manifold with
boundary M, then a neat tubular neighborhood is a tubular neighborhood (U, E, \il) of N in M such
that, if we set

Us = /U\ﬂ({)M, FEy:= E|3N,
then (Up, Ep, U| E,) 1s a tubular neighborhood of N in M. We know that the bundle E is isomor-
phic to the normal bundle T';; M , and we denote by Ty M the isomorphism class of the restriction of
EtoN.

Every compact, neatly embedded submanifold of a manifold with boundary admits neat tubular
neighborhoods. The Whitney embedding theorem has a version for manifolds with boundary.

Theorem 9.1.3. Denote by H” the half-space
HY = {(:cl,...,xy) eR”;, x1 < 0}.
We regard HY as a manifold with boundary. Suppose M is a smooth, compact n-dimensional man-

ifold with boundary. Then for any v > 2n + 1 the manifold M admits a neat embedding in the
half-space H". O

In the smooth context we can improve a bit the results about the classification of vector bundles
stated in Theorem 3.3.1. More precisely we have the following result, [Hir, Thm. 4.3.4] or [St, §19].
Theorem 9.1.4. Suppose M is a smooth, compact manifold of dimension m.

(a) If E — M is an oriented real rank k vector bundle, then for every N > k + m there exists a
smoothmap f : M — Gry, N such that f*U, ny = E.
b)If f,g: M — (ffrkw are two smooth maps such that N > k +m + 1 and
F Uy = g* Uy,
then the maps f and g are smoothly homotopic. O

We can now describe the Pontryagin-Thom map Wy(ﬁk-, Ny *) — Qj_ w N > v. To keep the
geometric ideas as transparent as possible we decided to omit several technical details. However, a
motivated reader should not have any trouble filling these gaps.

We regard the sphere S” as the one-point compactification of the vector space R”. We let co
denote the point at infinity of S”. Also we regard R” as embedded in RV via the linear embedding

(1,...,2,) = (x1,...,2,,0,...,0).
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Suppose f : (SY,00) — (ﬁk N, %) is a continuous map. Then, we can slightly deform3 ftoa
new map f : (S”,00) — (Thy,n, *) such that the restriction of f to S* \ {f~*(x)} = f~"(Dy.n)
is smooth and transversal to the submanifold Gry y — Dk, ~N- We will say that such maps are

convenient. The map f is homotopic to f and thus every homotopy class u € m, (ﬁk N, %) can be
represented by convenient maps.

If f: (S, 00) — (/Cl:l/zk,N, %) is a convenient map, the preimage
M = My := f~(Gry ) (9.1.1)

is a smooth submanifold of 5%, and its normal bundle T,5" is isomorphic to the pullback by fof
the normal bundle of Gr/y€ N in Dk ~- This is precisely the universal vector bundle Uk. n so that

ToS” 2 Uy .

Since the bundle ﬂk, ~ is naturally oriented, we deduce that 1’5" is naturally oriented and thus 7'M
is equipped with a natural orientation uniquely determined by the requirement

or(TyS”) Nor(TM) = or(TS”| ).

If fo,f1 : (S”,00) — (ﬁk N, *) are two convenient maps representing the same element u €
m,(Thy N, *), then we can find a homotopy connecting them

F:]0,1] x (5”,00) = (Thyn, %)

such that F' is smooth on F‘l(*) and it is transversal to (fj/r'hN. The preimage Mr = F‘l((f?\r/rkﬂ,)
is a compact oriented manifold with boundary that produces an oriented cobordism between M ;) and
M, . We have thus produced a map

PT : 7, (Thyn %) = Q5 7 (Thyn %) 3 u s PT(u) := [My], € Q|

where f is a convenient map in the homotopy class , and [AMf]; is the oriented cobordism class of
=Y Gry ). This is the Pontryagin-Thom construction. We set n := v — k, so thatv = k + n.

Lemma 9.1.5. The Pontryagin-Thom map
PT : g (Thi v, %) — Qf
is a morphism of groups.
Proof. We can think of the elements in the homotopy group as represented by continuous maps
(Dk+n QD**1) = (Thy, v, %) or by continuous maps (S¥7, 00) — (Thy, y, ).
Suppose that uy € 7rk+n(Thk, N, %) are represented by continuous maps
fe: (D"F,0D" ) — (Thy, n, %).
We~can also assume that the restriction of fi to f L(x) is smooth and transversal to the zero section
of Uy n. Asin (9.1.1) we set
My = f'(Griw).

Then
PT(uy)=[My] € Q:

3The existence of such a deformation relies on standard transversality techniques pioneered by Whitney in the 30s and 40s; see [Hir].
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The sum uy + u_ € 7Tk+n(ﬁk,zv, %) is represented by the map f : (S¥™" c0) — (ﬁkw, %)
defined as follows.

Pick an equator on S**" that contains the point co. (Think of this equator as the one-point
compactification of the hyperplane {1 = 0} C R™*. This equator defines two hemispheres S:k,:”.
Fix orientation preserving diffeomorphism D% — S7** and we let f be equal fi on ST, The
map f is convenient and the manifold M defined as in (9.1.1) is equal to the disjoint union of M
and M_. We thus have the following equality in Q"

O

To investigate the surjectivity of the Pontryagin-Thom map we need to have a way of producing
many examples of convenient maps S* :— T hy, n. Fortunately, there is one simple way of generating
such maps.

Start with a compact, oriented submanifold M — RY — S” of codimension k that does not
contain the pole co. Recall that we view R as a linear subspace of R%.

Using the metric on R” we can identify the normal bundle 7,R" as a subbundle of the trivial
bundle R%, which is a subbundle of the trivial bundle RY,. We obtain a Gauss map

v:M>z— (TyRY), € (Trk,zv

This induces a smooth map 4 : THyR” — ﬂ;ﬁ  such that the diagram below is commutative

TM]RV i’ ﬂk,N

M 4’7 GI‘&N

Above, the vertical arrows are the natural projections, and the map “ is transversal to the zero section
and a linear isomorphism along the fibers of T3;R".

If (U, E,¥) is a tubular neighborhood of M, then we have a bundle isomorphism ¥, : F —
TyR” and a diffeomorphism ¥ : £ — U. We obtain in this fashion a proper map @ i/

UL B R D Ty
We can now extend @, ;7 to a map
— Qz) zeU
O=97 1 (SY,00) = (Thy, N, %), ®(x) =
MU ( ) = (Thyn, *), ®(z) {* re S\

We will refer to the map ® = @,/ s as the nice map associated to a codimension k-submanifold M
of R” and a tubular neighborhood U of that submanifold. Observe that ®,, ;s is a convenient map,

and if [®r 1] € 7Tn+k(ﬁk’ N, %) denotes its homotopy class, then

PT([®nu]) = [M]4.
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Thus, the image of the Pontryagin-Thom morphism contains all the cobordism classes of oriented
n-dimensional manifolds that can be embedded in R™*. If k > n + 1, then any smooth compact, n-
dimensional manifold can be embedded in R"** so that the Pontryagin-Thom map gives a surjection

PT:7T]€+H(CI/T/hk7N,*)—>Q:;, k>n+1, N>n+k.

If M is a compact oriented n-dimensional submanifold of S™** then the homotopy class of the
nice map @, 7 is independent of the choice of tubular neighborhood and for this reason we will
use the simpler notation ®j; when referring to a nice map. Using Theorem 9.1.4 and the homotopy
extension property of a C'W -pair [Hatchl, Chap.0] we deduce immediately the following result.

Lemma 9.1.6. Suppose k >n+1, N >k+n+1land f: S¥" — ﬁk,N is a convenient map.
Set M := My = f_l(Grk,N). Then f has the same homotopy type as a nice map P ;. O

The above result implies that when £ > n + 1 and N > k + n + 1 every homotopy class
u € 7Tn+k(/f"/bk’ N, *) can be represented by a nice map ®,;, where M is a compact oriented n-
dimensional submanifold of S¥*™ whose image in the cobordism group Q;f is PT(u). If k > n + 2,
then any two embeddings in R*™ of a compact oriented n-dimensional manifold M are ambiently
isotopic, so that the homotopy type of ®,, is independent of the embedding of M. In other words, if
k > n + 2 then the homotopy type of ®,, depends only on the oriented diffeomorphism type of M.
In fact, much more is true.

Proposition 9.1.7. Let M be a smooth, compact, oriented n-dimensional manifold. If k > n + 2,
N >n+k+1, and M defines the trivial element in the oriented cobordism group S} then the nice

map &y : S — ﬁk, N, is homotopically trivial. In other words, the Pontryagin-Thom morphism
PT : tpiie(Thi N, %) — QU is an isomorphism if k > n+2and N > n+ k + 1.

Proof. We regard the closed disk D™ *+1 as the one point compactification of the half-space H™+#+1,
Its boundary can be identified with the one-point compactification of the hyperplane z; = 0 in
RFFHL <y RV,

Suppose k > n + 2 and that W is an oriented (n + 1)-dimensional manifold with boundary such
that OW = M. Observe thatn + k + 1 > 2dim W + 1 so Theorem 9.1.3 implies that W admits a
neat embedding in the half-space H"F+1 ¢ RrHF+L

Choose a neat tubular neighborhood U of W in H"+*1 (see Figure 9.2). In other words, we
have a tubular neighborhood (U, E, W) of an embedding in the open half-space {z; < &} of a neck
extension W of W. Then W = W N {z1 < 0} and OW = wn {z1 = 0}. We can even choose
this embedding so that W intersects the hyperplane {z; = 0} orthogonally. Thus, for every z €
wn {z1 = 0}, the orthogonal complement of 7’ zﬁ/\ in R"*+*+1 can be identified with the orthogonal
complement of T, W in the subspace {z1 = 0}. We set Uy = U N H"T++1,

Imitating the construction of a nice map we obtain a smooth proper map
fj N Hn+l€+1 N ﬂk‘,N

that maps W to Gry, y, the zero section of ﬂk n~. This determines a continuous map between one-
point compactifications

(D" 00) — (Thy, i, %)
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Hn+k+l M

Figure 9.2. A neat embedding of the bordism W in a half-space.

which extends the nice map @717, = Pow v, : (S"HF 00) — (ﬁk,N, x). Thus, the nice map ® s
is homotopically trivial.

O

9.2. The cohomology of the Grassmannians of oriented
subspaces

To compute the homotopy groups 7,4k (ﬁk ~) modulo torsion we want to invoke the following
deep result of Cartan-Serre. Its proof is based on the award winning work of Serre on the homotopy
theory of loop spaces and Serre classes of Abelian groups. For a particularly readable presentation of
the basic facts of this theory we refer to [DFN-vol.3].

Theorem 9.2.1 (Cartan-Serre). Suppose X is a connected CW -complex andn > 2 is an integer such
that

m(X) =0, Vk<n.

Then the natural Hurewicz morphism
7¢(X) ® Q = Hy(X, Q)

is an isomorphism for any q¢ < 2n — 1. O

The next result is an immediate consequence of the Cartan-Serre theorem and some elementary
transversality results.

Proposition 9.2.2. We have
wg(Thy n,*) =0, Vg <k. 9.2.1)

and
7o (Thy i, %) © Q= H**(Gry n,Q), Vg < 2k —2. (9.2.2)

Proof. Suppose f : (S%,00) — (ﬁk N, *) is a continuous map. Fix a neighborhood O of * in
Thy, . We can assume that f is smooth outside f~1(0O) and that the restriction of f to S\ f~1(0)
is transversal to Gry, v, the zero section of ﬂk,v- Since Gry, n has codimension k in ﬂk ~ we deduce
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from the transversality of f that f(,S?) does not intersect GNI'/LC n if ¢ < k. Thus, if ¢ < k any homo-

topy class u € my(Thy, N, *) can be represented by a map into the contractible set T'hy, n \C’;\/rk N-
This proves (9.2.1).

Observe that for ¢ > 0 we have
Hq(ﬁk,N,Q) = Hq(ﬁk,Na x Q) =2 Hy( D(Up, n), 0D Uy n); Q).

On the other hand, using the homological Thom isomorphism we conclude that

Hy(D(Ug, ), 0D(Up n); Q) = quk(é}k,NaQ)-

Finally, using the universal coefficients theorem we deduce

Hy1(Gry v, Q) = HI™X( Grin,Q ).
The equality (9.2.2) follows from (9.2.1) and the Cartan-Serre theorem. O

Corollary 9.2.3. If k >n+2and N > n+ k + 1 then
QF ©Q=H"(Gryn, Q).

Proof. For k > n + 2 we have n + k < 2k — 2 so that Proposition 9.1.7 implies

_ (9.2.2) __
O ®Q = i (Thyn,*) ®Q = H"(Gryn,Q).

O

To complete the proof of the cobordism theorem (Theorem 7.2.4) it suffices to compute the
rational cohomology groups H "( Gry N Q), for any n and some choices of N, and k such that
N >n+k+ 12> 2n+ 3. We will achieve this by an induction over k aided by the Gysin theorem.

Let us first observe that the map that associates to a subspace of RY its orthogonal complement

—_~

induces a diffeomorphism Gry, y — Gry_j, . To emphasize this symmetry we will use the notation
Fk,m = Grk,k+m = Grm,m—‘rk = Fm,k~

The conditions N > k+n+1 > 2n+ 3 become m > n+ 1, k > n + 2. In particular, these

conditions are satisfied whenm > k > n + 2.

We will denote by T}, or T}, the tautological vector bundle over I'y, ;,,. To formulate our next
result we need to introduce a certain graded ring Ry.

If k is odd, k = 2¢ + 1, then Ry is the quotient of the polynomial ring Q[z1, . .., xy, u], deg z; =
41, deg u = k, modulo the ideal generated homogeneous polynomial u. In other words,
Roey1 = Qw1 ..., 2]

If k is even, k = 2{, then Ry, is the quotient of the polynomial ring Q[x1, ...,z u], degx; = 44,
degu = k, modulo the homogeneous ideal generated by the homogeneous polynomial u? — x,. In
this case any homogeneous element f of degree g of R; can be expressed uniquely in the form

f=A4(x1,...,2¢0) + By(z1,...,20)u,

where A, and B,_}, are homogeneous polynomials of degrees ¢ and respectively g — k in the variables
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If E — X is an oriented rank k real vector bundle over the topological space X then the corre-
spondences
zi - pi(E) € HY¥(X), 1<i</{, ur e(E) € H*(X,Q)
induce a morphism of graded rings
TE : ka — H.(X,Q).
(When the rank k is odd then, according to Proposition 4.3.3, the rational Euler class is trivial. When
the rank k is even r = 2/ then Proposition 6.1.2 implies that e(E)? = py(E).)

Proposition 9.2.4. Let k, m be positive integers such that m > k. Denote by Y, the ring morphism
Tk = T‘J‘k : ka — H.(Fk’m,(@).

Then Yy induces isomorphisms in degrees < m.

Proof. We prove this by induction on k. The result is obviously true for k = 1 since I'y ,,, = S™.

Consider the sphere bundle ¥, ,,, = S(7}) associated to the tautological vector bundle Tj. A
point in Xy, ,, is a unit vector ¥’ in some oriented k-dimensional subspace F' C R*+™_ This defines
a codimension one oriented subspace F; C F' consisting of all the vectors orthogonal to ¢. The
correspondence v — Fj defines a smooth map

P Zk,m — 1—‘k—l,m—l—l-
This is a fiber bundle, and in fact it is the sphere bundle associated to the tautological vector bundle
Tmt+1,k=1 = Dt p—1 = T—1,my1-

The fibers of p are spheres of dimension m. We thus obtain a double fibration

Sklc

/\

Fe—1m+1-
From the long exact homotopy sequence of a fibration we deduce that p induces isomorphisms
Wq(zkym) — Wq(rk,Lerl), Vg < m.
and an epimorphism wm(Ekm) — T (Ck—1,m+1). Whitehead’s theorem [Spa, Chap.7, Sec. 5]
implies that p induces isomorphisms in cohomology
:0* : Hq(zk,m) — Hq(l—‘k—l,m)a Vg <m.

Along Yy, ,,, we have the isomorphism of vector bundles 77}, = p*T;_1 ® R, so that

m'pi(k) = p*pi(k — 1). (9.2.3)
We need to discuss separately the two cases k even, and k odd.
1.k =1mod2, k=2(+1. Let L € Iy, and denote by >y, ,,,(L) the fiber of 7 over L. This fiber
is a (k — 1)-sphere and the restriction of p*Jj_; to X, ,,,(L) coincides with the tangent bundle of a
(k —1)-sphere. Since the Euler class of the tangent bundle of an even dimensional sphere is non zero,

we deduce that for every fiber ¥, ,,,(L) of 7 the restriction of 1 and p*e(k — 1) to the fiber form a
basis of the rational cohomology of this fiber. From the Leray-Hirsch theorem we deduce that

H*(Xk, Q) is a free H*(I'y ¢, Q)-module with 1 and p*e(k — 1) as basis. (9.2.4)
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On the other hand, the induction assumption and the injectivity of p* imply that if ¢ < m then
that any cohomology class a € H?(%y, ,,,) can be written uniquely in the form

a = Ag(p*pi(k — 1)) + Bo—i(p"pi(k — 1) Je(k — 1),
where A, and respectively B,_;, are homogeneous polynomials of degree ¢ and respectively ¢ — k
in the variables x;. Using (9.2.3) and (9.2.4) we deduce that any cohomology class in H%(T'y, ,,,, Q),

q < m, can be written uniquely as a homogeneous polynomial of degree ¢ in the Pontryagin classes
of ‘Tk.

2. k = 0 mod 2, k = 2¢. We now use the Gysin sequence of the sphere bundle >J;, ,, 5 L'y om-
S BT (T ) S Ty ) T HO(Sgn) — B (Ta) = -
Let us observe that if ¢ < m, then the induction assumption implies that any o € H?(Xy ) is a
homogeneous polynomial A, of degree ¢ in the Pontryagin classes p*p;(k —1),1 < i < ¢ —1, of
p*JTr_1. Hence
* (9:2.3) * *
a=Ag(ppilk—1)) =" Ag(7pi(k)) = 7" Ag(pi(k) ),
so that 7 : HY(I'y, ,,) — H?(X,,) is surjective. We obtain short exact sequences
k *

0 = HI™* () 5 HITy,0) = HY(Spm) = 0, q < m.

This mirrors the short exact sequence
0— R,&q*k) = 3%,(;’) — Qlz1,...,x1]@ = R,E"ll — 0,

where for any graded ring R we denote by R(%) the additive subgroup consisting of homogeneous
elements of degree ¢q. Arguing inductively on ¢ using the isomorphisms

Yoeg, : RO HUS, ), q <m,

we deduce that H4(T ,,) R;q). O

Thom’s cobordism theorem is now an easy consequence of the above computation.
Corollary 9.2.5.

0, n % 0 mod 4

p(e)v n= 4£7

where we recall that p({) denotes the number of partitions of L.

dimQQj{@Q: {

Proof. For any integers k,n, N such that k > n 4+ 2, N > n + k we have
dimg Q; ® Q = dimg H"( Gry n, Q) = dimg H* (Tj, Q), m > k.
Hence n < m and Proposition 9.2.4 implies

0, n # 0 mod 4

dimg iy = ding Ry = {p(ﬁ) n =4/



Chapter 10

The Chern-Weil
construction

In this last chapter we would like to present a differential geometric construction of the Chern classes.
The procedure is known as the Chern-Weil construction. It is applicable only to smooth vector bundles
over smooth manifolds, and it recovers the Chern classes modulo torsion. This procedure has proved
to be useful in many geometric problems.

10.1. Principal bundles

Fix a Lie group G. For simplicity, we will assume that it is a matrix Lie group', i.e. it is a closed
subgroup of some GL,,(K). A principal G-bundle over a smooth manifold B is a triple (P, 7, B)
satisfying the following conditions.
e The map P = B is a surjective submersion. We set P, := 7~ 'b.
e There is a right free action
PxG—= P, (pg)—npyg
such that for every p € P the G-orbit containing p coincides with the fiber of 7 containing
D.

e The map 7 is locally trivial, i.e., every point b € B has an open neighborhood U and a
diffeomorphism Wy : 771 (U) — G x U such that the diagram below is commutative

N4

Y U) GxU
X‘ A)j
U

and
W(pg) = ¥(p)g, V¥pen *(U), g€ G,

1Any compact Lie group is a matrix Lie group

109
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where the right action of G on G x U.
Any principal bundle can be obtained by gluing trivial ones. Suppose we are given an open cover
U = (Uq)aca of M and for every «, 3 € A smooth maps
9ap : Uagp — G
satisfying the cocycle condition
Gra(u) = gyp(u) - gga(u), Vu € Uagy

Then, exactly as in the case of vector bundles we can obtain a principal bundle by gluing the trivial
bundles P, = G x U,. More precisely we consider the disjoint union

X =JP.x{a}

and the equivalence relation
G x Uy x {a} 3 (g,u,a) ~ (h,v,8) € GxUg x{B)} <= u=v €Uy, h=gga(u)g.
Then P = X/ ~ is the total space of a principal G-bundle. We will denote this bundle by (B, U, gee, G).

Example 10.1.1 (Fundamental example). Suppose £ — M is a K-vector bundle over M of rank
r, described by the gluing data (U, ges, V), where V is a r-dimensional K-vector space, and gg, :
Uap — GL(V) is a GL(V)-valued gluing cocycle . In particular, for every U € U, there exists a
trivialization ¥y : E|y — Vi such that gyrpy = Yy - \IJl_]l.
A frame of V is by definition an ordered basis e = (e1,--- ,e,) of V. We denote by Fr(V) the
set of frames of V. We have a free and transitive left action
GL(V) x Fr(V), g-(e1,...,e,) = (ge1,...,ger).

We also have a free and transitive right action

Fr(V) x GL,(K) — Fr(V), (e1,--,e.) A= (Z ale;, - ,Zaiei),

VA = [a?]lSMSr € GLT(K), (61, s ,er) S FI'(V)

Note that the the left action of GL(V) commutes with the right action of GL, (K). The set of frames
is naturally a smooth manifold diffeomorphic to GL, (K).

To the bundle E we associate the fiber bundle Fr (E') obtained from the disjoint union
| |Fr(v) x U,
«

via the equivalence relation

Fr(V) x Ua 3 (e(a), za) ~ (e(B), 25) € Fr(V) x Ug

= zo=a=2, e(f)=gsa(z)e().
The right action of GL, (K) on Fr(V) makes this bundle a principal GL, (K)-bundle. For any U € U,
and any m € U, the fiber of this bundle over m € U can be identified with the space Fr(E,,) of
frames in the fiber E,, via the local trivialization Uy : E|y — V. O
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To any principal bundle P = (B, U, gee, G) and representation p : G — Autg(V) of G on a
finite dimensional K-vector space V we can associate a vector bundle E (U, p(ges). We will denote it
by P x, V. Equivalently, P x, V is the quotient of P x V' via the left G-action

1

g(p,v) = (g~ p(g)v).

A vector bundle E on a smooth manifold A is said to have (G, p)-structure if E = P x,V for
some principal G-bundle P.

We denote by g = T1G the Lie algebra of G. We have an adjoint representation
d
Ad:G — Endg, Ad(g)X =gXg ' = 7 li—0 gexp(tX)g~t, forallg € G.

The associated vector bundle P x 54 g is denoted by Ad(P).

# In the sequel we will denote by u(n), so(n), o(n) and respectively gl (K)) the Lie algebra of the
matrix Lie groups U(n), SO(n), O(n) and respectively GL, (K).

For any representation p : G — Aut(V') we denote by p, the differential of p at 1
P+ g — End(V).
Observe that for every X € g we have

p+(Ad(9)X) = pu(9Xg™") = p(g)(p+X)p(g) " (10.1.1)

If we set End, (V) := p.«(g) C End(V) we have an induced action
Ad,: G — End,(V), Ad,(9)T := p(g)Tp(g)_l, VT € EndV, g € G.
If = P x,V then we set
End, (V) := P xaq, End,(V).
This bundle can be viewed as the bundle of infinitesimal symmetries of F.
Example 10.1.2. (a) Suppose G is a Lie subgroup of GL,,, (K). It has a tautological representation
7 : G = GL,,(K) = Aut(K™).

A rank m K-vector bundle £ — M is said to have G-structure if it has a (G, 7)-structure. This
means that  can be described by a gluing cocycle (U, ges, K"*) with the property that the matrices
Jee belong to the subgroup G.

For example, SO(m), O(m) C GL,,(R) and we can speak of SO(m) and O(m) structures on a
real vector bundle of rank m. Similarly we can speak of U(m) and SU(m) structures on a complex
vector bundle of rank m.

A hermitian metric on a rank r complex vector bundle defines a U (r)-structure on E, i.e., E =
P x,C", where P is the principal U (r)-bundle of unitary frames of £. In this case

Ad P = End,(E) = End; (E). O
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10.2. Connections on vector bundles

Roughly speaking, a connection on a smooth vector bundle is a ”coherent procedure” of differentiat-
ing the smooth sections. In the sequel, if £ — M is a smooth vector bundle over the smooth manifold
M we denote by QF (M) the space of smooth sections of the vector bundle A*T*M ®pr E. We will
refer to the elements of Q¥ (M) as E-valued k-forms on M.

Definition 10.2.1. Suppose £ — M is a K-vector bundle. A smooth connection on E is a K-linear
operator

V:C¥E) = C*(T"M®FE)
satisfying the product rule
V(fs)=s®df + fVs, Yf e C*(M), s C(E).
We say that Vs is the covariant derivative of s with respect to V. We will denote by A g the space of

smooth connections on F. O

Remark 10.2.2. (a) For every section s of E the covariant derivative Vs is a section of T*M ® F =
Hom(TM, E). i.e.
Vs e Hom(TM, E).

As such, Vs associates to each vector field X on M a section of E which we denote by Vxs. We
say that V x s is the derivative of s in along the vector field X with respect to the connection V. The
product rule can be rewritten

Vx(fs)= (Lxf)s+ fVs, VX € Vect(M), feC>®(M), seC>®(M),
where Lx f denotes the Lie derivative of f along the vector field X.

(b) Suppose E, F' — M are vector bundles and ¥ : £ — F'is a bundle isomorphism. If V is a
connection of E then V¥~ is a connection on F.

(c) Suppose V° and V! are two connections on E. Set
A=V -V C®(E) - C®(T*M x E).
Observe that for every f € C°°(M) and every s € C*°(E) we have
A(fs) = fA(s)
so that
Ac Hom(E,T"M @ E)=C®(E*QT"M QE)=C*(T"M ® E* ® E)
>~ C°°(T*M,End(E) = Q' (End(FE)), EndE := E*® E.
In other words, the difference between two connections is a End E-valued 1-form. Conversely, if
A e QYEnd E) = Hom(TM ® E, E)

then for every connection V on E the sum V + A is a gain a connection on E. This shows that the
space A, if nonempty, is an affine space modelled by the vector space Q' (End E). g
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Example 10.2.3. (a) Consider the trivial bundle R;,. The sections of R;, are smooth functions
M — R. The differential
d:C®(M)— Q' (M), frdf
is a connection on R, called the trivial connection.
Observe that End(R,,) = R,, so that any other connection on M has the form
V=d+a, acQ(R,)=0"M).
(b) Consider similarly the trivial bundle K. Its smooth sections are r-uples of smooth functions

81

s = M — K",

T

K" is equipped with a trivial connection V° defined by

st ds!

Any other connection on K" has the form
V=V"+A4 AcQ'(EndK").

More concretely, A is an r x r matrix [A}]1<q <, Where each entry Af is a K-valued 1-form. If we
choose local coordinates (z',--- ,2™) on M then we can describe Aj locally as

A =" Afydat,
k

We have
ds! >y Aps”
Vs = : +
ds” .
> Aps®
(c) Suppose E — B is a K-vector bundle of rank ~ and e = (e, - - ,e,) is a local frame of E over

the open set U. Suppose V is a connection on E. Then for every 1 < b < r we get section Ve, of
T*M ® E over U and thus decompositions

Vey =Y Afeq, Af € Q' (U), Vi<ab<r (10.2.1)

Given a section s = Y, s%¢;, of E over U we have
Vs = Z dsbey, + Z Sp Z Aje, = Z (ds“ + Z A§5b> €aq-
b b a a b

This shows that the action of V on any section over U is completely determined by the action of V
on the local frame, i.e., by the matrix (Af). We can regard this as a 1-form whose entries are r x r
matrices. This is known as the connection 1-form associated to V by the local frame e. We will
denote it by A(e). We can rewrite (10.2.1) as

Vie)=e-Ale).
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Suppose f = (f1,-- -, fr) is another local frames of E over U related to e by the equalities
fa=> el (10.2.2)
b
where U 3 u +— g(u) = (¢%(u))1<ap<r € GL,(K) is a smooth map. We can rewrite (10.2.2) as
f=e:
Then A(f) is related to A(e) by the equality
A(f) =g ' Ale)g + g dg. (10.2.3)

Indeed

F-A(f) =V(f) =Vi(eg) = (V(e))g +edg = (eAle))g+ fg~'dg = f(g " Ale)g + g 'dg).

Suppose now that F is given by the gluing cocycle (U, ges,, K"). Then the canonical basis of K"
induces via the natural isomorphism K7, — E|y, alocal frame e(a) of E |y, . We set

Ay = Ale(a)).
On the overlap U,3 we have the equality e(«) = €(f8)gsa so that on these overlaps the gl (K)-valued
1-forms A,, satisfy the transition formula
Aa = 950 Aggpa + Izadgpe <= Ap = gpaAagszs — (d9sa)95,- (10.2.4)
O

Proposition 10.2.4. Suppose E is a rank r vector bundle over M described by the gluing cocycle
(U, goe, K"). Then a collection of 1-forms

Ao = W (Ua) ® gl (K).

satisfying the gluing conditions (10.2.4) determine a connection on E. O

Proposition 10.2.5. Suppose E — M is a smooth vector bundle. Then there exist connections on E,
ie, A E 75 @

Proof. Suppose that E is described by the gluing cocycle (U, ges, K"), 7 = rank(FE).

Denote by ¥,, : Ki; — E |y, the local trivialization over U, and by V the trivial connection
on K@a Set
Ve = U, Voust,
Then (see Remark 10.2.2(b)) V is a connection on E |, Fix a partition of unity (6, ) subordinated

to (U, ). Observe that for every a and every s € C™°(E) 6,5 is a section of £ with support in Uy,. In
particular V*(6,s) is a section of 7*M ® E with support in U,,. Set

Vs =Y 05V(0as)
a?/B

If f € C°°(M) then
) =3 05V (Oufs) = 05 (Z df @ (0a) + f@a(eas))
a, B @
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—df @5 0u08+fVs =df @s(Y 6a) (D 0s) + Vs =df @5+ Vs

a,f Hfl—/ ——
= =1

Hence V is a connection on F.
O

Definition 10.2.6. Suppose E; — M, i = 0,1 are two smooth vector bundles over M. Suppose
also V? is a connection on E;, i = 0,1. A morphism (Ep, V®) — (FE1, V') is a bundle morphism
T : Eg — Ej such that for every X € Vect(M) the diagram below is commutative.

C%(Ep) —— C®(Ey)

C%(Ep) —— C®(Ey)
An isomorphism of vector bundles with connections is defined in the obvious way. We denote by
V BE"" (M) the collection of isomorphism classes of K-vector bundles with connections over M.
O

Observe that we have a forgetful map
VB (M) — VBg(M), (E,V)— E.
The tensorial operations @, *, ®, & and A* on V B(M ) have lifts to the richer category of vector
bundles with connections. We explain this construction in detail. Suppose (E;, V¢) € V B“" (M),
i=0,1.
e We obtain a connection V = V° @ V! on Ey @ E; via the equality
V(So D 81) = (VOSO D V151)7 Vsg € COO(EQ), S1 € Coo(El)
e A connection V on E induces a connection V' on E* defined by the equality
Lx (u,v) = (Viu,0) + (u, Vxv), VX € Vect(M),u € C(E*), ve C™(E),

where (o, 8) € Hom(E*® E,K,,) denotes the natural bilinear pairing between a bundle and its dual.

Suppose € = (€1, - , ;) is a local frame of E and Ay (e) = (A%)1<ap<r, AL € QL (U), is the
connection 1-form associated to V,

Ve =¢- Ay(e)
Denote by ef = (e!,-- -, ¢") the dual local frame of E* defined by
(e, ep) = Oy
We deduce that (Ve?, ¢,) = —(e?, Ve,) = —A¢ so that
Viet = —) " Afe’.
b
We can rewrite this
Viel =el- (—Av(e)'),

where Ay (e)' denotes the transposed of the matrix Ay (e). Hence

Agi(el) = —Av(e).
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e We get a connection V' ® V! on Ey ® E; via the equality
(VO @ V1) (s0 ® s1) = (Vs0) ® 51 + 51 ® (Visy).
e We get a connection on A* E via the equality
V% (s1A---Asp) = (Vxsi)AsaA--Asp 451 A(Viks2) A Asp+---s1AsaA--- A (Viesg)
Vsi, -+, s, € C®(M), X € Vect(M).

e If E is a complex vector bundle, then any connection V on E induces a connection V on the
conjugate bundle F defined via the conjugation operator C' : £ — E

vV=cvch

Exercise 10.2.7. Suppose V° and V! are connections on the vector bundles Ey, By — M. They
induce a connection V on E; ® Ej = Hom(Ey, E). Prove that for every X € Vect(M) and every
bundle morphism 7" : Ey — FEj the covariant derivative of 7" along X is the bundle morphism V xT'
defined by

(VxT)s = V& (Ts) — T(Vks), Vs € C(E).
In particular if Ey = E; and VY = V! then we have
VxT = [V%,T],
where [A, B] = AB — BA for any linear operators A and B. O

Suppose £ — N is a vector bundle over the smooth manifold IV, f : M — N is a smooth map,
and V is a connection on F. Then V induces a connection f*V on f* defined as follows. If E is
defined by the gluing cocycle (U, ges, K”) and V is defined by the collection A, € Q! (e) ® gl (K),
then fV is defined by the collection f*A, € QL(f~1(U,)) ® gl (K). Itis the unique connection on
f*E which makes commutative the following diagram.

c(B) —

Co(f°E)

k}c*v
f*

C®(T*N ® E) ——— C®(T*M & f*E)

v

Definition 10.2.8. Suppose V is a connection on the vector bundle £ — M.
(a) A section s € C°°(F) is called (V)-covariant constant or parallel if
Vs =0.

(b) A section s € C°°(FE) is said to be parallel along the smooth path ~y : [0, 1] — M if the pullback
section y*s of v*E — [0, 1] is parallel with respect to the connection f*V. O

Example 10.2.9. Suppose v : [0,1] — M is a smooth path whose image lies entirely in a single
coordinate chart U of M. Denote the local coordinates by (x!,--- ,2™) so we can represent y as a
n-uple of functions (x'(t),---,z"(t)). Suppose E — M is a rank r vector bundle over M which
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can be trivialized over U. If V is a connection on E then with respect to some trivialization of E |¢/
can be described as

V=d+A=d+) di'®A;, A;i:U— gl (K).

The tangent vector 7 along y can be described in the local coordinates as
= i'0;
i

A section s is the parallel along v if V55 = 0. More precisely, if we regard s as a smooth function
s : U — K" then we can rewrite this condition as

0= j_ys + ; dz'(¥)Ass = (le i'0;)s + ; i'Ays

d .
A£+ " Ais =0, (10.2.5)

(2
Thus a section which is parallel over a path v(0) satisfies a first order linear differential equation. The
existence theory for such equations shows that given any initial condition sg € E. ) there exists a
unique parallel section [0, 1] > ¢+ S(t;50) € E, ;). We get a linear map

E’y(O) S 59 — S(t; 80) |t:1€ E,y(l).

This is called the parallel transport along v (with respect to the connection V). O

Suppose F is a real vector bundle, g is a metric on E. A connection V on E is called compatible
with the metric g (or a metric connection) if g is a section of £* @ E* covariant constant with respect
to the connection on £* ® E* induced by V. More explicitly, this means that for every sections u, v
of F/ and every vector field X on M we have

LXg(u, U) = g(vXuvv) +g(u7 VXU)'

One can define in a similar fashion the connections on a complex vector bundle compatible with a
hermitian metric h.

Proposition 10.2.10. Suppose h is a metric (riemannian or hermitian) on the vector bundle E. Then
there exists connections compatible with h. Moreover the space AF j, of connections compatible with
h is an affine space modelled on the vector space Q*(End; (E)). 0

Suppose that V is a connection on a vector bundle £ — M. For any vector fields X, Y over M
we get three linear operators

Vx,Vy,Vixy : C°(E) = C*(E),
where [X, Y] € Vect(M) is the Lie bracket of X and Y. Form the linear operator
Fg(X,Y): C®(E) —» C*(F), Fy(X,Y)=VxVy—-VyVx—-Vixy]=I[Vx,Vy]=Vixy]
Observe two things. First,
Fo(X,Y) = -Fy(Y, X).
Second, if f € C°°(M) and s € C*°(E) then

Fo(X,Y)(fs) = fFo(X,Y)s = Fy(fX,Y)s = Fy(X, fY)s
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so that for every X,Y € Vect(M) the operator Fy(X,Y) is an endomorphism of E and the corre-
spondence

Vect(M) x Vect(M) — End(F), (X,Y)w— Fy(X,Y)

is C°°(M)-bilinear and skew-symmetric. In other words Fy (e, e) is a 2-form with coefficients in
End E, i.e., a section of Q?(End E).

Definition 10.2.11. The End F-valued 2-form Fy (e, e) constructed above is called the curvature of
V. O

Example 10.2.12. (a) Consider the trivial vector bundle £ = K7,, where U is an open subset in R".
Denote by (x!,--- ,2™) the Euclidean coordinates on U. Denote by d the trivial connection on E.
Any connection V on E has the form

V=d+A=d+) di'd;, A;:U— gl (K).

Setd; := 2.V, = Vo,. Then for every s : U — K" we have

=2
Fo(9;,0;)s = [Vi,V,]s = Vi(V;s) — V;(Vis)
= Vi(9j5 + Ajs) — V;(0is + Ais) = (0 + Ai) (95 + Ajs) — (95 + A7) (Oys + Ajs)
- (az-Aj — 9,4, + A, Aj])s.
Hence
> F(0:,05)da’ A da? = (9,A; — 0;A; + [A;, Aj] ) da' A da,
1<J

We can write this formally as

Fy=dA+ANA==) dald(A) + (D da' i) A (D dal Ay).
i 7 7

Observe that if 7 = 1, so that E is the trivial line bundle K, then we can identify gl (K) = K so the
components A; are scalars. In particular [A4;, A;] = 0 so that in this case

Fy = dA.
(b) If E is a vector bundle described by a gluing cocycle (U, ges, K") and V is a connection described

by the collection of 1-forms A, € Q}(U,) ® gl (K) satisfying (10.2.4) then the curvature of V is
represented by the collection of 2-forms

F,=dA,+ Ay N Ay
satisfying the compatibility conditions

Fs= gﬂaFagﬁj on Uag. (10.2.6)

(c) If V is a connection on a complex line bundle . — M then its curvature Fy can be identified
with a complex valued 2-form. If moreover, V is compatible with a hermitian metric then 7 Fy is a
real valued 2-form. O
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We define an operation
A: QF(End E) x QYEnd E) — Q*(End E),
by setting
WeSAMN @T) = (W An') e (ST)
for any Q% € QF(M), n* € QY(M), S,T € End(E).
Using a connection V on E we can produce an exterior derivative
dV : QF(End E) — Q"1 (End E)

defined by
dV(W* ® 8) = (d*) @ S+ (-1)F(w® 1g) A VEMES,
We have the following result.

Proposition 10.2.13. Suppose V',V are two connections on the vector bundle E — M. Their
difference B = V' — V° is an End E-valued 1-form. Then

Fy = Fy+dVB+ BAB.

Proof. The result is local so we can assume F is the trivial bundle over an open subset M <— R™.
Let r = rank F. We can write

V=d+A, V =d+A, AAcQ(M)egl (K).
Then B = A’ — A,
F =Fg =dA +ANA, F=Fg=dA+ANA
and thus
F'—F=dA —A) +ANA)—(ANA) =d(A —A)+(A+B)A(A+T)-~BAB
=dB+BANA+AANB+ BAB.

In local coordinates d“ we have (see Exercise 10.2.7)

V() da'®@B;)=-) da' N[> da? @ V;B;
% 7 7

= — Zdl‘Z A Zd.ﬁj X (@Bz + [A],BZ])
( J

= da' Nda) ® (0;B; — 0;B;) — Y _ da’ Nda? @ (A;B; — BiAj)

1<j i,
=dB+ > dal ® A, /\(Zdaji®Bz‘>+<Zd$i®Bi)/\ > dad ® A,
J i i J
=dB+ ANB+BAA.
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10.3. Connections on principal bundles
In the sequel we will work exclusively with matrix Lie groups, i.e., closed subgroups of some
GL, (K).

Fix a (matrix) Lie group G and a principal G-bundle P = (M, U, ges) over the smooth manifold
M. Denote by g = T1 G the Lie algebra of G. A connection on P is a collection

A= {4, € Q' (Us) ® g}
satisfying the following conditions
Ag(u) = g/ga(u)Aa(u)gg;(u) — d(g8a)gpa(uw) "t Yu € Uyp. (10.3.1)
We denote by A p the space of connections on P.

Proposition 10.3.1. Ap is an affine space modelled on Q' (Ad P).

Proof. We will show that given two connections (Al ), (A9) their difference C,, = Al — A defines
a global section of A'T*M ® Ad P, i.e. on the overlaps Ug,, we have the equality

CB = Ad(gﬁa)ca = gﬁacaggi'

This follows immediately by taking the difference of the transition equalities (10.3.1) for AL and A9.
To finish the proof of the proposition we only need to show that Ap # (). We refer to [N1, Ch.8] for
more details.

O

To formulate our next result let us introduce an operation
[—,—]: Qk(Ua) ®gx Qg(Ua) ®g— Qk—i_g(Ua) ® g,
W@ X, 0" @ Y] = (" A7) @ [X,Y],

where [ X, Y]-denotes the Lie bracket in g, or in the case of a matrix Lie group, [X,Y] = XY - Y X
is the commutator of the matrices X, Y. Let us point out that if A, B € Q!(U,) ® g we have

[A,B|= AANB+ BAA.
We define )
Fo = dAg + 5[Aa, Aa] = dAa + Ao A Ag € 03 (U,) @ g.
For a proof of the following result we refer to [N1, Chap.8].
Proposition 10.3.2. (a) The collection F,, defines a global section F(A) of A>*T*M ® Ad P, i.e. on

the overlaps U,g it satisfies the compatibility conditions,
FB = gﬁaFagg_; = Ad(gﬁa)Fa‘

(b) (The Bianchi Identity)
dFy + [Aa, Fo) =0, Va. O

The 2-form F(A) € Q2(Ad P) is called the curvature of A.

Consider now a representation p : G — Aut(V') and the vector bundle E = P x, V. Denote by
ps« the differential of pat 1 € G
p«: g — EndV.
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We recall that End, (V') = p.g and End, E = P xaq, End,(V). The identity (10.1.1) shows that
any connection (A,) on P defines a connection V = (p.A,) on E. We say that this connection is
compatible with the (G, p)-structure. Observe that
Fy ‘Ua: psFa.
In particular Fy € Q?(End, E).
Example 10.3.3. Suppose £ — M is a complex vector bundle of rank r. A hermitian metric h
on E defines a U (r)-structure. A connection V is compatible with this structure if and only if it is
compatible with the metric. In this case End, E is the subbundle End, E of End F and we have
F(V) € Q*(End;, E).
O

Exercise 10.3.4. (a) Construct a connection on the tautological line bundle over CP! compatible with
the natural hermitian metric.

(b) The curvature of the hermitian connection A you constructed in part (a) is a purely imaginary
2-form F(A) on CP!. Show that

/wl e1(A) = i /@pl F(A) = —1.

(c) Prove that the tautological line bundle over CP! cannot be trivialized. O

10.4. The Chern-Weil construction

Suppose P — M is a principal G-bundle over M defined by the gluing cocycle (U, ges ). To formulate
the Chern-Weil construction we need to introduce first the concept of Ad-invariant polynomials on g.

The adjoint representation Ad : G — GL(g) induces an adjoint representation
Ad¥ : G — GL(Sym* g%), gc := g®g C.
We denote by I;(g) the Ad*-invariant elements of Sym* g*. Equivalently, they are k-multilinear
maps
P:gx---xg—C,

S—
k

such that

P(X 1y, Xomy) = PlgX197" .., gXpeg™ ) = P(X1, ..., Xk)
forany Xy, -+, Xy, € g, ¢ € G and any permutation ¢ of {1,---  k}. If in the above equality we
take g = exp(tY), Y € g and then we differentiate with respect to ¢ at ¢ = 0 we obtain

P([Y,Xl],XQ,...,Xk) + .- —|—P(X1,.. oy Xp_1, [Y,Xk]) =0, VY, Xy,...,. X €g. (104.1)
For P € Ii(g) and X € g we set

We have the polarization formula

P(X].)"' 7Xk)
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More generally, given P € I;(g) and (not necessarily commutative) C-algebra R we define R-
multilinear map
P:Rgx---xRg—R
k

by

Pri®@ Xy, 1@ Xg) =11 P(X1, -+, Xi).
Let us emphasize that when R is not commutative the above function is not symmetric in its variables.
For example if r1ro = —ror; then

P(riXq,m9Xa,--+) = —P(reXo,m Xy, ).

It will be so if R is commutative. For applications to geometry R will be the algebra Q°®(M) of
complex valued differential forms on a smooth manifold /. When restricted to the commutative
subalgebra
Qe (M) = @sz(M) ® C.
k>0
we do get a symmetric function.

Let us point out a useful identity. If P € I(g), U is an open subset of R",
FF=woX,cQiU)rg, A=w2XcQU)og

then
P(Fy,-- F;_1,[A,F],Fpy--- ,F) = (_1)d(d1+"'di71)ww1 cwpP(X, - [ XX X,
In particular, if F1, - -- , Fx_1 have even degree we deduce that for every i = 1,--- , k we have

P(Fla"' 7F’7:717[A3Fi]7Fi+1a"' ,Fk):(,UCU1"'OJkP(X1,"' 7[X;XZ]7X/€)

Summing over 7 and using the Ad-invariance of P we deduce
k
> P(Fy,-- ,Fi1,[AF), Fip1, -+, Fp) =0, (10.4.2)
i=1

VE - Fp1 €Q9"U)®g, Frp,AcQ*U)®g.

Theorem 10.4.1 (Chern-Weil). Suppose A = (A,) is a connection on the principal G-bundle (M, U, gee ),
with curvature F(A) = (F,), and P € Ij(g). Then the following hold.

(a) The collection of 2k-forms P(F,) € Q%¢(U,,) define a global 2k-form P( F(A) ) on M, ie.,
P(F,) = P(Fg) onU,g.
(b) The form P(F(A)) is closed
dP(F(A)) =0.
(c) For any two connections A°, A* € Ap the closed forms P( F(AY) ) and P( F(AY ) are coho-
mologous, i.e., their difference is an exact form.
Proof. (a) On the overlap U,3 we have
P(Fﬁ) = P<Ad<gﬁa)Fa) - P<Fa)

due to the Ad-invariance of P.
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(b) Observe first that the Bianchi indentity implies that dF,, = —[A,, F,,]. From the product formula
we deduce
dP(Fy) = dP(Fy, -+ ,Fy) = P(dFy, Fp,--- ,Fp) 4 -+ P(Fy,--- , Fy,dF,)
———
k
10.4.2
= _P([AO“FO‘LFOU'” 7F0l) - _P(F057 7FO¢7[AOL7F04]) ( = )0

(c) Consider two connections A!, A° € Ap. We need to find a (2k — 1) form 7 such tha
P(F(AY)) — P(F(A%) = dn.

Let C := Al — A% € Q'(Ad P). We get a path of connections ¢ —+ A* = A® 4 ¢+C which starts at
AY and ends at A'. Set F* := F(A?) and

P(t) = P(Fa,).

We want to show that P(1) — P(0) is exact. We will prove a more precise result. Define the local
transgression forms

1
T,P(A', A%) .= k/ P(FL,---  F.,C,)dt
0
The Ad-invariance of P implies that
T, P(A', A) = Tz P(A', A%), onU.g

so that these forms define a global form T'(A', A%) € Q%=1 (M) called the transgression form from
A% to A'. We will prove that
P(1) — P(0) = dT'P(A', AY).

We work locally on U, we have

1
P(1) - PO) = [ G P e
0
(Fg = 5 F2)

1
= [ (P FL B+t PBL e FLEY )i
0

1
:k/ P(F£77F£7Fot¢)dt
0

We have
Ft = dA! + %[Ag, ALl = F° +t(dC, + [A°,C,)) + 7522[0&, C,)
so that
Fl = dC, + [A%, C,] + t[Ca, Co) = dC,, + [AL,, C).
Hence

P(Fg, -+ Foy ) = P(Fg, -+ FoydCa + [A4, Cal).
To finish the proof of the theorem it suffices to show that

dP(FL,--- | FL.Cy) = P(F.,--- | F. dC, + [AL,, C.)).
Indeed we have

dP(FL,.-. | F!.C,) = P(dF.,--- \F.,Cy) +---+P(F.,--- dF.,C,) + P(F.,--- |F! dC,)
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(dFy = —[AL Fob)
= —P([ALFL). o Fl,Ca) = = P(EL,- -+ [AL Fi], Ca) 4+ P(Ely-+-  FlodCo)
= P(F.,-- F.,dC, + [AL, C4))
—(P(FL, -+ Fo, (AL, Cal) + P(AL, FLl, -+ Fyy Ca) 4o+ P(Fly o+, [AL, FL],Ca) )
= P(F., -+ ,F.,dCy + [AL, C,))

since the term in parentheses vanishes” due to (10.4.2).

We set
Clg*]” = P Ie(9). Cllg N =[] L (o).
k>0 k>0
C[g*]€ is the ring of Ad-invariant polynomials and C[[g*]]“ is the ring of Ad-invariant formal power
series. We have
Clg*]“ c Cllg")®
Suppose A is a connection on the principal G-bundle P — M. Then for every f = >, fr €
Cl[g*]]¢ we get an element
FF(A) =) fu(F(4))
k>0
Observe that f(F(A)) € Q% (M). In particular fo,(A) = 0 for 2k > dim M so that in the above
sum only finitely many terms are non-zero. We obtain a well defined correspondence
Cllg" | x Ap — Q"(M), (f,4) = F(F(A)).

This is known as the Chern-Weil correspondence. The image of the Chern-Weil correspondence is a
subspace of Z*(M ), the vector space of closed forms on M. We have also constructed a canonical
map
T:Cllg"]% x Ap x Ap = Q(M), (f, Ao, A1) = Tf(As, Ao)
such that
F(F (A1) = f(F(Ao)) = dT f (A1, Ao).

We will refer to it as the Chern-Weil transgression.

Exercise 10.4.2. Suppose £ — M is a rank two hermitian complex vector bundle and A', AY are
two hermitian connections on E. Assume A is flat, i.e. F(A?) = 0. Describe the transgression
Tea(AL, AY) in terms of C' = Al — A°, The correspondence

Q' (End, E) 3 C+ Tey(A” + C, A°)

is known as the Chern-Simmons functional. 0O

Exercise 10.4.3. Prove that the Chern classes are independent of the hermitian metric used in their
definition. 0

2The order in which we wrote the terms, Ft ... Ft Cinstead of C, Ft, ..., F* is very important in view of the asymmetric
definition of
P:RRgX - xR®R®g—R.
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The Chern-Weil construction is natural in the following sense. Suppose P = (M, U, ges, G) is a
principal G-bundle over M and f : N — M is a smooth map. Then we get a pullback bundle f*P
over N described by the gluing data (N, f~*(U), f*(ges ), G. For any connection A = (A,) on P we
get a connection f*A = (f*A,) on f*P such that

F(f*A) = f*F(A).
Then for every element h € C[[g*]]“ we have
h(f*F(A)) = [*h(F(A)).

10.5. The Chern classes

We consider now the special case G = U(n). The Lie algebra of U(n), denoted by u(n) is the space
of skew-hermitian matrices. Observe that we have a natural identification

u(l) = iR.
The group U(n) acts on u(n) by conjugation
U(n) x u(n) 3 (9. X) = gXg~" € u(n).
It is a basic fact of linear algebra that for every skew-hermitian endomorphism of C" can be diago-
nalized, or in other words, every skew-hermitian matrix is conjugate to a diagonal one. The space of

diagonal skew-hermitian matrices forms a commutative Lie subalgebra of u(n) known as the Cartan
subalgebra of u(n). We will denote it by Cartan(u(n)).

Cartan(u(n)) = {Diag(i)\l, i)y (A, ) € R"}.

The group WU(n)3 of permutations of n objects acts on Cartan(u(n) is the obvious way and
two diagonal matrices are conjugate if and only if we can obtain one from the other by a permu-
tation of its entries. Thus an Ad-invariant polynomial on u(n) is determined by its restriction to
the Cartan algebra. Thus we can regard every Ad-invariant polynomial as a polynomial function

P = P(A1,-++,Ay). This polynomial is also invariant under the permutation of its variables and
thus can de described as a polynomial in the elementary symmetric quantities
7 Aj
— = (i) = 2T
k= E T T T 27T(z)\j) o
11 <<t

The factor % appears due to historical and geometric reasons. The variables x; are also known as the
Chern roots. More elegantly, if we set
D = D(X) = Diag(iA1, - - - ,i)\,) € u(n)
then )
det(1 + %D) =141t + ot + -+ cpt™

Instead of the elementary sums we can consider the momenta

Sp = g x5
i

3We use the notation W (n) because this group is in this case the symmetric group is isomorphic to the Weyl group of U (n).
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The elementary sums can be expressed in terms of the momenta via the Newton relation (6.2.6)

$1=c1, S9= C% — 2c9, 83 = C% — 3cieo + 3es, Z(—l)jsr,jcj =0. (10.5.1)
j=1

Using again the matrix D we have
Srop it
Z ﬁt = tr exp(%D).
r>0

Motivated by these examples we introduce the Chern polynomial
c e Clu(n)* V™, ¢(X) = det(1en + QLX), VX € u(n).
s
Now define the Chern character

ch € Cllum)V™, ch(X) = tr exp(%X).

Using (10.5.1)
1 2 1 2
ch=n+c + 5(c1 —2c) + 3—(01 —3cica+3¢3) +- . (10.5.2)

Example 10.5.1. Suppose
- o1 1 _
F:|:1Fl Iy }eu(z)@Ff:—Fg.

Then
1 _
c1(F) = —5(F11 + F3), coF) = —@(Fg ANFY2 — Bl AFS).
O

Our construction of the Chern polynomial is a special case of the following general procedure of
constructing symmetric elements in C[[A1, - - - , A,]]. Consider a formal power series
f=ao+ax+ax®+--- €Cl[z]], ao=1.
Then if we set £ = (x1,- - - ,x,) the function
G (T) = f(x1) - f(xn) € Cllzn, - -+, wn]]
is a symmetric power series in £ with leading coefficient 1. Observe that if D = Diag(iX) then

7

f(%

We thus get an element G ; € C[[u(n)]]Y(™ defined by

D) = Diag(f(m1). - Flan) ) = [(@) = det (D).

G(X) = det f(%X).

It is called the f-genus or the genus associated to f. When f(z) = 1 + x we obtain the Chern
polynomial.
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Of particular relevance in geometry is the Todd genus, i.e. the genus associated to the function*

td (z) & 14 loy Loy 142 +§: bak__ ok
xXr) = = =T — T cee = —T — X
i 27 112 27 T & (2K)!

The coefficients b are the same Bernoulli numbers we have encountered in Chapter 7. We set
td = th.

Consider now a rank n complex vector bundle £ — M equipped with a hermitian metric h. We
denote by Ag y, the affine space of connections on £ compatible with the metric ~ and by P (FE)
the principal bundle of h-orthonormal frames. Then the space of connections A j, can be naturally
identified with the space of connections on Py (E). For every A € A j, we can regard the curvature
F(A) as an x n matrix with entries even degree forms on //. We get a non-homogeneous even
degree form

c(A) = c(F(A)) = det(1p + %F(A)) € QUen (M),

According to the Chern-Weil theorem this form is closed and its cohomology class is independent of
the metric® 4 and the connection A. It is thus a topological invariant of E. We denote it by ¢(F) and
we will call it the total Chern class of E . It has a decomposition into homogeneous components

A(E)Y=1+4c1(E)+ -+ cn(E), cx(E)e H*(M,R).

We will refer to ¢, (E) as the k-th Chern class. More generally forany f =1+ ayz + - - - € C|[]]
we define G ¢(£) to be the cohomology class carried by the form

G (A) = det f(F(A)).

In particular, td (£ is the cohomology class carried by the closed form

td (A) = det( bl )
GXP(%F) — HE

(see [Hirz, 1.§1])

T4t L@ et L er+
= —c1+ —(cf+c —ciep+ -
27t T T T gt
Similarly we define the Chern character of E as the cohomology class ch(FE) carried by the form
ch(A) = trexp( QLF(A) )

™

%(cl(Ef 3e1(E)ea(E) +3e3(E)) + -

Due to the naturality of the Chern-Weil construction we deduce that for every smooth map f : M —
N and every complex vector bundle £ — N we have

o(f*E) = f*c(E). (10.5.3)

=rank £+ ¢1(F) + %(Cl(E)2 —2c2(E) ) +

4Warning. The literature is not consistent on the definition of the Todd function. We chose to work with Hirzebruch’s definition in
[Hirz]. This agrees with the definition in [AS3, LM], but it differs from the definitions in [BGV, Roe] where td (z) is defined as —*—

et —1"
5See Exercise 10.4.3.
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Example 10.5.2. Denote by Lp~ the tautological line bundle over CIP". The natural inclusions
i s CF s CFL (2, z) = (21,00, 2, 0)
induce inclusions i;, : CP*~! — CP* and tautological isomorphisms
Lpr—1 = iy Lpk.
We deduce that
c1(Lpr) [cpr= c1(Lp1).

We know that H?(CP", R) is a one-dimensional space with a canonical basis, namely the cohomol-
ogy class dual to homology class carried by the hyperspace CP"~! < CP". It satisfies

(H, [CP']) = 1,
where [CP!] is the homology class defined by the embedding CP! < CP™. We can write

ci(Lpn) = zH,
where

o= (o) [CB D = [ erlLen)
Cp!

As shown in Exercise 10.3.4 the last integral in —1 so that

c1(Lpn) = —H. (10.5.4)

O

For a proof of the following result we refer to [N1, Chap.8].

Proposition 10.5.3. Suppose (E;, h;), i = 0,1 are two hermitian vector bundles, A; € Ag, p, and
f=1+ax+ ax® +--- € C[[x]].. We denote by Ag ® Ay and Ay ® Ay the induced hermitian
connections on Eg @ F and Ey ® Eq respectively. Then

Gf(Ag® A1) = G(Ao) NGf(Ar), ch(Ay® A1) = ch(Ap) + ch(Ay),
ch(Ay® A1) = ch(Ap) A ch(A;).
In particular, we have
c¢(Eg® Eq) = c¢(Ey)c(Er), ch(Ey® Eq1) = ch(Ep) + ch(E,), (10.5.5)
ch(Ey ® Ey) = ch(Ep) ch(E). (10.5.6)

Remark 10.5.4. Arguing as in Chapter 5 we deduce that the identities (10.5.3), (10.5.4), (10.5.5)

uniquely determine the Chern classes. Let us denote by c',;‘m the Chern classes defined in that chapter,

and by ¢]“°"" the Chern classes defined via the Chern-Weil procedure. If £ — M is a smooth complex
vector bundle over the smooth manifold M, then ¢, € H?*(M,Z) and ¢J**™(E) € H?*(M,R). If
1 denotes the natural map

H*(M,Z) — H?*(M,R),

then
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Example 10.5.5. Suppose L — M is a hermitian line bundle. For any hermitian connection A we
have . o i
e(4) =1+ =F(A), eh(4) = —(;2F(4)) =@,

2T B \or
k>0






Appendix A

Homework assignments

A.1. Homework 1

Exercise A.1.1. (a) Prove that RP" is orientable if and only if n is odd.

(b) Prove that CP" is simply connected, and orientable. Note that the (real) dimension of CP? s
divisible by 4 so that we can speak of intersection form. What could be the intersection form

Q : Hy,(CP?,Z)/Tors x Hyy,(CP?**,7Z)/Tors — Z. O

Exercise A.1.2. We define an operation + on the set ;7 of oriented cobordism classes of n dimen-
sional manifolds by setting
[Mo, po] + [My, pa] = [Mo L My, po & .
(a) Prove that ;" is an Abelian group with neutral element [S™, pgn], where pgn denotes the orien-
tation on the sphere S™ as boundary of the unit ball in R"*!. Moreover
[Mv MM] + [M7 _,UM] = [Snmusn]

(b) Prove that (Mo# M, po#u1) = [Mo, po] + [M1, p1], where # denotes the connected sum of two
manifolds and pg# 1 denotes the orientation on My# M, induced by the orientations ;. O

Exercise A.1.3. (a) Suppose (Mo, o), (M7, 1) are compact oriented manifolds whose dimensions
are divisible by 4. Then

T(Mox My, poxpr) = T(Mo,po) T(Mi,p)-
(b) Compute the intersection form of S2 x S2, and the intersection from of CP24CP", where CP? is
equipped with the canonical orientation as a complex manifold, and TP’ denotes the same manifold,

but equipped with the opposite orientation. Prove that the manifolds S? x S? and CP? #@2 are not
homeomorphic. O

A.2. Homework 2

Exercise A.2.1. Suppose () is a symmetric, bilinear, nondegenerate form on the finite dimensional
real vector space V. Prove that the signature of () is trivial if and only if there exists a subspace in V'
which is lagrangian with respect to Q. O

131
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Exercise A.2.2. (a) Prove that any complex line bundle over a finite wedge of circles is trivializable.

(b) Suppose ¥ is a compact, oriented surface, and L — X is a complex line bundle. Prove that for
any x € X the restriction of L to ¥ \ {z} is trivializable.

(c) Suppose ¥ is a compact, oriented surface. For every point x € 3 fix an open neighborhood U,
homeomorphic to an open 2-disk, and set V,, := ¥ \ {z}. Then U, = {U,, V,} is an open cover of
Y., and the overlap O, = U, NV, = U, \ {z} is homotopy equivalent to a circle.

For every continuous map g : O, — GL¢(1) = C* we get a complex line bundle L, — X
obtained by identifying over O the trivial line bundle C;; with the trivial line bundle C,, according
to the rule

Cy, D Cx 04 3 (2,p) = (9(p)z,p) € C x Oz C Cy,.

Prove that the correspondence g — L, induces a bijection between the set of homotopy classes of
maps O, — C* and the set of isomorphism classes of complex line bundles over X..

(d) We use the notations in (c). Observe that the space of homotopy classes of maps O, — C* is a
multiplicative group, where for any gg, g1 : O, — C* we define gg - g1 : O, — C* by the equality.

(90 - 91)(p) = go(P)g1(p), Vp e C".

Show that
Lgygy = Lgy ® Ly, . O

Exercise A.2.3. Prove that the space of isomorphism classes of complex line bundles over a topo-
logical space X is an Abelian group with respect to the tensor product of two complex line bundles
in which the trivial line bundle Cy is the identity element, and the inverse of a line bundle L is its
dual L*. We will refer to this group as the fopological Picard group of X and we will denote it by
PiCtop(X) . O

Remark. Exercise A.2.2(d) shows that for any compact oriented surface X the topological Picard
group is an infinite cyclic group.

A.3. Homework 3.

Exercise A.3.1. (a) Suppose X is a compact oriented Riemann surface of genus g. The orientation de-
termines a canonical generator of the infinite cyclic group H?(X, Z) which we denote by w. Suppose
and L — X is a complex line bundle of degree d, i.e., ¢1 (L) = dw. Compute the integral cohomology
of the total space of the unit sphere bundle of L.

(b) Suppose E — S* is a rank 4-oriented vector bundle such that its Euler class e(F) is a generator
of the group H*(S*,7Z). Prove that the unit sphere of E has the same homology as a 7-sphere. O

Exercise A.3.2. (a) Suppose (U, ),>1 is a sequence of m-dimensional subspaces of the separable
Hilbert space H. Then U,, converges to U € Gr,,(H) in the projector topology if and only if there
exists a basis {e1, ..., ey} of U and bases {e1(v), ..., en(v)} of U, such that

lim |e;(v) —e;| =0, Vi=1,...,m.
V—r00
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(b) Suppose f : X — Gr,,(H) is a continuous map. Show that if X is compact then there exists
a finite dimensional subspace V' C H such that f and a map g : X — Gr,,(H) such that f is
homotopic to g and g(X) C Gr,, (V). 0

Exercise A.3.3. Suppose ¥ is a compact oriented surface of genus g. Fix a point g € X, set
V = ¥\ g, and choose a neighborhood U of x¢ homeomorphic to the unit open disk in R? centered
at the origin. Denote by Uy /5 the closed neighborhood of z contained in U which corresponds to
the closed disk of radius 1/2 centered at the origin. We regard Uy /2 as a manifold with boundary
C = 90U, 5. The boundary is a circle equipped with the orientation as boundary of Uy /.

As we have seen in the previous homework, any continuous map g : U NV — C* defines a
complex line bundle L, — 3 obtained by the identification

Clvav = (Cy)|vav

We denote by deg g the degree of the map

1
St=~Csp— ——g(p) e St cC.

l9(p)]

If uy, € Hy(X,7Z) denotes the generator defined by the orientation of ¥, prove that
degg = —(c1(Lg), px)-
Hint: We already know that the map g — L, gives a group isomorphism
[UNV,C* 3 g VBL(D).
Note that we have two groups morphisms
[UNV,C*|3g—deggeZ, VBL(X) 3 L —(ci(L),ps) € 7Z

so you have to prove that the diagram below of morphisms of Abelian groups is commutative.

[UNV,C* VBL(D)

Q‘ 7 ./(01(—)7112)

Start by proving that the morphism
VB{(2) 3 L= —{ci(L),ps) € Z

is an isomorphism. Then conclude using the localization formula. O

A.4. Homework 4

Exercise A.4.1. Prove that if £ — X is a complex vector bundle of rank r and L — X is a complex
vector bundle with c1 (L) = u € H?(X), then

(L ® E) = zk: <; - z> ci(E)uk—. 0

1=0
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Exercise A.4.2. Consider the Grassmanian Gry = Grﬂ,f of k-dimensional subspaces of the separable
real Hilbert space H. We denote by Grk. the orientation double cover of Grj, determined by the
universal vector bundle Uy — Gry; see page 43. We denote by uk the pullback of Uy to Grk

(a) Prove that Uk is orientable, and in fact, it is equipped with a canonical orientation.

(b) Prove that for every compact C'W - complex X and any oriented rank & real vector bundle £ — X
there exists a continuous map f : X — Grk such that £ =2 f* uk Moreover if fy, f1 — Grk are
continuous maps, then

1 Uy = fi Uy, as oriented vector bundles <= fo ~ f;. O

Exercise A.4.3. Identify the 3-sphere with the group of unit quaternions. For k, j € Z we define
9k,j ¢ 53 - SO(4)7 q+ gk,j(Q) € 50(4)5
where }
gkj(@u = ¢*ug™, Vg€ 5%, ueH.
The map gy, ; determines an element in 73( SO(4) ) that we denote by [gy, ;).

Via the clutching construction (see Example 3.1.10 and Section 8.2 for details) we can associate
to every map g ; an oriented rank 4 real vector bundle Ey ; — S4. We denote by ek,; its Euler
number,

e = (e(Bry), [S1) € Z.
(a) Show that e, ; = 0 if £ = j. Hint: Construct a nowhere vanishing section of £ ;.

(b) Show that ep 1 = —1. Hint: Use the localization formula in Theorem 5.4.1 for a cleverly chosen
nondegenerate section of 1 .

(c) From Exercise A.4.2 above, we know that the bundle £}, ; determines a unique homotopy class of
maps S* — Gr4, i.e., a unique element 7y ; € 774(Gr4) Show that the map

23 (k,j) — Vk,j € 7T4(Gf4)

is linear. Hint: Show that the map
23 (k,4) = [gry] € m3(SO(4))
is a group morphism.! Next show that the clutching construction defines a group morphism
73(S0(4)) = 74(Gry).
(d) Show that the map Z? > (k, j) + e ; € Z is linear and then conclude that

ek = (k—J)-
Hint: Consult the proof of [MS, Lemma 20.10]. O

Exercise A.4.4. Consider again the vector bundles Ej, ; — 54 in the above exercise and set

Pry = (p1(Ek ), [SY]) € Z
(a) Prove that the map
7?3 (k,j) v prj €Z

Ut is in fact a group isomorphism. Can you see this?
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is linear.
(b) Prove that the vector bundles Ey, ; and F; . are isomorphic as real (unoriented) vector bundles.

(c) Show that there exists a complex rank 2 vector bundle F' — 5% such that F is isomorphic to E1
as real vector bundles and

{e2(F), [5%]) = —1.
Hint: Construct a real endomorphsim J : Fq o — F1  such that J 2 — _1. Then use the localization
formula to compute co(F).
(d) Show that p1 o = —2. Hint: Use part (b) and (6.1.4).
(e) Show that py, j = —2(k + j). O






Appendix B

Solutions to selected
problems

B.1. Solution to Exercise A.3.2.
We begin by proving an auxiliary result that we will use in the sequel.

Lemma B.1.1. Suppose U and V are two finite dimensional subspaces of H. Denote by Py and
respectively Py the orthogonal projections onto U and respectively V. Then the following statements
are equivalent.

(1) The restriction of Py to U is 1 — 1 is injective.
(i) UNV+E =0.
(iii) ||PyL Pyl < 1, where Pi- = 1 — Py is the orthogonal projection onto V.

Proof. The equivalence (i) <= (ii) is obvious.

(iii) = (ii). We argue by contradiction. Suppose there exists w € U N V+, u # 0. Observing that
(1 — Py) = Py . we deduce

P‘}u =u
so that || Py« Pyu|| = ||ul| contradicting the inequality || Py, 1 || Py || < 1.
(ii) = (iii). Again we argue by contradiction. Suppose that ||(1 — Py )Py|| > 1. Note that
I = Pv)Pyll = [Py Poll < |Pyol- [ Poll = 1,
so that | P,,. Pyr|| = 1. Hence, there exists a sequence of vectors x,, € H \ 0 such that
1
1Py Pumal = (1= ) llzall > 0.
In particular, if we set w,, := Pyx, we deduce u,, # 0. We now have
1 1
lunll 2 1Py aall = 1Py Pumall = (1= )lall = (1= = ) fual. (B.1.1)

137
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We set .
Wy, = —— Uy,
[

Multiplying (B.1.1) by m we deduce that for any n > 1 we have

1
lwal =1, 12 1Pyrwa] = (1= ), (B.12)

Since U is finite dimensional, the unit sphere in U is compact and we deduce that there exists a
subsequence (wy,, ) of (w,,) converging to the unit vector wy in U. If we let n = ny, in (B.1.2) and
then let £ — oo we deducesuch that
1= Jlweo = [|Pyrwo]-
This implies wo, € V+ so that U N VL £ 0.
O

(a) Suppose now that U, € Gr,,(H) is a sequence of m-dimensional subspaces such that for
some U € Gr,,,(H) we have

| P, — Pull — 0.
Then
HPU,}PUH = HPU - PUVPUH = ||PU(PU - PUV)PU|| — 0 asv — oo.
If we fix a basis ey, . . ., e,, of U, then Lemma B.1.1 implies that the collection

{e1(v) := Py e1,...,en(v):= Py en}
is a basis of U, for v sufficiently large. Note that lim,_,, €;(v) = e;.

Conversely, suppose e(v) := {e1(v),...,en(r)} is a basis of U, converging to the basis e =
{e1,...,en} of U. We want to prove that || Py, — Py|| — 0.

For every v consider the m x m symmetric, positive definite matrix
Gy = (95(v)), 1<i,5<m, gi;(v) = (ei(v), e;(v)),
where (—, —) is the inner product on H. Set

A, = G;l/z, A, = (aij(u))

1<i j<m

Similarly, define the m x m symmetric positive definite matrix G = (gi;)1<i,j<m by
9ij = (ei,ej).

Weset A=G /2, A= (aij(v) )1<Z.j<m. We now form new bases

FW)={fH1v),....f,()} C Uy, fi(v)= Zaij(V)ej(V% L<i<m,

and
F={f1. ) Fi=D aie;, 1<i<m.
J
The basis f(v) (respectively f) is orthogonal and it is in fact the orthogonal basis obtained from e(v)
(respectively e) via the Gramm-Schmidt procedure. Then f(v) — f and

Py,(z) = (2, ;) fi(v), Pox=> (x,F)f;

K3 (2
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(2

Poa—Pur =3 (2. £,0) = 1) £) + 3 (@ £ (£:0) - £:) )
so that

|Pu,@ = Puall < 2(3° 11£:0) = £ill) ]
=1
Hence

1Py, = Pull < 2( 3 1£:00) = £ill) = 0.
i=1

(b) Let us first prove that there exists a finite dimensional subspace V' C H such that f(x) N V+ =0,
Ve e X.
We set
U, :={U € Grpy(H); f(z)NU+=0}.
The set 8, is nonempty because f(z) € U,. Lemma B.1.1 implies that U, is open. Hence the
collection (Ux)we x is an open cover of the compact set f(X) C Gr,,(H). We denote that there

exist finitely many points z1, ..., zx € X such that
n
fX) = U Uy,
i=1

Now denote by V' the sum of the subspaces f(z1),..., f(xy) C H. V is finite dimensional, and
more precisely,
dimV < Nm.

If 2 € X then f(z)N§,, for some i so that f(z)N f(x;)= = 0. Since f(x;) C V then V+ C f(x;)*
so that f(z) N V+ = 0. For any z € X we set

g(z) =P, f(z) CV
Since the restriction of Py to f(z) is injective we deduce that dim g(x) = dim f(x) so that g(x) €
Gr,, (V). To prove that g is continuous choose x,, — x. We need to show that g(z,) — g(x).

Since f is continuous we deduce f(x,) — f(z). From part (a) we deduce that there exist bases
e(v) of f(x,) and e of f(x) such that e(v) — e. Then f(v) := Pye(v) is a basis of g(x,),
J = Pyeisabasis of g(x) and
Invoking part (a) again we deduce that g(x,) — g(x).

Denote by GL(H) the group of bounded invertible operators of H. To prove that g is homotopic
to f we will construct a continuous map

A:[0,1]x X - U(H), [0,1] x X 3 (s,x) — Asz
such that
Aoe =1n, Aigf(z) =g(2).
From part (a) can conclude easily that the resulting map
F:[0,1] x X = Gr,,(H), [0,1] x X 3 (s,z) = F(s,z) = As o f(z) € Gry,(H)
is continuous.

We denote by P, the orthogonal projection on f(x), by @, the orthogonal projection onto g(z)
and by Q- the orthogonal projection onto g(z)™*.
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Since the restriction of @, to f(z) is one-to-one we deduce from Lemma B.1.1 that | Q3 P || < 1.
In particular, for any s € [0, 1] the operator

Agp:=1-5QLP, - H— H

is invertible, and depends continuously on s and z. We claim that A; , maps the subspace f(z) to the
subspace g(x).

Jix)

g(x)

y= ch

Figure B.1. Deforming g(x) to f(z).

Letu € f(x) and set v = Q,u; see Figure B.1. Then
u=Pu, v=Qu=1-Qlu=u=Qru=u—QPu=A,u.

Hence
Araf(z) C g().
since A; , is one-to-one and dim f(z) = dim g(z) we deduce that A; , f(z) = g(x). 0

B.2. Solution to Exercise A.4.1

Using splitting principle we can reduce the problem to the special case when E splits as a direct sum
of line bundles

E=0L1® - -®L,.

We set
x; = c1(L;)
so that
ck(E) = op(x1,...,xp) = Z Tip Ty (B.2.1)
1<y < <ig<r
Then
LRE=L®L1 & --L®L,,
a(L® L) =u+x;

so that

k(LR FE)=o0(u+x1,...,u+x,).
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Equivalently, ¢, (L ® E) is the coefficient of t* in the polynomial

P(t,u,z) = ﬁ(l—i—t(u—l—wi)).

=1

To proceed further we need to introduce a notation. For every subset S C {1,...,7} we set

(u+x)¥ = H(u + ;).

€S
Then
H(LOE)= Y (u+mz)°
|S|=k
This shows if we express ¢ (L ® F) as a polynomial in the variables 1, . .., x,, u, then we encounter

only monomials of the form u"m’l“ ---x;'", where n; = 0, 1. Hence, we can write
k
Ck(L (%9 E) = Z Aici(E)uk*Z
i=0

for some positive integers A;. If we expand c; (L ® F) as a polynomial in the variables 1, ..., z,, u,
then we see that A; is the coefficient of the monomial @ ...a;u*~ in this polynomial. Such a
monomial appears only in products of the form (u + a:)s', where S is a cardinality %k subset of
{1,...,7} containing the string {1, 2,...,i}. There are (;_}) such subsets, and for any such subset
S the coefficient of &1 ... x;u*~% in (u + x)® is 1. This shows that A; = (Z:;) O

B.3. Solution to Exercise A.4.2.

(a) Consider the real line bundle det Uj. Fix a metric on this line bundle. Then (?rk is nothing but
S(det Uy), the unit sphere bundle of det Uy. Denote by 7 : (A}}k — Gry the natural projection,
The map 7 is double cover.! The points of Gry, are pairs (z,6), where x € Gry, and ¢ is a unit
vector in the fiber of det Uy over x. The projection 7is then given by (x,d) — x. Observe that
det ﬂk = 7* det U, and thus the fiber of det ﬂk over (z,0) can be identified with the fiber of det Uy,
over z. This line bundle has a nowhere vanishing section

w : Gry, — det Uy, (z,0) = 6 € det Uy (z) = det Uy (z, 5).

This shows that Uy, is equipped with a natural orientation.

(b) Suppose £ — X is an oriented rank k real vector bundle over the compact C'W-complex. Then
there exists a continuous map f : X — Gry such that £ =2 f*U; (as unoriented vector bundles).
Note that det E = det f*U = f*(det Ux). The orientation of E defines a nowhere vanishing section
u of f*(det U ) which we can assume has pointwise length one. This section defines continuous map

1This double cover is nontrivial.
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f: X — S(det Uy) such that the diagram below is commutative

S(detUy) = Gry,

Then clearly £ = f*fik

For any continuous map f : X — (f}vrk we define f : X — Gry, by setting f = 7o f,
where 7 is the natural projection Gry, — Gry. Since 7 is a covering map we deduce that two maps
fo. fi : X — Gr}, are homotopic if and only if the maps f, and f; are homotopic. (To see this use
the homotopy lifting properties of a covering map, [Hatch1, Prop. 1.30].)

If the bundles f Uy and T Wy are isomorphic as oriented vector bundles, they are also isomorphic
as unoriented vector bundl_es SO tlzat foli = f{Uk. From the classification theorem (Theorem 3.3.1)
we deduce that the maps fy and f; are homotopic. Therefore fy and f; must be homotopic as well.

Suppose fo = f1. Then the bundles f{fﬁk and ffﬁk are isomorphic as (unoriented) vector bun-
dles. To prove that they are isomorphic as oriented vector bundles argue exactly as in the proof of
Proposition 3.2.9 making sure that all the various trivializations constructed at every step are compat-
ible with the orientations. O

B.4. Solution to Exercise A.4.3
(a) A section of E}, ; is defined by a pair of smooth functions s : D¥*, — H such that

S— = gr,j(q)s+
For all ¢ on the Equator of the 4-sphere. If kK = j then we can choose
si:Di—HHI, sy =1.

This defines a nonvanishing section of £} ; so that e(E}; ;) = 0.

(b) We denote by u the stereographic coordinates on D* defined as in Section 8.2. Recall that they

are related by
1 3 1
U4+ = U_ = u— y U— = —5 Uy,
Ju—[? Jut[?
where ¢ denotes the conjugate of the quaternion q. We replace the gluing maps gy; in the form

described in (8.2.1) to the homotopic family
Grj : DY N D™ — GL(R?Y),

Grj () = up(z)fvuy (x)™, Vee DY ND™, veR'=H.
A section of Ej 1 is given by a pair of functions smooth s : D¥ — H such that
s—(z) =g01(x)s4(z), Yz € DY ND™.
If we use the coordinates u on the overlap D N D~ we can rewrite the above equality

s_(z) = sy(z)uil.
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If we choose s+ = 1, then we deduce that

S—|p+np- = u-.
Thus, the pair of functions
sy : DY 5 H, si(uy)=1, s_(u_)=u=, Yuye DT

defines a smooth section of Ey ; that has a single nondegenerate zero at u_ = 0. The sign associated
to this zero is the sign of the determinant of the R-linear map H > v — © € H. This sign is negative
sothateg; = —1.

(c) The space G = S3 x S3 is a Lie group and thus the multiplication in 7 (G) can be described by
pointwise multiplication. More precisely, if f, g : S¥ — G, define elements [f] and [g] in 71,(G) then
the homotopy class of the map

feg: 9" =G, (feg)(x)=f(x) g(x), Yoes
coincides with the homotopy class of [f] * [¢g], where % denotes the group operation.
Denote by A € m3(S% x S2) the homotopy class determined by the map
S35 S x 83w (,1).
Similarly, denote by p the homotopy class determined by the map
S35 83 % 83, s (1,x).
Then, the element of 3(S% x S3) determined by the map
fri: 83 83 % 83, 335 (5 ¢7) €8x S3
is kA + jp.
The group m3(S x S3) is a free Abelian group with generator A and p so that the map
®:Z — m3(5%,5%), (k,§) — [fr,]
is a group isomorphism.
We now have a group morphism
T:8%x 8% 50(4), S?x 83 (q1,0) = Tyy.p € SO4), Ty gt = qrugy "
Note that T" o fy ; = g ; so that
(91,5] = Tul fr,5] € 73(SO(4))

where T}, denotes the morphism in 73 induced by 7. This proves that the correspondence

(F,7) = [gk]
is a group morphism.
Consider the unit sphere S* in the Euclidean space R® with coordinates (2°, ..., z*). Denote by
E equator {z° = 0}, by My the meridian {z° = —1/2} and by M; the meridian {z° = 1/2}; see
top of Figure B.2.

There is a continuous map o : S* — S* Vv S* that maps E to the base point of the wedge, the
meridian My to an Equator Ej of one of the spheres, and M to an equator E; of the other sphere;
see Figure B.2.
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8 -8,

N4 ~
& &

Figure B.2. Deforming g(x) to f(z).

If cg,c1 € m3(SO(4),1) are defined by maps go, g1 : (5%,%) — (SO(4),1), then ¢y + ¢1 is
represented by the map
g1-90: 8% = SO4), zr gi(x)-go(x).
We use go and g as clutching maps defining two oriented, real, rank 4-vector bundles Fy, £ — S*.
Fix classifying maps
% =7(g0), 1 =7(g1): " = Gry.
for the bundles Ey and F; such that vo(*) = 71 (%) = L for some based point * € S, and some fixed

L € Gry. Then the element [v0] + [71] in m4(Gry, L) is represented by the composition
(8 %) T (54, ) v (5%, %) 2 (Gry, L).
We obtain a bundle Ey VV F; on $* vV S* and by pullback a bundle o*(Ey V E1) on S*. This bundle
can be described by the the open cover
U={U_,Up,Us}, U_={2"<0}, Uy={]2"] <1/2}, U, = {2°>0}.
and transition maps
9o,— = go, 9+,0 = 91-

(In Figure B.2 U_ is the region to the left of the equator E, Uy is the region between the meridians
My M and Uy is the region to the right of the equator E.)

This bundle is isomorphic to the bundle given by the open cover
V={V_,Vi}, Vo={a"<1/2}, Vi ={a"> —1/2},

and gluing map g; - go. (In Figure B.2, V_ is the region to the left of M, and V; is the region to the
right of Mj.) This bundle is the same as the bundle given by the clutching construction with clutching
map g1 go. This shows that the homotopy type of the classifying map v(g; - go) of the bundle described
by the clutching g; - go is the sum of the homotopy types of v(g1), v(g0)

[v(g1 - 90)] = [v(91)] + [v(g0)]-
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(d) Denote by Let 4 ; : St — (A}/r4 denote a smooth map classifying the bundle £}, ;. Denote by
[S*] the generator of Hy(S%,Z) determined by the canonical orientation of S*. Then

ey = (e(Bk), [S"]) = (v je(Ua), [51]) = (e(Wa), ()<[S])
Now consider the Hurewicz morphism
h: 7 (Gry) — Hy(Gry).
Then
(v,3)<[5%] = R(lk4]),
where [, ;] denotes the element of 74(Gr,) determined by the classifying map v, ;. Hence
erg = (e(Us), h([k )

Since the map (j, k) + [7x,;] is linear and h is a morphism, we deduce that the map Z* > (j, k)
ek,; € Zis linear. Thus, there exist integers m, n such that

er; = mj+nk, Vi k.

Since e ; = 0if j = k (by (a)) we deduce m +n = 0. Finally, ¢g 1 = —1sothatm = 1,n = —1
and ey, ; = (k — j). 0

B.5. Solution to Exercise A.4.4.
(a) Argue exactly as in the proof of the linearity of e ;. In particular we deduce that there exist
integers m, n such that, for any &, j we have

Pr,j = mk +nj. (B.5.1)

(b) A bundle isomorphism £}, ; — E; i, is described by a pair of smooth maps
Ty : D*¥ — GL4(R)

such that for any z € DT N D~ we have a commutative diagram

R4 T4 (x) R4

gk,j(x) gj,k(x)

4 md
R 77 R

Assume for definiteness that k£ > j. We identify R* with H and use the coordinates u+ on D*. We
seek Ty of the form

_ b—
T uy)v = Juy %5, T-(u_)o = [u_|"s
where a, b are two nonnegative numbers to be determined later, and v — v denotes the conjugation
in H.
Observe that on the overlap D* we can use either of the two coordinates u and we have
T (up)v = |uy|™"%.

We determine a, b from the equality

gjp(us) - Ty (ug) = T-(ut)gr j(ut), Yup € DY D
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Thus we need to verify that for every v € H and every u; we have the equality

k J

|u+|“_(j_k)ui@u;k = |u+|b_(k_j)u+vu_7_

For simplicity, we write u instead of u4. Thus we need to verify
lu|* =R I 5y = u|P~ R ykyu .

Note that
ukbvu—i = 1 va",
Now use the equality % = |u|?u~! to deduce
a90a" = Ju)PF DI gy,
Thus we need to find a, b so that

|u|“+(k_j)ujﬁu_k = \u|b+(k_j)zajﬁzflg

forany v € H\ 0, v € H. Thus if a = b = 0 we obtain a bundle isomorphism E}, ; — Ej ;. This
bundle isomorphism is not orientation preserving, but it still implies py ; = p; » using this in (B.5.1)
we deduce that m = n so that
prj =m(k+j), Yk, j. (B.5.2)
(c) An automorphism of £ g is given by a pair of maps
Ji : DF — GLy(R)

such that for every = € D¥ the diagram below is commutative

R4 L(:E))Rll

g1,0(z) g1,0(z)

4 4
R 7 () R

Define Ji : D — GL4(R) by setting
Ti(z)v=v-1, Yz e D¥, veH.
These maps define an automorphism of J : Fy o — FEj satisfying J 2 = —1. Using (6.1.4) we
deduce
pl(El,O) = QCQ(ELO, J) (B53)

The complex structure J induces an orientation or ; on E7 g and we have

c2(Er0,J) = e(Erp,0ry).
The orientation or ; is described by the oriented frame

(L’I:,j,j ’ 7’) = (Livj’ _k)'
This is the opposite of the canonical orientation or o of F ¢ which is given by the oriented frame
(1,%,7,k).

Thus
e(E1p,0ry) = e(E1,—or1p) = —e(E10,0r10).
Using (B.5.3) we deduce
pLo = —2e109 = —2.
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Using this last equality in (B.5.2) we deduce
Prj = —2(k +j). O

Remark B.5.1. The computations in the previous exercises show that the tangent bundle of S* is
isomorphic as oriented bundle to the bundle £ _;. O






Bibliography

[ABK]

[AS3]
[BGV]
[BT]

[Bre]
[Do]

PL. Antonelli, D. Burghelea, P.J. Kahn: The non-finite homotopy type of some diffeomorphism groups, Topol-
ogy , 11(1972), 1-49.

M. F. Atiyah, I. M. Singer: The index of elliptic operators:1II, Ann. of Math., 87(1968), 531-604.
N. Berline, E.Getzler, M. Vergne: Heat Kernels and Dirac Operators, Springer Verlag, 1992.

R. Bott, L. Tu: Differential Forms in Algebraic Topology, Graduate Texts in Math., vol. 82, Springer Verlag,
1982.

G. Bredon: Geometry and Topology, Graduate Texts in Math., vol. 139, Springer Verlag, 1993.
A. Dold: Lectures on Algebraic Topology, Classics in Mathematics, Springer Verlag, 1995.

[DEN-vol.2] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Moden Geometry. Methods and Applications.Part 1I. The

Geometry and Topology of Manifolds, Graduate Texts in Math., vol. 104, Springer Verlag, 1985.

[DEN-vol.3] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Moden Geometry. Methods and Applications.Part III. Intro-

[Hatchl]
[Hatch?2]
[Hir]
[Hirz]
[Hu]
[KM63]
[Kos]

(LM]
[Mi56]
[MS]

(Iv]
[N1]
[N2]
[P55]

[Roe]

duction to Homology Theory, Graduate Texts in Math., vol. 124, Springer Verlag, 1990.

A. Hatcher: Algebraic Topology, Cambridge University Press, 2002.

A. Hatcher: Vector Bundles and K-theory.

M. W. Hirsch: Differential Topology, Graduate Texts in Math, vol. 33, Springer Verlag, 1976.
F. Hirzebruch: Topological Methods in Algebraic Geometry, Springer Verlag, New York, 1966.
D. Husemoller: Fibre Bundles, Graduate Texts in Math., vol. 20, Springer Verlag, 1994.

M. A. Kervaire, J.W. Milnor: Groups of homotopy spheres. I, Ann. of Math. 77(1963), 504-537.

A. M. Kosinski: Differential Manifolds, Academic Press, 1993. (reprinted in paperback by Dover Publishing,
2007).

H. B. Lawson, M.-L. Michelson: Spin Geometry, Princeton University Press, 1989.
J.W. Milnor: On manifolds homeomorphic to the 7-sphere, Ann. of Math., 64(1956), 399-405.

J.W. Milnor, J.D. Stasheff: Characteristic Classes, Annals. Math. Studies, vol. 76, Princeton University Press,
1974.

B. Iversen: Cohomology of Sheaves, Universitext, Springer Verlag, 1986.
L.I. Nicolaescu: Lectures on the geometry of manifolds, World Scientific, 2007.
L.I. Nicolaescu: An Invitation to Morse theory, Springer Verlag, 2007.

L. Pontryagin: Smooth Manifolds and Their Applications in Homotopy Theory, Amer. Math. Soc. Transl.,
11(1959), 1-114; translated from Trudy Inst. Steklov, 45(1955).

J. Roe: Elliptic operators, topology and asymptotic methods, 2nd Edition, Pitman Research Notes in Math
Series vol. 395, Logman 1998.

149


http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.math.cornell.edu/~hatcher/VBKT/VB.pdf
http://www.jstor.org/stable/1970128
http://www.jstor.org/stable/1969983
http://www.nd.edu/~lnicolae/Lectures.pdf
http://www.nd.edu/~lnicolae/morseS.pdf

150 Solutions to selected problems

[Spa] E. H. Spanier: Algebraic Topology, Springer Verlag, 1966.

[St] N. Steenrod: The Topology of Fibre Bundles, Princeton University Press, 1999 (or any other edition).

[Th54] R. Thom: Quelques propriétés globales des variétés différentiables, (French) Comment. Math. Helv., 28(1954),
17-86.

[W36] H. Whitney: Differentiable manifolds, Ann. of Math. 37(1936), 645-680.


http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=213271
http://www.jstor.org/stable/1968482

Index

E(u, Jeoe, V), 29
I x J, see also partition
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Grk 37

Qk(E), 112
Or(M), 12
Orgr(M), 12
O’I‘R(M, C), 12
Part(k), 72, 99
Pictop(X), 32
VB, 115

V By, 30
Z*(M), 124
L-genus, 85

det E2, 31

Uy, v, 28

uk .28

gl(n), 111

V.26

o(n), 111

so(n), 111

u(n), 111
Gry,(R™), 99
c1(L),53

cx(E), 127
m-sequence, see also multiplicative sequence
ul=11, 84
G-structure, see also vector bundle

adjunction isomorphism, 32
adjunction morphism, 62

bundle, see also fiber bundle
vector, see also vector bundle

Cartan subalgebra, 125
Cartesian diagram, 25
Chern

character, 126

class, 57, 127

first, 53
total, 127

polynomial, 57, 126

roots, 125
Chern-Simmons, 124
Chern-Weil

correspondence, 124

transgression, 124
classifying space, 37
clutching

construction, 29

map, 29
cobordism, 22

oriented, 22
cohomology

Cech, 15

singular, 5
cohomology ring, 6
colimit, 14
connection, see also vector bundle
connection 1-form, 113
conormal bundle, 62
covariant derivative, 112

determinant line bundle, 31
directed set, 14

embedding, 100
neat, 100
Euler class
relative, 50, 62
excision property, 3
excisive couple, 4, 7

fiber bundle, 44
local trivialization, 44
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model fiber, 44
trivial, 44
fibered product, 25
formal inverse, 84
frame, see also vector space, 110

Gauss map, 33
genus, 81, 126
Todd, 127
gluing cocycle, 28
Grassmannian, 28
infinite dimensional, 37
of oriented planes, 99
Gysin
morphism, 47
sequence, 48

homology
singular, 2

incidence set, 28
intersection cycle, 18
intersection form, 19
invariant polynomials, 121
isotopy, 100

ambient, 100

Kronecker
morphism, 5
pairing, 5, 7

Lagrange inversion formula, 84

lagrangian subspace, 21

Lie bracket, 117

limit
inductive, 14

line bundle, 26
hyperplane, 64
tautological, 53, 64
universal, 53

local cohomology, 8, 39

local homology, 8

manifold
signature, 20
dimension of, 11
orientable, 12
smooth, 13
topological, 11
with boundary, 16
neck extension, 16
orientable, 16
Mayer-Vietoris sequence, 4
relative, 4, 90
Morse lemma, 94, 95
multiplicative sequence, 78
symbol, 78

Newton formula, 76
normal bundle, 62

orientation, 12

along a closed subset, 12
orientation cover, 12

parallel transport, 117
partition, 72

length of, 72

weight of, 72
Picard group, 32
Poincaré dual, 18
Poincaré polynomial, 86
Poincaré series, 86
polarization formula, 121
Pontryagin class, 69

reduced, 70
Pontryagin numbers, 72
Pontryagin polynomial, 70
principal bundle, 109
product

cap, 7

cross, 3

cup, 6
projection formula, 8, 46
pullback, 5

quasi-isomorphism, 4

regular section, see also vector bundle
ring
convenient, 1

signature formula, 85
splitting map, 56
splitting principle, 56
Stieffel-Whitney class, 61
subbundle, 30

theorem
Cartan-Serre, 105
Chern-Weil, 122
excision, 4
formal residue, 87
Kiinneth, 3
Leray-Hirsch, 51
Mayer-Vietoris, 4
Poincaré duality, 15
Thom cobordism, 84
Thom isomorphism, 40
universal coefficients, 3, 5

Thom
class, 39

Thom space, 100

transgression, 123

tubular neighborhood, 100

vector bundle, 26
total space of, 26
G-structure, 111
associated unit disk bundle, 45
associated unit sphere bundle, 45
base of, 26
canonical projection, 26
complex conjugate, 32
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connection, 112
compatible with metric, 117
curvature, 118
trivial, 113

direct sum, 31

dual, 31

Euler class, 48

fiber, 26

geometric orientation, 42

homologically orientable, 39

local triviality, 26

metric, 32

orientable, 40

parallel, 116

rank, 26

restriction, 26

section, 30
covariant constant, 116
regular, 62

tautological, 28

tensor product, 31

trivial, 26

trivializable, 30

universal, 28

zero section, 30

vector space
frame, 41
orientation, 41

Whitney sum, 31
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