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1. DOUBLE COMPLEXES

Suppose that R is a commutative ring with 1. A double complex of R-modules is a bigraded
R-module

E•,• =
⊕
p,q≥0

Ep,q

equipped with two morphisms

δε : E•,• 7→ E•,•+1, dh : E•,• 7→ E•+1,•

satisfying the conditions
d2
v = d2

h = dvdh + dhdv = 0. (1.1)
The above equalities show that if we define D := dv + dh, then D2 = 0. We set

Ep,q = 0 if p < 0 or q < 0.

The total complex associated to a double-complex (E•,•, dv, dh) is the complex (T •(E), D) where

Tn(E) :=
⊕
p+q=n

Ep,q.

Note that
D(Ep,q) ⊂ Ep+1,q ⊕ Ep,q+1 ⊂ T p+q+1(E).

We denote by H•
(
T (E),

)
the cohomology of the total complex.

The transpose of a double compelx (E•,•, dh, dv) is the double complex (Ê•,•, d̂h, d̂v) where

Êp,q := Eq,p, d̂h = dv, d̂v = dh.
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2 LIVIU I. NICOLAESCU

Thus, the rows (respectively columns) of Ê•,• are the columns (respectively rows) of E•,•. Note that
the total complex of the transpose coincides with the total complex of the original double complex.

A morphism of double complexes ϕ : E•,• → F •,• is defined in the obvious fashion. Such a
morphism induces a morphism between the associated total complexes

ϕ : T •(E)→ T •(F ).

A complex ofR-modules (C•, d) can be viewed as a degenerate double complex (C•,•, dv, dh), where

Cp,q =

{
0, q > 0
Cp, q > 0,

dh = 0, and dh : Cp,0 → Cp+1,0 coincides with the coboundary operator d of C•. In particular we
can speak of a morphism from a simple complex to a double complex.

...
...

...
...

E0,1 E1,1 E2,1 · · ·

E0,0 E1,0 E2,0 · · ·

C0 C1 C2 · · ·

0 0 0 · · ·

w

dh

u

dv

w

dh

u

dv

u

dv

w

dh

w

dh

u

dv

w

dh

u

dv

u

dv

w

dh

w

d

u

ϕ

w

d

u

ϕ

u

ϕ

w

du

y

u

y

u

y

A resolution of the complex (C•, d) by a double complex (E•,•, dv, dh) is a morphism ϕ : (C•, d)→
(E•,•, dv, dh) such that the columns in the above diagram are exact. More precisely, this means that
for any n ≥ 0 we have a long exact sequence

0 ↪→ Cn
ϕ−→ Ep,0

dv−→ En,1
dv−→ En,2

dv−→ · · · . (1.2)

Finally we define a quasi-isomorphism of cochain complexes to be a morphism of cochain complexes
such that induces isomorphisms in cohomology.

Theorem 1.1 (Approximation Theorem. Version 1). (a) Suppose that ϕ : (C•, d) → (E•,•, dv, dh)
is a resolution of the complex (C•, d) by a double complex (E•,•, dv, dh). Then the induced map

ϕ∗ : H•(C)→ H•
(
T (E)

)
is an isomorphism.

Proof. We represent the elements x = (xp,q)p+q=n ∈ Tn(E) as zig-zags; Figure 1. Such a zig-zag is
a D-cocycle if

dhxp,q + dvxp+1,q = 0, ∀p+ q = n.
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FIGURE 1. A zig-zag.

An element x = (xp,q)p+q=n ∈ Tn(E) is a D-coboundary if there exists

y = (yi,j)i+j=n−1 ∈ Tn−1(E)

such that
xp,q = dvyp,q−1 + dhyp−1,q, ∀p+ q = n.

Step 1. The morphism ϕ∗ : H•(C)→ H•
(
T (E)

)
is surjective. Suppose that (xp,q)p+q=n ∈ Tn(E)

is a D-cocycle. We want to prove that it is D-cohomologous with a D-cocycle y = (yp,q)p+q=n such
that

yp,q = 0, ∀q > 0, (1.3a)
yn,0 = ϕ(u), u ∈ Cn, du = 0. (1.3b)

For u ∈ Cn we identify ϕ(u) with the zig-zag depicted in Figure 2. Let us first observe that the

ϕ(  )u

0

0

FIGURE 2. A zig-zag representing ϕ(u).

condition Dy = 0 coupled with (1.3a) imply (1.3b). Indeed, these two conditions imply

dvyn,0 = 0, dhyn,0 = 0.

From the exact sequence (1.2) and dvyn,0 = 0, we deduce that there exists u ∈ Cn such that yn,0 =
ϕ(u). On the other hand,

0− dhyn,0 = dhϕ(u) = ϕ(du).
since ϕ is injective we deduce du = 0. Thus it suffices to show that x is cohomologous with a cocycle
y satisfying (1.3a). Note that this is equivalent to asking that

yp,q = 0, ∀p < n.

We will show inductively that for any k ≤ n there exists a D-cocycle (yp,q)p+q=n cohomologous to
x such that

yp,q = 0, ∀p < k. (Ck)
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The condition (Ck) suggest the following object.

F kTn(E) :=
{
y ∈ Tn(E); yp,q = 0, ∀p < k

}
.

Observe that F k(Tn(E) is a submodule of Tn(E) and DF kTn ⊂ F kTn+1. Thus (F kT •, D) is a
subcomplex of (T •, D). Moreover

F k+1T • ⊂ F kT •, ∀k.

We say that the collection of subcomplexes (F kT •, D)k≥0 defines a decreasing filtration of the com-
plex (T •, D).

Note that the condition (C0) is tautologically satisfied. We will show that (Ck)⇒ (Ck+1). Suppose
that x = (xp,q)p+q=n is a D-cocycle satisfying (Ck). Then

dvxk,n−k = 0

which implies that there exists yk ∈ Ek,n−k−1 such that xk,n−k = dvyk. Define the zig-zag y =
(yi,j)i+j=n−1 ∈ Tn−1(E) by setting

yi,j =

{
0, i 6= k

yk, i = k.

Then the zig-zag x−Dy is cohomologous to x and satisfies (Ck+1).

Step 2. The morphism ϕ∗ : H•(C) → H•
(
T (E)

)
is injective. Let u ∈ Cn such that du = 0

and ϕ(u) is a D-coboundary. Thus there exists y ∈ Tn−1E such that Dy = ϕ(u), where ϕ(u) is
identified with a zig-zag as in Figure 2. We will show inductively that for any k ≤ n− 1 there exists
y′ ∈ Tn−2(E) such that z = y −Dy′ satisfies the condition (Ck) i.e.

zp,q = 0, ∀p < k.

Clearly y satisfies C0. We will show that if y satisfies (Ck), k < n − 1, and Dy = ϕ(u), then there
exists y′ ∈ Tn−2(E) such that y−Dy′ satisfies (Ck+1). Indeed if Dy = ϕ(u) and y satisfies Ck with
k < n − 1, then dvyk,n−1−k = 0 and the exactness of (1.2) implies that there exists yk ∈ Ek,n−2−k

such that
dvyk = yk,n−1−k.

Now define

y′ = (y′i,j)i+j=n−2 ∈ Tn−2(E), y′i,j =

{
0, i 6= k

yk, i = k.

Thus we can find z = (zp,q)p+q=n−1 ∈ Tn−1(E) such that

Dz = ϕ(u), zp,q = 0, ∀p < n− 1.

We deduce that
dvzn−1,0 = 0, dhzn−1,0 = ϕ(u).

From the first equality we deduce that there exists v ∈ Cn−1 such that zn−1,0 = ϕ(v). Using this in
the second equality above we deduce

ϕ(u) = dhϕ(v) = ϕ(dv).

Since ϕ is injective we conclude that u = dv, so that u represents 0 in cohomology. ut
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Example 1.2 (Another look at the Mayer-Vietoris sequence). Suppose that M is a smooth manifold
of dimension m and {U0, U1} is an open cover of M . We can form the double complex E•,• where

Ep,0 = Ωp(U0 t U1) = Ωp(U0)⊕ Ωp(U1), Ep,1 = Ωp(U0 ∩ U1), ∀p ≥ 0,

Ep,q = 0, ∀q > 1,

the differential dh is the exterior derivative d : Ωp(X)→ Ωp+1(X) , X = U0 t U1, U0 ∩ U1, while

dv : Ωp(U0)⊕ Ωp(U1)→ Ωp(U0 ∩ U1), d(α0, α1) = (−1)pδ(α0, α1),

δ(α0, α1) =
(
α1|U0∩U1 − α0|U0∩U1

)
.

0 0 0 · · ·

Ω0(U0 ∩ U1) Ω1(U0 ∩ U1) Ω2(U0 ∩ U1) · · ·

Ω0(U0 t U1) Ω1(U0 t U1) Ω2(U0 t U1) · · ·

w

0
w

0
w

0

w

d

u

0

w

d

u

0

u

0

w

d

w

d

u

δ

w

d

u

−δ

u

δ

w

d

Observe that the total complex associated to this double complex can be identified with the cone of
the morphism

δ : Ω•(U0 t U1)→ Ω•(U0 ∩ U1).

Thus, we have a long exact sequence

· · · → Hq−1(U0 ∩ U1)→ Hq
(
T (E)

)
→ Hq(U0)⊕Hq(U1)→ Hq(U0 ∩ U1)→ · · · . (1.4)
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On the other hand, the Mayer-Vietoris principle implies that the diagram below is anti-commutative
and the columns are exact

0 0 0 · · ·

Ω0(U0 ∩ U1) Ω1(U0 ∩ U1) Ω2(U0 ∩ U1) · · ·

Ω0(U0 t U1) Ω1(U0 t U1) Ω2(U0 t U1) · · ·

Ω0(M) Ω1(M) Ω2(M) · · ·

0 0 0 · · ·

w

0
w

0
w

0

w

d

u

0

w

d

u

0

u

0

w

d

w

d

u

δ

w

d

u

−δ

u

δ

w

d
u

r

w

d

u

r

w

d

u

r

w

d
u

0

u

0

u

0

Using the Approximation Theorem 1.1 we deduce that H•
(
T (E)

)
is isomorphic to H•(M). Under

this isomorphism the long exact sequence (1.4) becomes the long exact Mayer-Vietoris sequence in
cohomology. ut

2. THE GENERALIZED MAYER-VIETORIS PRINCIPLE

Suppose that U = (Uα)α∈A is an open cover of the smooth manifold M of dimension M . For any
subset A ⊂ A we set

UA :=
⋃
α∈A

Uα

We define the nerve of the cover U to be the collection N(U) of finite nonempty subsets A ⊂ A such
that UA 6= ∅. The subsets A ∈N(U) are called the faces of the nerve. We set

N q(U) :=
{
A ∈N(U); #A = q + 1

}
⊂N(U). (2.1)

The elements of N q(U) are called the q-faces of N(U). Observe that a nonempty subset of a face is
another face of the nerve. Moreover, if A ⊂ B are faces of N(U) then

UA ⊃ UB.
For every nonnegative integer q we set

∆q := {0, 1, . . . , q}.
A q-simplex of the nerve is a map

σ : ∆q → A, ∆q 3 j 7→ σj ∈ A,

whose range σ(∆q) is a face of the nerve. We denote by Sq(U) the set of q-simplices of the nerve.
Note that for any σ ∈ Sq(U) we have dimσ(∆q) ≤ q.
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We will often describe a q-simplex σ as a an ordered string of elements in A

σ = (σ0, . . . , σq).

We set

Uσ = Uσ0···σq := Uσ(∆q) =
q⋂
j=0

Uσj .

If σ : ∆q → A is a q-simplex of N(U), and j ∈ ∆q then we denote by ∂jσ the (q − 1)-simplex
defined by the composition

∆q−1
ϕj−→ ∆q → A

where ϕj : ∆q−1 → ∆q is the unique strictly increasing function whose range is ∆q \ {j}. More
explicitly, if σ = (σ0, σ1, . . . , σq), then ∂jσ is described by the sequence

(σ0, . . . , σj−1, σj+1, . . . , σq).

We have thus constructed a map ∂j : Sq(U)→ Sq−1(U)
Define

Cq(U,Ωp) :=
∏

σ∈Sq(U)

Ωp(Uσ).

An element ω ∈ Cq(U,Ωp) is therefore a collection (ωσ)σ∈Sq(U) of p-forms ωσ = ωσ0···σq ∈ Ωp(Uσ).
For convenience, we write

〈ω, σ〉 := ωσ, ∀ω ∈ Cq(U,Ωp), σ ∈ Sq(U).

Define
δ : Cq−1(U,Ωp)→ Cq(U,Ωp),

by setting for ω ∈ Cq−1(U,Ωp) and σ ∈ Sq(U)

〈δω, σ〉 :=
q∑
j=0

(−1)j〈ω, ∂jσ〉|Uσ .

More explicitly, if σ = (σ0, . . . , σq) then

(δω)σ0···σq =
q∑
j=0

(−1)jωσ0···σ̂j ···σq |Uσ .

Example 2.1. Let us explicitly describe

δ : C0(U,Ωp)→ C1(U,Ωp) and δ : C1(U,Ωp)→ C2(U,Ωp).

An element ω ∈ C0(U,Ωp) is a collection of p-forms ωα ∈ Ω(Uα). The differential δω is the
collection of p-forms

(δω)αβ ∈ Ωp(Uαβ)
given by the equalities

(δω)αβ = ωβ|Uαβ − ωα|Uαβ .
Observe that δω = 0 if and only if there exists a globally defined ω̃ ∈ Ωp(M) such that

ωα = ω̃|Uα , ∀α ∈ A.

An element of ω ∈ C1(U,Ωp) is a collection of p-forms ωσ0σ1 ∈ Ωp(Uσ0σ1). Then δω is a
collection of forms ησ0σ1σ2 ∈ Ωp(Uσ0σ1σ2) defined by

ησ0σ1σ2 = ωσ1σ2 |Uσ0σ1σ2 − ωσ0σ2 |Uσ0σ1σ2 + ωσ0σ1 |Uσ0σ1σ2 .
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Less precisely, we can write

ησ0σ1σ2 = ωσ1σ2 − ωσ0σ2 + ωσ0σ1 on Uσ0σ1σ2 .

ut

Proposition 2.2.
δ2 = 0.

Proof. For clarity we will show only that the composition

C0(U,Ωp) δ−→ C2(U,Ωp) δ−→ C2(U,Ωp)

is trivial. Let ω ∈ C0(U,Ωp). Thus ω is a collection of forms ωα ∈ Ωp(Uα), α ∈ A. Then for any
σ = (σ0, σ1) ∈ S1(U) we have

(δω)σ0σ1 = ωσ1 − ωσ0 on Uσ0σ1 .

Next, using the computations in Example 2.1 we deduce that for any σ = (σ0, σ1, σ2) ∈ S2(U) we
have

(δ2ω)σ0σ1σ2 = (δω)σ1σ2 − (δω)σ0σ2 + (δω)σ0σ1 on Uσ
= (ωσ2 − ωσ1)− (ωσ2 − ωσ0) + (ωσ1 − ωσ0) on Uσ

= 0.
ut

We have thus constructed a cochain complex
(
C•(U,Ωp), δ

)
called the Čech complex of the cover

U with coefficients in (the presheaf)1 Ωp.

Remark 2.3. The Čech complexes can be replaced by a smaller homotopy equivalent complexes.
Define Cqalt(U,Ω

p) to be the subspace of Cq(U),Ωp) consisting of collection (ωσ)σ∈Sq(U) such that,
for any permutation ϕ : ∆q → ∆q and any σ ∈ Sq(U) we have

ωσ◦ϕ = ε(ϕ)ωσ,

where ε(ϕ) denotes the sign of the permutation ϕ. Note that this implies that if σ : ∆q → A is
a q-simplex which is not injective, then ωσ = 0. One can show (see [11]) that δ : C•alt(U,Ω

p) ⊂
C•+1

alt (U,Ωp) so that
(
C•alt(U,Ω

p), δ
)

is a subcomplex of
(
C•(U,Ωp), δ

)
.

On the other hand, if we fix a total order ≺ on A we can define ~Sq(U) ⊂ Sq(U) to consist of
simplices σ : ∆q → A such that σi ≺ σj , ∀i < j. We the define

~Cq(U,Ωp) =
∏

σ∈~Sq(U)

Ωp(Uσ).

We define δ in a similar way and we obtain a new complex
(
~C•(U), δ

)
. The natural projection

π :
∏

σ∈Sq(U)

Ωp(Uσ)→
∏

σ∈~Sq(U)

Ωp(Uσ)

induces a morphism of complexes

π :
(
C•(U,Ωp), δ

)
→
(
~C•(U), δ

)
.

1We will explain later the meaning of the term presheaf.
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Moreover, the restriction of π to the subcomplex (C•alt(U,Ω
p), δ) induces an isomorphism of com-

plexes

π :
(
C•alt(U,Ω

p), δ)→ (~C•(U), δ
)
.

One can show (see [3, VI.6] or [11, p. 214]) that the inclusion

(
C•alt(U,Ω

p), δ
)
→
(
C•(U,Ωp), δ

)
is a homotopy equivalence of complexes. This implies that the morphism

π :
(
C•(U,Ωp), δ

)
→
(
~C•(U), δ

)
,

is a homotopy equivalence of complexes. In the sequel, we will often prefer to work with the equiva-
lent complexes

(
~C•(U), δ

)
or
(
C•alt(U,Ω

p), δ
)
. ut

Form now the double complex E•,• = E•,•U

Ep,qU = Cq(U,Ωp),

where dh : Cq(U,Ωp)→ Cq(U,Ωp+1) is given by the exterior derivative

Cq(U,Ωp) 3 (ωσ)σ∈Sq(U) 7→ (dωσ)σ∈Sq(U) ∈ Cq(U,Ωp+1),

and dv : Cq(U,Ωp) → Cq+1(U,Ωp) is given by δε = δε := (−1)pδ. Since dδ = δd we deduce
that the conditions (1.1) are satisfied. We will refer to the double complex (E•,•U , d,±δ) as the Čech-
DeRham complex.

Observe that we have a morphisms of complexes (see (1.4))

r : (Ω•(M), d)→ (E•,•, dh, δε)

given by

Ωp(M) 3 ω 7→ (ω|Uα)α∈A ∈ C0(U,Ωp).

Theorem 2.4 (Generalized Mayer-Vietoris Principle). The morphism of complexes

r : (Ω•(M), d)→ (E•,•, dh, δε)
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is a resolution of the DeRham complex. More explictly, this means that the columns in the diagram
(2.2) are exact.

...
...

...
...

C1(U,Ω0) C1(U,Ω1) C1(U,Ω2) · · ·

C0(U,Ω0) C0(U,Ω1) C0(U,Ω2) · · ·

Ω0(M) Ω1(M) Ω2(M) · · ·

0 0 0 · · ·

w

d

u

δ

w

d

u

−δ

u

δ

w

d

w

d

u

δ

w

d

u

−δ

u

δ

w

d

w

d

u

r

w

d

u

r

u

r

w

d
u

y

u

y

u

y

(2.2)

Proof. We have to show that for any p ≤ dimM the sequence below is exact.

0→ Ωp(M) r−→ C0(U,Ωp) δ−→ C1(U,Ωp) δ−→ · · · .
We regard the above sequence as a cochain complex and we will show that the identity morphism is
homotopic to the trivial morphism. Thus we set

C−1(U,Ωp) := Ωp(M), Cq(U,Ωp) = 0, q < −1,

we will produce linear maps
K : Cq(U,Ωp)→ Cq−1(U,Ωp)

such that for any q ≥ −1 and any ω ∈ Cq(U,Ωp) we have

ω = Kδω + δKω

where for uniformity we set r = δ.
To construct K we fix a partition of unity (ρα)α∈A subordinated to the cover U. For q ≥ 1 and

ω = (ωσ)σ∈Sq(U) ∈ Cq(U,Ωp) we defineKω ∈ Cq−1(U,Ωp) to be the collection (Kτω)τ∈Sq−1(U) ∈
Cq−1(U,Ωp), where

Kτ0τ1···τq−1 =
∑
α

ραωατ0,···τq−1 .

When ω = (ωα)α∈A ∈ C0(U,Ωp), then we define Kω ∈ Ωp(M) by the formula

Kω =
∑
α

ραωα.

Note that for q ≥ 0, any ω ∈ Cq(U,Ωp), σ ∈ Sq(U) we have

(δKω)σ =
q∑
i=0

(−1)iK∂iσω
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=
∑
i

(−1)i
∑
α

ραωασ0···σ̂i···σq

On the other hand

Kσ(δω) =
∑
α

ρα(δω)ασ0···σq =
∑
α

ραωσ −
q∑
i=0

(−1)i
∑
α

ραωασ0···σ̂i···σq = ωσ − (δKω)σ.

When ω ∈ C−1(U,Ωp) the identity
ω = δKω +Kδω

is immediate. ut

The Approximation Theorem 1.1 implies the following result.

Corollary 2.5. Let U be an open cover of the smooth manifold M . Then the DeRham cohomology of
M is isomorphic to the cohomology of the Čech-DeRham complex. ut

We can improve a bit this result. For p ≥ 0 define

K : Cq(U,Ωp)→ Cq−1(U,Ωp), K := (−1)pK,

where K is the homotopy operator constructed in the proof of Theorem 2.4. Then

Kδε + δεK = 1. (2.3)

Lemma 2.6. For i ≥ 1 we have

[δε, (dK)i] := δε(dK)i − (dK)iδε = −(dK)i−1d. (2.4)

Proof. In any associative algebra A the commutator a 7→ [x, a] := xa− ax behaves like a derivation

[x, ab] = [x, a]b+ a[x, b].

We deduce that
[δε, (dK)i] = [δε, (dK)](dK)i−1 + (dK)i−1[δε, (dK)].

We have

[δε, dK] = δεdK− dKδε
(dδε+δεd=0)

= −d(δεK + Kδε)
(2.3)
= −d.

Hence
[δε, (dK)i] = − d(dK)i−1︸ ︷︷ ︸

=0

−(dK)i−1d.

ut

Suppose that ω ∈ T pC•(U,Ω•) then we can write

ω =
p∑
i=0

ωi ωi ∈ Ci(U,Ωp−i)

and

Dω =
p+1∑
j=0

ηj , ηj = dhωj + δεωj−1 ∈ Cj(U,Ωp+1−j),
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and, following [1, Prop. 9.5] we write

f(ω) =
p∑
i=0

(−dK)iωi −
p+1∑
j=1

K(−dK)j−1ηj . (2.5)

This can be simplified a bit. We have

f(ω) =
p∑
i=0

(−dK)iωi −
p+1∑
j=1

K(−dK)j−1dωj −
p+1∑
j=1

K(−dK)j−1δεωj−1

=
p∑
i=0

(−dK)iωi −
p+1∑
j=1

K[δε, (−dK)j ]ωi −
p+1∑
j=1

K(−dK)j−1δεωj−1.

=
p∑
i=0

(−dK)iωi −
p+1∑
j=1

Kδε(−dK)jωj +
p+1∑
j=1

K(−dK)jδεωj −
p+1∑
j=1

K(−dK)j−1δεωj−1

=
p∑
i=0

(−dK)iωi −
p+1∑
j=1

Kδε(−dK)jωj︸ ︷︷ ︸
I

+
p+1∑
j=1

K(−dK)jδεωj −
p∑
i=0

K(−dK)iδεωi︸ ︷︷ ︸
II

= ω0 +
p∑
i=1

(1−Kδε)(−dK)iωi︸ ︷︷ ︸
I

−Kδεω0

= δεKω0 +
p∑
i=1

δεK(−dK)iωi.

Hence

f(ω) = δεK

(
p∑
i=0

(−dK)iωi

)
. (2.6)

Observe that f(ω) ∈ C0(U,Ωp). In fact η := f(ω) lies in the image of r : Ωp(M) → C0(U,Ωp).
Indeed δη = δεη = 0, which means that the collection {ηα ∈ Ωp(Uα)} satisfies ηα = ηβ on Uαβ .

Proposition 2.7 (Collating Formula). The morphism f : C(U,Ω) → T •C(U,Ω) commutes with
D = dh + δε so it is a morphism of complexes. Moreover, it is chain homotopic to the identity, where
the homotopy operator

L : T pC•(U,Ω•)→ T p−1C•(U,Ω•)
is given by

Lωi =
∑
j<i

K(−dK)i−j−1ωi︸ ︷︷ ︸
∈Cj(U,Ωp−j−1)

, ∀ωi ∈ Ci(U,Ωp−i).

Proof. (a) Let us first show that fD = df . Let

ω =
p∑
i=0

ωi, ωi ∈ Ci(U,Ωp−i), Dω =
p+1∑
j=0

ηj , ηj ∈ Cj(U,Ωp+1−j).

Using (2.5) we deduce

f(Dω) =
p+1∑
i=0

(−dK)jηj .
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On the other hand,

Df(ω) = df(ω) = dω0 −
p+1∑
j=1

dK(−dK)j−1 = η0 +
p+1∑
j=1

(−dK)jηj = f(Dω).

Let ωi ∈ Ci(U,Ωp−i). Then

f(ωi)
(2.6)
= δεK(−dK)iωi.

Next, we observe that

DLωi =
∑
j<i

dK(−dK)i−j−1ωi +
∑
j<i

δεK(−dK)i−j−1ωi

= −
∑
j<i

(−dK)i−jωi +
∑
j<i

δεK(−dK)i−j−1ωi,

LDωi = Ldωi + Lδεωi =
∑
j<i

K(−dK)i−j−1dωi +
∑
k≤i

K(−dK)i−kδεωi

Using (2.4) we deduce

(−dK)i−kδε = δε(−dK)i−k − (−dK)i−k−1d

On the other hand (2.3) implies

Kδε(−dK)i−k = (−dK)i−k − δεK(−dK)i−k,

so that
K(−dK)i−kδε = (−dK)i−k − δεK(−dK)i−k −K(−dK)i−k−1d.

Hence
LDωi =

∑
j<i

K(−dK)i−j−1dωi +
∑
k≤i

(−dK)i−kωi −
∑
k≤i

δεK(−dK)i−kωi

−
∑
k≤i

K(−dK)i−k−1dωi

=
∑
k≤i

(−dK)i−k−1ωi −
∑
k≤i

δεK(−dK)i−kωi.

We deduce
DLωi + LDωi = −

∑
j<i

(−dK)i−jωi +
∑
k<i

δεK(−dK)i−k−1ωi

+
∑
k≤i

(−dK)i−k−1ωi −
∑
k≤i

δεK(−dK)i−kωi

= ωi − δεK(−dK)iωi = ωi − f(ωi).
ut

Corollary 2.8. Suppose that

ω =
p∑
i=0

ωi, Ωi = Ci(U,Ωp−i)

is a Čech-DeRham cocycle. Then its is cohomologous with the DeRham cocycle

f(ω) =
p∑
i=0

(−dK)iωi. ut
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For any q ≥ 0, we set
Cq(U,R) :=

∏
σ∈Sq(U)

R.

In other words, and element r ∈ Cq(U,R) is a collection of real numbers

r = (rσ0...σq)(σ0,...,σq)∈Sq(U).

As before we have a linear map

δ : Cq(U,R)→ Cq+1(U,R), (δr)σ0...σq+1 =
q+1∑
i=0

(−1)irσ0...σ̂i...σq+1 .

This operator is a coboundary operator, i.e., δ2 = 0. We obtain a Cochain complex (C•(U,R), δ)
called the Čech complex of the cover U with coefficients in R. We denote by H•(U,R) its cohomol-
ogy, and we will refer to it as the Čech cohomology of the cover U with coefficients in R.

Note thatCq(U,R) is naturally a subspace ofCq(U,Ω0). Indeed, an element (rσ0,...,σq) ∈ Cq(U,R)
can be viewed as a collection of constant functions rσ0...σq : Uσ0...σq → R. Thus, the Čech complex
C•(U,R) is a subcomplex of C•(U,Ω0). In particular, the inclusion

(C•(U,R), δε)
i
↪→ (C•(U,Ω0), δε)

leads to a morphism to the transpose Ê•,•U of the Čech-DeRham double complex E•,•U .

...
...

...
...

C0(U,Ω1) C1(U,Ω1) C2(U,Ω1) · · ·

C0(U,Ω0) C1(U,Ω0) C2(U,Ω0) · · ·

C0(U,R) C1(U,R) C2(U,R) · · ·

0 0 0 · · ·

w

−δ

u

δ

w

−δ

u

d

u

d

w

−δ

w

δ

u

d

w

δ

u

d

u

d

w

δ
u

y
i

w

δ
w

δ

u

y
i

u

y
i

w

δ
u u u

(2.7)

The Poincaré lemma implies that when U is a good cover then the columns in the above diagram
are exact. Indeed, for any σ ∈ Sq(U) the overlap Uσ is diffeomorphic to Rm so that the sequence
below is exact

0→ R ↪→ Ω0(Uσ) d−→ Ω1(Uσ) d−→ Ω2(Uσ) d−→ · · · .
The Approximation Theorem 1.1 coupled with Corollary 2.5 imply the following result.

Corollary 2.9. If U is a good cover of M , then the cohomology of the Čech complex complex is
isomorphic to the DeRham cohomology of M , i.e., Hq(U,R) ∼= Hq

DR(M), ∀q ≥ 0.
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Corollary 2.10. Suppose that U is a finite, good cover of M. Set

ck(U) := #N q(U),

where N q(U) is defined by (2.1). Then

χ(M) =
∑
q≥0

(−1)qc1(U).

Proof. Observe that
cq(U) = dim ~Cq(U,R)

so that ∑
q≥0

(−1)qcq(U) =
∑
q≥0

(−1)q dimHq(U,R) =
∑
q≥0

(−1)q dimHq
DR(M).

ut

Suppose that U is a good cover. Then a Čech n-cocycle is a collection of numbers r = (rσ)σ∈Sn(U)

satisfying the cocycle condition

n+1∑
i=0

(−1)irσ0...σ̂i...σn+1 = 0, ∀(σ0, . . . , σn+1) ∈ Sn+1(U).

According to the above corollary, this cocycle determines a DeRham cohomology class [r] ∈ Hn
DR(M).

Using the Collating Formula we can describe explicitely a degree n closed form representing this
class. More precisely

ω = (−dK)nr. (2.8)

Example 2.11. A Čech cochain is a collection r of real numbers rαβ , one number for any pair (α, β)
such that Uαβ 6= ∅. It is a Čech cocycle if for any triplet (α, β, γ) such that Uαβγ 6= ∅ we have

rβγ − rαγ + rαβ = 0. (2.9)

If in the above equality we choose α = β = γ we deduce that rαα = 0, ∀α ∈ A. If next we choose
α = γ we deduce rβα = −rαβ . Thus (2.9) is equivalent to

rαβ = −rβα, rγα = rγβ + rβα, ∀(α, β, γ) ∈ S2(U). (2.10)

If we choose a partition of unity (ρα)α∈A subordinated to U then we have then η := Kr = Kr ∈
C0(U,Ω0) is defined by

ηα =
∑
β

ραrαβ.

Then (−dK)r is represented by the collection of forms ωα := −dηα ∈ Ω1(Uα). The cocycle
condition (2.10) implies that

ωα = ωβ on Uαβ

so that there exists a closed 1-form ω ∈ Ω1(M) such that ω|Uα = ωα, ∀α ∈ A. The DeRham
cohomology class determined by ω corresponds to the Čech cohomology class determined by r via
the above isomorphism

H•(U,R)→ H•DR(M). ut
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Remark 2.12. (a) The Čech complex C•(U,R) has homotopy equivalent descriptions C•alt(U,R)
and ~C•(U,R) constructed following the same prescriptions as the ones in Remark 2.3. Recall that the
definition of ~C•(U,R) uses a fixed (but arbitrary) linear order on A. In the remainder of this remark
we will assume we have fixed such a linear order ≺ on A.

(b) To an open cover U = (Uα)α∈A we can associate a triangulated space |N(U)| called the
geometric realization of the nerve which is constructed as follows. The space has one vertex vα for
each α ∈ A. Two vertices vα, vβ are joined by an edge if and only if {α, β} ∈ N(U), i.e., Uαβ 6= ∅.
Three vertices vα, vβ, vγ span a triangle if and only if {α, β, γ} ∈N(U) etc.

U

U

U

U

1

2

3

0

0

1

2

3

FIGURE 3. An open cover and the geometric realization of its nerve.

Formally and more precisely, this triangulated space is defined as follows. Denote by RA the vector
space of functions f : A→ R such that f(α) = 0 for all but finitely many α ∈ A. Note that for any
finite subset S ⊂ A the space RS is contained in RA. We define a topology on RA by declaring a
subset X ⊂ RA open if and only if for any finite subset S ⊂ A the intersection X ∩RS is open in the
finite dimensional Euclidean space RS . For α ∈ A we denote by vα ∈ RA the function defined by

vα(β) =

{
0, β 6= α

1, β = α.

For a finite subset S ⊂ A of cardinality q + 1 > 0 we denote by ∆S ⊂ RA the convex hull of the set
{vs; s ∈ S}. The set ∆S is an affine q-dimensional simplex. Thus, ∆α,β is the line segment joining
the points vα,vβ , ∆α,β,γ is the triangle spanned by the points vα,vβ,vγ , etc. The triangulated space
associated to U is then

|N(U)| =
⋃

S∈N(U)

∆S ⊂ RA.

Any partition of unity (ρα) subordinated to U defines a map

R : M → |N(U)|, M 3 x 7→
∑
α∈A

ρα(x)vα

The map is well defined because for any x ∈ M the number ρα(x) is zero for all but finitely many
α’s. If we set

Sx :=
{
α ∈ A; ρα(x) 6= 0

}
,

then we deduce that Sx ∈ N(U) and R(x) ∈ ∆Sx ⊂ |N(U)|. The map R is continuous and
moreover, we have the following result. For a particularly nice proof we refer to [12, §5].

Theorem 2.13 (Borsuk-Weil). If U is a good cover, then the map R : M → |N(U)| is a homotopy
equivalence.

The complex ~C•(U,R) is the simplicial cochain complex associated to the triangulated space
|N(U)|. This is isomorphic to the singular cohomology of |N(U)| and the Borsuk-Weil theorem
implies that it is also isomorphic to the singular cohomology of M with real coefficients. If we
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now invoke Corollary 2.9, then we deduce that the DeRham cohomology of M is isomorphic to the
singular cohomology of M with real coefficients. ut

3. PRESHEAVES AND SHEAVES

Suppose that X is a topological space and R is a commutative ring with 1. We denote by ModR
the category of R-modules. We denote by Open(X) the collection of open subsets of X . For any
family of open sets U ⊂ Open(X) we set

OU :=
⋃
U∈U

U.

We organize Open(X) as a category whose morphisms are the inclusions U ↪→ V .

Definition 3.1. A presheaf of R-modules on X is contravariant functor S : Open(X) → ModR.
We denote by PShR(X) the collection of presheaves of R-modules on X ut

In other words a presheaf S is a correspondence that associates to each U ∈ Open(X) an R-
module S(U), and to each inclusion U ↪→ V a “restriction” morphism

rUV = rS
UV : S(V )→ S(U)

such that
rUU = 1S(U), rUW = rUV ◦ rVW

for all U, V,W ∈ Open(X), U ⊂ V ⊂ W . When no confusion is possible, for U, V ∈ Open(X),
U ⊂ V , and s ∈ S(V ) we will set

s|U := rUV (s)
and we will refer to s|U as the restriction of s to U .

The module S(U) is called the module of sections of S overU . Often one uses the alternate notation

Γ(U, S) := S(U).

Example 3.2. (a) For any R-module G we denote by GX the constant presheaf of R-module on X
determined byG. For U ∈ Open(X) the group of sections ofG over U is the group locally constant
maps f : U → G. Thus, if U is connected, then we have an isomorphism

Γ(U,G) ∼= G.

(b) Denote by C0
X the presheaf of vector spaces defined by

Γ(U,C0
X) :=

{
continuous functions U → R

}
.

(c) Denote by C0
X,b the presheaf of vector spaces defined by

Γ(U,C0
X,b) :=

{
bounded continuous functions U → R

}
.

(d) If M is a smooth manifold, then we denote by Ωp
M the presheaf of vector spaces defined by

Γ(U,Ωp
M ) = Ωp(U).

(e) Suppose that M,N are smooth manifolds and f : N → M is a smooth map. Then we have a
presheaf Hq

f on M defined by

Γ(U,Hq
f ) := Hq

DR

(
f−1(U)

)
.

(f) if S ∈ PShR(X) and U ∈ Open(X), then S|U denotes the presheaf on U given by

S|U (V ) = S(V ), ∀V ∈ Open(U).
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We say that S|U is the restriction of S to U . ut

Definition 3.3. Let S0, S1 ∈ PShR(X). A morphisms of presheaves ϕ : S0 → S1 is a collection of
morphisms of R-modules

ϕU : S0(U)→ S1(U), U ∈ Open(X),

such that for any U, V ∈ Open(X), U ⊂ V we have a commutative diagram

S0(V ) S1(V )

S1(U) S1(U)

w
ϕV

u

r
S0
UV

u

r
S1
UV

w
ϕV

ut

Definition 3.4. (a) A presheaf S ∈ PShR(X) is called a sheaf if it satisfies the following two
conditions.

(S1) For any family U ⊂ Open(X) the morphism

S(OU)→
∏
U∈U

S(U), S(OU) 3 s 7→ (s|U )U∈U ∈
∏
U∈U

S(U)

is injective.
(S2) For any family U ⊂ Open(X) and any collection sU ∈ S(U), U ∈ U such that

(sU )|U∩V = (sV )|U ∩ V , ∀U, V ∈ U

there exists a section s ∈ S(OU) such that

s|U = sU , ∀U ∈ U.

We denote by ShR(X) ⊂ PShRX) the full2 subcategory of R-modules on X . ut

Example 3.5. The presheaves in Example 3.2(a),(b), (d) are sheaves. The presheaves (c), (e) are not
always sheaves. Also, the restriction of a sheaf to an open subset is a sheaf on that open subset. ut

Suppose that S ∈ PShR(X) and x ∈ X . Denote by Openx(X) the collection of all open subset
of X that contain x. The collection of modules{

S(Ux); Ux ∈ Openx(X)
}

together with the family of restriction morphisms rUV , U, V ∈ Openx(X), U ⊂ V is an inductive
family. We set

Sx := lim−→
U∈Openx(X)

S(U).

We refer to the R-module Sx the stalk of S at x. More explicitely, Sx is the set of equivalence classes
of an equivalence relation ∼x on the disjoint union of the modules S(U), U ∈ Openx(X): for
U0, U1 ∈ Openx(X) we declare the sections s0 ∈ S(U0) and s1 ∈ S(U1) to be equivalent if there
exists U2 ⊂ U0 ∩ U1, U2 ∈ Openx(X) such that

s0|U2 = s1|U2 .

2The attribute full signify that morphisms between sheaves S0, S1 are the same as morphisms between S0, S1 viewed as
presheaves.
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The equivalence class of a section s ∈ S(U), U ∈ Openx(X) is denoted by [s]x and it is called the
germ of s at x.

The completion of a presheaf S ∈ PShR(X) is the presheaf Ŝ ∈ PShR(X), where for any
U ∈ Open(X) a section of Ŝ over U is defined to be a collection of germs (γx)x∈U satisfying the
following conditions.

• γx ∈ Sx, ∀x ∈ U .
• For any x ∈ U , there exists V ∈ Openx(U) and s ∈ S(V ) such that

γy = [s]y, ∀y ∈ V.

Observe that
S(U) ⊂ Ŝ(U), ∀U ∈ Open(X).

We have the following elementary result whose proof is left to the reader.

Proposition 3.6. (a) The completion of a presheaf is a sheaf.
(b) If S is a sheaf, then Ŝ = S. ut

Due to the above result the completion Ŝ is also known as the sheaf associated to the presheaf S of
the sheafification of S.

Definition 3.7. (a) A sheaf S of Abelian groups on a topological space X is called constant if there
exists a groupG such that S is isomorphic to the sheafGX . The sheafGX is called the constant sheaf
on X with stalk G.
(b) A sheaf S on a topological space is called locally constant if for any point x ∈ X there exists an
open neighborhood Ux of x such that the restriction of S to Ux is a constant sheaf. ut

Example 3.8. Suppose that π : E → M is a smooth fiber bundle with fiber F over the smooth,
connected m-dimensional manifold. For n ≥ 0 consider the presheaf Hn

π ,

Γ(U,Hn
π ) = Hn

(
π−1(U)

)
For any x ∈ M there exists an open neighborhood O of x diffeomeorphic to Rm such that the
restriction of E over O is a trivializable fiber bundle. In other words, there exists a diffeomorphism
Φ : EO → O× F such that the diagram below is commutative.

EO O× Ex

O

[
[
[]π

w

Φ

�
�
�� proj

In particular for any U ∈ Open(O) we have

Γ(U,Hn
π ) ∼= Hn(O× Ex) ∼=

n⊕
j=0

Hj(U)⊗Hn−j(Ex).

We deduce that the stalk at x of Hn
π is the vector space Hn

π,x

Hn
π,x =

n⊕
j=0

(
lim−→

U∈Openx(O)

Hj(U)
)
⊗Hn−j(Ex) = Hn(Ex).

We denote by Ĥn
π the completion of this presheaf.
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Suppose that O is an open subset of M such that E is trivilizable over O so that we can assume
that EO is the trivial fiber bundle O × F → O. We want to prove that the restriction of Ĥn

π to O is a
constant sheaf. LetU ∈ Open(O). A section of Ĥn

π over an open setU is a collection of cohomology
classes ωx ∈ Hn(Ex) = Hn({x} × F ) such that for any x ∈ U there exists Vx ∈ Openx(U) and
ωV0 ∈ Hn(EVx) such that

ωVx |Ey = ωy ∈ Hn(F ), ∀y ∈ Vx.
We want to prove that the map

U 3 x 7→ ωx ∈ Hn(F )
is locally constant. Fix x0 ∈ U and let V0 = Vx0 as above. We will show that the map

V0 3 y 7→ ωy ∈ Hn(F )

is locally constant.
A cohomology class ωV0 ∈ Hn(EV ) has a unique decomposition

ωV0 =
n∑
i=0

αi � βn−i, αi ∈ H i(V0), βn−i ∈ Hn−i(V0).

Observe that α0 is represented by a locally constant function V0 → R. For y ∈ V0 we have

ωy = ωV0 |Ey = ωV0 |y×F = α0
V (y)βnV .

We deduce that the restriction of the sheaf Ĥn
π to the trivializing open set O is isomorphic to the

constant sheaf with stalk Hn(F ).

Example 3.9. Suppose that X is path connected and locally path connected. Denote by π : X̃ → X
the universal cover of X . For any U ∈ Open(X) we set

Ũ := π−1(U) ∈ Open(X̃).

Fix x0 ∈ X . Then there exists a free right action of π1(X,x0) on X̃ and a natural homeomorphism
X̃/π1(X,x0)→ X .

Fix an R-module M and a group morphism

µ : π1(X,x0)→ AutR(M), π1(X,x0) 3 γ 7→ µγ ∈ AutR(M).

For any U ∈ Open(X) we denote by Cµ(U,M) the space of locally constant maps f : Ũ → M
satisfying the equivariance condition

f(x̃ · γ−1) = µγ
(
f(x̃)

)
, ∀x̃ ∈ Ũ , γ ∈ π1(X,x0).

The collection Cµ(U,M), U ∈ Open(X) defines a locally constant sheaf MX,µ ∈ ShR(X). The
morphism µ is called the monodromy of this sheaf. ut

The following important result states that any locally constant sheaf can be constructed using the
method in Example 3.9. For a proof we refer to [7, IV.9] or [10].

Theorem 3.10. Suppose that X is a path connected and locally path connected space and S ∈
ShR(X) is a locally constant sheaf . Fix x0 ∈ X and set M := Sx0 ∈Mod(R). Then there exists
a group morphism

µ : π1(X,x0)→ AutR(M)
such that the locally constant sheaf MX,µ is isomorphic to S. ut
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Corollary 3.11. Suppose that M is a connected and simply connected smooth manifold. Then any
locally constant sheaf on M is constant. ut

Definition 3.12. Suppose that π : Σ→M is a smooth fiber bundle over the connectedm-dimensional
manifold with fiber the sphere Sn. An orientation of this fiber bundle is a collection of cohomology
classes {ωx ∈ Hn(Σx); x ∈M} satisfying the following properties.

(O1) There exists an open cover U of M and cohomology classes ωU ∈ Hn(ΣU ), U ∈ U such
that for any U ∈ U and any x ∈ U we have

ωU |Σx = ωx.

(O2) ωx 6= 0, ∀x ∈M .
The sphere bundle is called orientable if it admits an orientation. ut

The discussion in Example 3.8 shows that an orientation of an n-sphere bundle π : Σ → M is a
nowhere vanishing section of the sheaf Ĥn

π .

Proposition 3.13. Suppose that π : Σ → M is a smooth n-sphere bundle. Then the following
statements are equivalent.

(a) The sphere bundle is orientable.
(b) The sheaf Ĥn

π is constant with stalk R.

Proof. Clearly (b)⇒ (a) so it suffices to prove the reverse implication. Suppose that ω = (ωx)x∈M is
a nowhere vanishing section of Ĥn

π . Then there exist an open cover U of M and cohomology classes
ωU ∈ Hn(ΣU ) such that for any U ∈ U and any x ∈ U we have

ωx = ωU |Σx .

We can also assume that any U ∈ U is connected and the restriction π : ΣU → U is trivial.
For any V ∈ Open(X) we have a natural morphism

φV : Γ(V,RV )→ Γ(V, Ĥn
π )

that associates to a locally constant function f : V → R the section f · ω|V ∈ Γ(V, Ĥn
π ). Concretely

, f · ω|V is given by the collection

f(x)ωx ∈ Hn(Σx), x ∈ V.

To see that f · ω|V is indeed a section of Ĥn
π over V we look at the open cover UV = {U ∩ V }U∈U.

For any U in U and any connected component W of U ∩ V the restriction of f to W is a constant
function fW . Then for any y ∈W we have

f(y)ωy = (fWωU )|Σy

This proves that the collection φV defines a morphism of sheaves φ : RM → Ĥn
π such that φV is

injective for any V ∈ Open(M). To prove that φV is surjective consider a section η = (ηx)x∈V ∈
Γ(V, Ĥn

π ). Then for any x ∈ V there exists f(x) ∈ R such that

ηx = f(x)ωx.

Arguing as in Example 3.8 we deduce that the map V 3 x 7→ f(x) ∈ R is locally constant. This
proves that φ is an isomorphism. ut

The above proposition coupled with Corollary 3.11 have the following consequence.
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Corollary 3.14. Any smooth sphere bundle over a simply connected manifold is orientable. ut

Example 3.15. Suppose that π : E → M is a real vector bundle of rank (n + 1) over the smooth
connected m-dimensional manifold. By fixing a metric on E we obtain a sphere bundle Σ(E)→M
whose fiber over x ∈ M consists of the unit vectors in Ex. We say that Σ(E) is the unit sphere
bundle associated to the metric vector bundle E.

Let us observe that the vector bundle E is orientable if and only if the associated sphere bundle
Σ(E)→M is orientable. [1, Prop.11.2]. ut

4. THE ČECH COHOMOLOGY OF PRESHEAVES

Let X be a topological space, R a commutative ring with 1 and F a presheaf of R-module on X .
Suppose that U = (Uα)α∈A is an open cover of X . For any nonnegative integer q we set

Cq(U,F) :=
∏

σ∈Sq(U)

S(Uσ).

Thus, the elements of Cq(U,F) are collection of sections

f = (fσ)σ∈Sq(U), fσ ∈ F(Uσ).

Define
δ : Cq(U, SF)→ Cq+1(U,F),

where for any f = (fσ)σ∈Sq(U) ∈ Cq(U,F), and any τ ∈ Sq+1(U) we have

(δf)τ =
q+1∑
j=0

(−1)jfτ0···τ̂j ···τq+1 |Uτ .

Arguing as before we deduce that δ2 = 0. The resulting complex is called the Čech complex of the
cover U with coefficients in the presheaf F.

An open cover V = (Vi)i∈I is called a refinement of the open cover U = (Uα)α∈A if there exists a
refinement map φ : I → A such that

Vi ⊂ Uφ(i), ∀i ∈ I.
Observe that if A ∈ N(V), then φ(S) ∈ N(U) so that for any σ ∈ Sq(V) the composition φ ◦ σ
belongs to Sq(U) refinement map induces a map φ : N(V)→N(U) and a morphism of complexes

φ∗ :
(
C•(U,F), δ

)
→
(
C•(V,F), δ

)
,

defined as follows. Given (f ∈ Cq(U,F) and σ ∈ Sq(V) we have

(φ∗f)σ = fφ◦σ.

We thus obtain a morphism
φ∗ : H•(U,F)→ H•(V,F).

Lemma 4.1. Suppose that U = (Uα)α∈A and V = (Vi)i∈I are two open covers of X and φ, ψ : I →
A are two refinement maps. Then the induced morphisms

φ∗, ψ∗ :
(
C•(U,F), δ

)
→
(
C•(V,F), δ

)
,

are chain homotopic, i.e., there exists K : C•(U,F)→ C•−1(V,F) such that

ψ∗ − φ∗ = δK +Kδ. (4.1)

In particular,
φ∗, ψ∗ : H•(U,F)→ H•(V,F)
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are identical

Proof. For f ∈ Cq(U,F) define

(Kf)i0···iq−1 =
q−1∑
r=0

(−1)rfφ(i0)···φ(ir)ψ(ir)···ψ(iq−1)|Vi0···iq−1
.

An elementary computation left to the reader shows that K defined as above satisfies (4.1) . ut

We denote by Cov(X) the collection of all open covers of X . This is equipped with a partial
order ≺ where we declare U ≺ V if V is a refinement of U. This is a directed set, i.e., for any
U0,U1 ∈ Cov(X) there exists U2 ∈ Cov(X) such that U0,U1 ≺ U2. (It suffices to take U2 =
(U0 ∩ U1)U0∈U0,U1∈U1 .)

Lemma 4.1 shows that for any U,V ∈ Cov(X) such that U ≺ V there exists a morphism

ΦVU : H•(U,F)→ H•(V,F)

satisfying
ΦWU = ΦWV ◦ ΦVU, ∀U ≺ V ≺W.

We can thus define the direct (inductive) limit

Ȟ•(X,F) := lim−→
U

H•(U,F).

We will refer to Ȟ•(X,F) as the Čech cohomology of X with coefficients in the presheaf F.

Example 4.2. Suppose that F is a sheaf. Then an element f ∈ Ȟ0(X,F) is represented by a collec-
tion

f
U

= (fU )U∈U, U ∈ Cov(X), fU ∈ Γ(U,F),
satisfying the cocycle condition

fU |U∩V = fV |U∩V , ∀U, V ∈ U.

The sheaf axioms show that this collection defines a unique section [f ] ∈ Γ(X,F) that is independent
of the representative f

U
of f . This shows that when F is a sheaf we have a natural isomorphism

Ȟ0(X,F) ∼= Γ(X,F).

ut

For any presheaf F ∈ PShR(X) and any U ∈ Open(X) we have natural morphisms

F(U)→ F̂(U)

compatible with the restriction morphisms. We thus obtain a natural morphism

Ȟ•(X,F)→ Ȟ•(X, F̂)

We have the following useful fact, [6, Thm. 2.9.1]

Theorem 4.3. If X is a paracompact Hausdorff space then the natural morphism

Ȟ•(X,F)→ Ȟ•(X, F̂)

is an isomorphism. In particular H0(X,F) ∼= Γ(X, F̂). ut

Observe that if S0, S1 ∈ PSh(X) the we can define their dirrect sum S0 ⊕ S1 to be the presheaf

Open(X) 3 U 7→ Γ(U, S0 ⊕ S1) := S0(U)⊕ S1(U) ∈Mod(R).
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Theorem 4.4. Suppose that V is a finite dimensional real vector space and M is a smooth connected
manifold of dimension m. Then for any good cover U of M we have

H•(U, V ) ∼= Ȟk(M,V ) ∼= Hk
DR(M)⊗ V, ∀k ≥ 0. (4.2)

Proof. Suppose first that dimV is one-dimensional so that V = R. Then for any open cover U ∈
Cov(M) the complex C•(U,R) coincides with the Čech complex C•(U,R) defined in Section 2.
The natural morphism

φU : C•(U,R)→ C•(U,Ω•M )
is a quasi-isomorphism, i.e., it induces an isomorphism in cohomology. Suppose that V is another
good cover of M such that U ≺ V. Fix a refinement map ρ : V → U. We then get morphisms of
complexes

fρ : C•(U,R)→ C•(V,R) Fρ : C•(U,Ω•M )→ C•(V,Ω•M ),
that fit in commutative diagrams

C•(U,R) C•(V,R)

C•(U,Ω•M ) C•(V,Ω•M )

Ω•(M)

w

fρ

u

φU

u

φV

w

Fρ

[
[
[
[
[̂

rU

�
�
�
�
��

rV

where rU and rV are the morphisms that appear in the Generalized Mayer-Vietoris principle, Theorem
2.4.

The morphsims rU and rV are quasi-isomorphisms so that Fρ is a quasi-isomorphisms. Since
φU and φV are quasi-isomorphisms we deduce that fρ is a quasi-isomorphism. Thus, the canonical
morphism

ΦVU : H•(U,R)→ H•(V,R)
is an isomorphism for any two good covers U ≺ V. Since for any open cover W we can find a good
cover U �W we deduce that for any good cover U the natural morphism

H•(U,R)→ Ȟ•(M,R)

is an isomorphism. Corollary 2.9 implies that H•(U,R) ∼= H•DR(M). This proves (4.2) in the case
when dimV = 1.

More generally
Ȟ•(M,Rn) ∼= Ȟ•(M,R)⊕ · · · ⊕ Ȟ•(M,R)︸ ︷︷ ︸

n

∼= Ȟ•(M,R)⊗R Rn ∼= H•DR(M)⊗R Rn.

ut

For a more in-depth presentation of Čech cohomology and its relationship with the cohomology of
sheaves we refer to [2, Chap. 4] or [5].
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5. SPECTRAL SEQUENCES

Consider a gain a double complex of R-modules(⊕
p,q≥0

Ep,q, dh, dv

)
with associated total complex (T •(E), D), where

Tn(E) =
⊕
p+q=n

Ep,q, D = dh + dv.

We would like to describe a way of computing the cohomology of (T •(E), D). We need to introduce
some terminology.

Definition 5.1. (a) A filtration of an R-module M is a collection of submodules

· · ·F pM ⊃ F p+1M ⊃ · · ·
such that

M =
⋃
p∈Z

F pM.

The filtration is called bounded if there exist integers t < b such that

F tM = M, F bM = 0.

(b) A filtered module is a module equipped with a filtration. The graded module associated to a
filtered module (M,F •) is

Gr•(M) :=
⊕
p∈Z

F pM/F p+1M.

(c) A morphism of filtered modules (M,F •), (N,F •) is a morphism of modules φ : M → N such
that

φ
(
F pM

)
⊂ F pN, ∀p ∈ Z.

(d) A filtration of a graded module
K• =

⊕
n∈Z

Kn

is a collection of filtration F •Kn on each of the factors Kn. The filtration is called regular if for any
n ∈ Z the filtration of Kn is bounded, i.e., there exist integers t(n) < b(n) such that

F t(n)Kn = Kn, F b(n)Kn = 0.

We set
Grp,n(K•, F ) := F pKn/F p+1Kn.

(e) A filtration of a cochain complex (K•, d) is a filtration F pK• of the graded module K• such that

dF pK• ⊂ F pKn+1, ∀p, n ∈ Z

A filtration on a cochain complex (K•, d) induces a filtration on the cohomology H•(K•, d). More
precisely F pHn(K) is defined to be the image of Hn(F pK•) in Hn(K•). ut

Example 5.2. The total complex (T •(E), D) is equipped with two regular filtrations. The first filtra-
tion F •I is defined by defined by

F pI T
n =

∑
i≥p

Ei,n−i. (5.1)
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The filtration is regular since
F−1
I Tn = Tn, Fn+1

I Tn = 0,
so that we can take t(n) = −1, b(n) = n+ 1. The second filtration F •II is defined by

F pIIT
n =

⊕
j≥p

En−j,j .

ut

Theorem 5.3. Consider a cochain complex (K•, d) equipped with a regular filtration F •K•. Then
there exists a spectral sequence converging to the cohomology of (K•, d), i.e., there exists a sequence
of bigraded complexes (E•,•r , dr)r≥0 satisfying the following properties.

(SS1) The coboundary operator dr has bidegree (1− r, r), i.e.,

dr(Ep,qr ) ⊂ Ep−(r−1),q+r
r , ∀p, q, r.

(SS2) For any r ≥ 0 there exists an isomorphism of bigraded modules

αr : E•,•r+1 → H(E•,•r , dr)

(SS3) For any p, q ∈ Z there exists r = r(p, q) ≥ 0 such that, for any r, s ≥ r(p, q) we have

Ep,qr = Ep,qs
∼= F pHp+q(K, d)/F p+1Hp+q(K, d) = GrpHp+q(K, d).

We denote by Ep,q∞ the group Ep,qr , r ≥ r(p, q).

Remark 5.4. We can visualize (Ep,qr , dr) as a grid of modules and morphisms of modules; see Figure
4. The spectral sequence is an atlas of such grids, where the grid E•,•0 is the opening page of the atlas,
E•,•1 is on the next page of the atlas etc.

E E

E

d

d

d
0

0

1

1

2

2

FIGURE 4. The sheets E0, E1, E2 of a spectral sequence

ut
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Proof. To construct the spectral sequence we follow the approach in [4, III.7.5]. For r ≥ 0 we set

Zp,qr := elements in x ∈ F pKp+q such that dx ∈ F p+rKp+q+1

= F pKp+q ∩ d−1
(
F p+rKp+q+1

)
,

(5.2)

Bp,q
r := F p+1Kp+q + d(F p−(r−1)Kp+q−1), (5.3)

Ep,qr :=
Zp,qr

Zp,qr ∩Bp,q
r

=
Zp,qr

Zp+1,q−1
r−1 + dZ

p−(r−1),q+r−2
r−1

. (5.4)

Note that
Zp,qr+1 ⊂ Z

p,q
r , ∀r ≥ 0, ∀p, q.

Since d2 = 0 we deduce
d(Zp,qr ) ⊂ Zp+r,q−(r−1)

r

On the other hand,
d(Bp,q

r ∩ Zp,qr ) ⊂ (dF p+1Kp+q) ∩ Zp+r,q−(r−1)
r

= dF (p+r)−(r−1)K(p+r)+(q−(r−1))−1 ∩ Zp+r,q−(r−1)
r ⊂ Bp+r,q−(r−1)

r ∩ Zp+r,q−(r−1)
r

so that d induces an operator
dr : Ep,qr → Ep+r,q−(r−1)

r

satisfying d2
r = 0. Thus (E•,•r , dr) is a bi-graded complex satisfying the condition SS1.

To prove SS2, i.e., the existence of a natural isomorphism

αr : E•,•r+1 → H(E•,•r , dr)

We begin by constructing isomorphisms

Zp,qr+1 + Zp+1,q−1
r−1

Zp+1,q−1
r−1 + dZ

p−(r−1),q+r−2
r−1

→ Z(Ep,qr ) (5.5a)

dZp−r,q+r−1
r + Zp+1,q−1

r−1

Zp+1,q−1
r−1 + dZ

p−(r−1),q+r−2
r−1

→ B(Ep,qr ). (5.5b)

To construct the morphism (5.5a) we observe that the denominator of the left-hand side of (5.5a)
coincides with the denominator in the definition of Ep,qr while numerator of the left-hand side of
(5.5a) satisfies

Zp,qr+1 + Zp+1,q−1
r−1 ⊂ Zp,qr

so that the left-hand side of (5.5a) is a subgroup of Ep,qr . To prove that it is actually contained in
Z(Ep,qr ) it suffices to show that

d
(
Zp,qr+1 + Zp+1,q−1

r−1

)
⊂ Zp+r+1,q−r

r−1 + dZp+1,q−1
r−1︸ ︷︷ ︸

the denominator of Ep+r,q−r+1
r

which follows from the definitions. Thus the morphism (5.5a) is well defined and injective. Similarly
one shows that the morphism (5.5b) is well defined and injective. The surjectivity of (5.5b) is imme-
diate. The surjectivity of (5.5a) is only slightly more complicated, but not particularly revealing so
we refer for details to [4, p. 204].

We deduce that we have an isomorphism

Zp,qr+1 + Zp+1,q−1
r−1

dZp−r,q+r−1
r + Zp+1,q−1

r−1

→ H(Ep,qr ).
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To conclude, it suffices to show that the right-hand side above is isomorphic to Ep,qr+1. Indeed, we
have

Zp,qr+1 + Zp+1,q−1
r−1

dZp−r,q+r−1
r + Zp+1,q−1

r−1

∼=
Zp,qr+1

Zp,qr+1 ∩
(
dZp−r,q+r−1

r + Zp+1,q−1
r−1

)
Next we observe that

dZp−r,q+r−1
r ⊂ Zp,qr+1, Zp,qr+1 ∩ Z

p+1,q−1
r−1 = Zp+1,q−1

r .

Hence
Zp,qr+1 ∩

(
dZp−r,q+r−1

r + Zp+1,q−1
r−1

)
= dZp−r,q+r−1

r + Zp+1,q−1
r .

This proves SS2.
Finally, let us prove SS3. Fix p, q, set n := p+ q. Note that

GrpHn(K) =
F pZn(K)

F pZn(K) ∩
(
F p+1Kn +Bn(K)

) ,
where

F pZn = F pKn ∩ ker
(
Kn d→ Kn+1

)
, F pBn(K) = F pKn ∩ Im

(
Kn−1 d→ Kn

)
.

If r > b(n)− p, then F p+rKn = 0, and we deduce that

Zp,qr = F pZn(K).

If r − 1 > p− t(n− 1), then
F p−(r−1)Kp+q−1 = Kp+q−1.

This shows that if r > max{b(n)− p, p− t(n− 1) + 1}, then

Zp,qr ∩
(
F p+1Kp+q + d(F p−(r−1)Kp+q−1)

)
= F pZn(K) ∩

(
F p+1Kn +Bn(K)

)
.

ut

Remark 5.5. (a) The E0-sheet of the spectral sequence has a simple description. More precisely
(5.2), (5.3) and (5.4) imply that

Ep,q0 =
F pKp+q

F p+1Kp+q
= GrpKp+q.

(b) When (T •, D) is the total complex of a double complex (C•,•, dh, dv) and F is the first filtration
FI defined in (5.1) then the construction of the spectral sequence can be given a somewhat more
intuitive description.

We introduce a formal variable t and represent the elements of Tn as ”polynomials”

x =
n∑
j=0

xjt
j , xj ∈ Ci,n−j .

We set Dt := dv + tdh. The condition x ∈ F pTn can now be rewritten using the analyts’ big-O
notation as x = O(tp).

To compute GrpHn(T ) we need to compute

F pZn(T,D) mod F p+1Zn(T ) + F pBn(T ).

Note that x ∈ F pZn(T ) if and only if

x ∈ Tn, x = O(tp), Dtx = O(tn+1).
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We construct a class x ∈ GrpHn(T ) via successive approximations. We find these approximations
by solving the systems of linear equations

Dty = O(tp+r), y ∈ Tn, y = O(tp), r = 0, 1, 2, . . . (Sr)

modulo F p+1Zn(T ) + F pBn(T ). We do this successively, seeking solutions of Sr+1 within the
smaller space of solutions of Sr. Note that Zp,n−pr can be identified with the space of solutions of Sr.
We declare a y of Sr to be trivial if either

y = O(tp+1), (5.6)

or
∃z ∈ Tn−1 : z = O

(
tp−(r−1)

)
, y = Dtz. (5.7)

Note that the space of trivial solutions of Sr is contained in F p+1Zn(T ) + F pBn(T ) and coincides
with it if r > p+ 1. We have

Ep,n−pr =
solutions of Sr

trivial solutions of Sr
.

The complex (E•,•0 , d0) has a simple description. It is the complex (C•,•, dv). We deduce that

Ep,q1 = Hq(Cp,•, dv) =: Hq
v (Cp,•),

i.e.,E•,•1 is determined by the cohomology of the complexes determined by the columns of the double
complex.

The differential d1 : Hq
v (Cp,•) → Hq

v (Cp+1,•) is the morphism induced by the horizontal differ-
ential dh. Therefore, the E2 term consists of the cohomology of the complexes determined by the
rows of E1,

Ep,q2 = Hp
(
Hq
v (C•,•), dh

)
=: Hp

hH
q
v (C•,•). ut

Suppose that (C•, dC , F •C) and (K•, dK , F •K) are two filtered cochain complexes with regular fil-
trations, and φ : (C•, dC , F •C)→ (K•, dK , F •K). Then φ induces morphisms of bigraded complexes

φr : (E•,•r (C), dr)→ (E•,•r (K), dr), r = 0, 1, 2, . . .

Gr(φ) : Gr•H•(C)→ Gr•H•(K).

Theorem 5.6 (Approximation theorem. Version 2). Suppose that φ : (C•, dC , F •C)→ (K•, dK , F •K)
is a morphism of complexes equipped with regular filtrations. Suppose that for some r0 ≥ 0 the
induced morphism

φr0 : (Er0(C), dr0)→ (Er0(K), dr0)
is an isomorphism of bigraded complexes. Then the following hold.

(a) For any r ≥ r0 the morphism φr : (E•,•r (C), dr) → (E•,•r (K), dr) is an isomorphism of
complexes.

(b) The induced morphism
φ∗ : H•(C)→ H•(K)

is an isomorphism.

Proof. Part (a) is obvious. To prove (b) we will show that for any n the induced morphism

φ : Hn(C)→ Hn(K)

is an isomorphism. Since the filtrations on Cn and Kn are both finite there exist integers t < b such
that

F tCn = Cn, F tKn = Kn, F bCn − 0 = F bKn.
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Thus

Gr•Hn(C) =
b⊕
p=t

GrpHn(C),Gr•Hn(K) =
b⊕
p=t

GrpHn(K).

There exists r > 0 such that for any integer p, t ≤ p ≤ b we have

Ep,n−pr (C) ∼= GrpHn(C), Ep,n−pr (K) ∼= GrpHn(K).

Thus the morphism φ induces isomorphisms

Grp(φ) : GrpHn(C)→ GrpHn(K), ∀p = t, . . . , b.

Now observe that we have a collection of commutative diagrams

0 F p+1Hn(C) F pHn(C) GrpHn(C) 0

0 F p+1Hn(C) F pHn(C) GrpHn(C) 0

w

u

F p+1(φ)

w

u

F p(φ)

w

u

Grp(φ)

w

w w w w

From the above discussion we deduce that Grp(φ) is an isomorphism. The five-lemma shows that

F p+1(φ) isomorphism⇒ F p(φ) isomorphism.

When p = b the morphism F p+1(φ) isomorphism is trivially an isomorphism since

F b+1Hn(C) = F b+1Hn(K) = 0.

We deduce successively that F t(φ) is an isomorphism.
ut

The first version of the Approximation theorem is a special case of Theorem 5.6

Corollary 5.7. Suppose that (C•, d) is a cochain complex and φ : (C•, d) → (K•,•, dh, dv) is a
resolution of the complex C• by the double complex K•,•. Then φ induces isomorphisms

H•(C, d)→ H•(T (K), D).

Proof. We regard C• as a double complex in a trivial way and we equip both C• and K•,• with the
first filtrations FI . The morphism φ is a morphism of filtered complexes. The fact that φ is resolution
is equivalent with the fact that the induced morphism

φ1 : Ep,q1 (C)→ Ep,q1 (K)

is an isomorphism. Now invoke Theorem 5.6. ut

Suppose that (K•, d) is a cochain complex of algebras such that d is an odd derivation, i.e.,

∀xr ∈ Kr, xs ∈ Ks : d(xr · xs) = (dxr) · xs + (−1)rxr · dxs.

A filtration F • on K• is said to be compatible with the algebra structure if

F pK•) · (F qK•) ⊂ F p+qK•, ∀p, q ∈ Z.

An inspection of the proof of Theorem 5.3 yields the following result.
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Corollary 5.8. Suppose that (K•, d, F •) is a complex of R-algebras equipped with regular filtration
compatible with the algebra structure and such that d is an odd derivation. Then for any r ≥ 0 the
bi-graded complex (E•,•r , dr) has an induced algebra structure satisfying the following condition:
∀m,n, p, q, ∀x ∈ Em,nr , ∀y ∈ Ep,qr we have

x · y ∈ Em+p,n+q
r , dr(xy) = (drx) · y + (−1)m+nx · (dry). (5.8)

ut

Example 5.9 (A product on the Čech-DeRham double complex). Suppose that M is a smooth man-
ifold of dimension m. Consider the Čech-DeRham double complex (C•,•(U,ΩM , dh, dv) associated
to an open cover U ∈ Cov(M),

Cp,q(U,ΩM ) := Cq(U,Ωp
M ), dh = d, dv = (−1)pδ : Cq(U,Ωp

M )→ Cq+1(U,Ωp
M )

We define a product

Cp,q(U,ΩM )× Cp′,q′(U,ΩM ) 3 (ω, ω′) 7→ ω ∗ ω′ ∈ Cp+p′,q+q′(U,ΩM )

where for any σ ∈ Sq+q′(U) we have(
ω ∗ ω′

)
σ0...σq+q′

= ωσ0...σq |Uσ ∧ ω′σq ...σq+q′ |Uσ .

A simple computation shows that

δ(ω ∗ ω′) = δω ∗ ω′ + (−1)qω ∗ δω′

and
d(ω ∗ ω′) = dω ∗ ω′ + (−1)pω ∗ dω′

Now modify the product ∗ to a product

∪ : Cp,q(U,ΩM )× Cp′,q′(U,ΩM )→ Cp+p
′,q+q′(U,ΩM ),

ω ∪ ω′ = (−1)ν(p,q,p′q′)ω ∗ ω′ ∈ Cp+p′,q+q′(U,ΩM )

where the sign (−1)ν(p,q,p′q′) is such that the operator D = dh + dv is an odd derivation with respect
to ∪. This means that

(−1)p+p
′+ν(p,p′,q,q′) = (−1)p+ν(p,p′,q+1,q′) = (−1)p+p

′+ν(p,p′,q,q′+1)

(−1)ν(p,p′,q,q′) = (−1)ν(p+1,p′,q,q′) = (−1)q+ν(p,p′+1,q,q′).

The first string of equalities shows that ν(p, p′, q, q′) mod 2 must be independent of q′ mod 2. The
second string of equalities that ν(p, p′, q, q′) mod 2 must be independent of p mod 2. We see that the
choice

ν(p, p′, q, q′) = qp′

will do the trick.
The inclusions

(C•(U,R), δ)→ C•(U,Ω•M )←↩ (Ω•(M), D)

are morphisms of complexes of algebras. We deduce that if U is a good cover, then we have an
ismorphisms of algebras

H•(U,R) ∼= H•(M).

ut
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6. THE LERAY-SERRE SPECTRAL SEQUENCE

Suppose π : E →M is a smooth fiber bundle over the smooth connectedm-dimensional manifold
M with fiber F . We will make the following simplifying assumption.

The fiber has finite dimensional DeRham cohomology and the sheaves Ĥq
π are constant, ∀q ≥ 0,

where Ĥq
π is the sheaf associated to the Hq

π ∈ PShR(M) is the presheaf

Open(M) 3 U 7→ Hq(U).

Fix a good open cover U ∈ Cov(M) and denote by Ũ ∈ Cov(E) the open cover (π−1(U))U∈U.
Consider the transpose of the double complex Čech-DeRham double complex associated to Ũ,

Ĉp,q(Ũ,ΩE) = Cp(Ũ,Ωq
E),

with differentials
d̂v = d, d̂h = (−1)qδ : Cp(Ũ,Ωq

M )→ Cp+1(Ũ,Ωq
E)

The E1-term of the spectral sequence determined by the first filtration of this double complex is

Ep,q1 =
∏

σ∈Sp(eU)

Hq(EUσ).

Now observe that the correspondence U 3 U 7→ π−1(U) ∈ Ũ gives an isomorphisms of nerves
N(U)→N(Ũ). We deduce∏

σ∈Sp(eU)

Hq(EUσ) =
∏

σ∈Sp(U)

Hq(EUσ) = Cp(U, Ĥq
π).

From Theorem 4.4 we deduce

Ep,q2 = Hp(U, Ĥq
π) ∼= Hp(M, Ĥq

π) ∼= Hp(M)⊗Hq(F ).

Note that E•,•2 has a product has an structure of R-algebra satisfying (5.8).

Example 6.1 (The Gysin sequence). Suppose that π : E → M is an orientable sphere bundle, with
fiber Sn, n ≥ 0.

Proposition 3.13 implies that the sheaves Ĥq
π are constant. TheE2-term of the Leray-Serre spectral

sequence is

Ep,q2 = Hp(M)⊗Hq(Sn) ∼=

{
Hp(M), q = 0, n
0, q 6= 0, n.

.

This implies that
(E2, d2) = · · · = (En+1, dn+1)

The En+1-term has the form in Figure 5.
Observe that for any r ≥ n+ 2 we have

Er = H(En+1, dn+1)

We have
Ep,n∞

∼= ker(dn+1 : Ep,n → Ep+n+1,0) (6.1a)

Ep,0∞
∼=

Ep,0n+1

dn+1Ep−n−1,n
, (6.1b)

and
Ep,q∞ = 0, q 6= 0, n.
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FIGURE 5. The sheets En+1-term of the Leray-Serre spectral sequence of an Sn-bundle.

Denote by x ∈ Hn(Sn) the cohomology class uniquely determined by the requirement∫
Sn
x = 1.

We regard it as an element of E0,n
∞ . Using the product structure on En+1 we deduce that the multipli-

cation by x defines an isomorphism

− ∪ x : E0,n
∞ → Ep,n.

so that very element in Ep,n∞ is a linear combination of elements of the form ω ∪ x, ω ∈ Hp(M).
Note that dn+1 acts trivially on Ep,0∞ and since dn+1 is an odd derivation we deduce

d(ω ∪ x) = ±ω ∪ dn+1x, ∀ω ∈ Hp(M),

If we set
e := dn+1x ∈ Hn+1(M)

we deduce that the morphism

dn+1 : Hp(M) ∼= Ep,n∞ → Ep+n+1,0 = Hp+n+1(M)

has the form
ω 7→ ±ω ∪ e.

We deduce that
Gr•Hk(E) = Ek−n,n∞ ⊕ Ek,0∞ .

Thus we have a short exact sequence

0→ Ek,0∞ → Hk(E)→ Ek−n,n∞ → 0

which in view of (6.1a) and (6.1b) translate into the long exact sequence

· · · → Ek−n−1,n
∞

dn+1−→ Ek,0∞ → Hk(E)→ Ek−n,n∞
dn+1−→ Ek+1,0

∞ → · · ·

or equivalently

· · · → Hk−n−1(M) ∪e−→ Hk(M) π∗→ Hk(E)→ Hk−n(M) ∪e−→ Hk+1(M)→ · · ·

This is called the Gysin sequence associated to the oriented sphere bundle E → M . The class
e ∈ Hn+1(M) is called the Euler class of the sphere bundle.

As a special case consider the Hopf bundle π : S2n+1 → CPn with fiber S1. Recall its definition.
Consider the unit sphere

S2n+1 :=
{
~z ∈ Cn+1; |~z| = 1

}
.
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We have a natural map π : S2n+1 → CPn that associates to ~z ∈ S2n+1 the one-dimensional complex
subspace L~z spanned by ~z. Note that if ~z, ~ζ ∈ S2n+1 then

L~z = L~ζ⇐⇒∃λ ∈ C, |λ| = 1 : λ~z = ~ζ.

Since CPn is simply connected we deduce that the locally constant sheaves Ĥk
π are actually constant.

We can apply the above discussion. We denote by e ∈ H2(CPn) the Euler class of the Hopf fibration.
The Gysin sequence yields the isomorphisms

R = H0(CPn) ∪e−→ H2(CPn) ∪e−→ · · · ∪e−→ H2n(CPn)

H1(CPn) ∪e−→ H3(CPn) ∪e−→ · · · ∪e−→ H2n−1(CPn).

H1(CPn) π∗−→ H1(S2n+1) = 0.
This shows that the cohomology algebra H•(CPn) is truncated polynomial algebra R[e]/(en+1),
deg e = 2. ut
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