
P H A S I S
Journal Program

F U N C T I O N A L A N A L Y S I S
and Other Mathematics, 2006, 1(1), 97–103

Morse functions statistics?
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Abstract. We prove a conjecture of V. I. Arnold concerning the growth rate of the number
of Morse functions on the two-sphere.
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1. Introduction

We are interested in excellent Morse functions f : S2 → R, where the attribute
excellent signifies that no two critical points lie on the same level set of f . Two such
Morse functions f0, f1 are called geometrically equivalent if there exist orientation
preserving diffeomorphisms R : S2 → S2 and L : R→R such that f1 = L◦ f0 ◦R−1.
We denote by g(n) the number of equivalence classes of Morse functions with
2n+2 critical points. Arnold suggested in [1] that

lim
n→∞

logg(n)

n log n
= 2 . (1.1)

The goal of this note is to establish the validity of Arnold’s prediction.

Acknowledgement. I want to thank Francesca Aicardi for drawing my attention
to Arnold’s question.

2. Some background on the number of Morse functions

We define

h(n) :=
g(n)

(2n+1)!
, ξ (θ) := ∑

n≥0

h(n)θ 2n+1 .

In [4] we have embedded h(n) in a 2-parameter family

(x,y) 7−→ Ĥ(x,y) , x,y ∈ Z≥0 , h(n) = Ĥ(0,n)
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which satisfies a nonlinear recurrence relation, [4, §8].

A. x > 0.

(x+2y+1)Ĥ(x,y)− (x+1)Ĥ(x+1,y−1)

=
x+1

2
Ĥ(x−1,y)+

x+1
2 ∑

(x1,y1)∈Rx,y−1

Ĥ(x1,y1)Ĥ(x̄1, ȳ1) ,

where

Rx,y−1 = {(a,b) ∈ Z
2; 0 ≤ a ≤ x, 0 ≤ b ≤ y−1} ,

and for every (a,b) ∈ Rx,y−1 we denoted by (ā, b̄) the symmetric of (a,b) with
respect to the center of the rectangle Rx,y−1.

B. x = 0.

(2y+1)Ĥ(0,y)− Ĥ(1,y−1) =
1
2

y−1

∑
y1=0

Ĥ(0,y1)Ĥ(0,y−1− y1) .

Observe that if we let y = 0 in A we deduce

Ĥ(x,0) =
1
2

Ĥ(x−1,0) ,

so that Ĥ(x,0) = 2−x.

In [4] we proved that these recurrence relations imply that the function

ξ (u,v) = ∑
x,y≥0

Ĥ(x,y)uxvx+2y+1

satisfies the quasi-linear PDE

−
(

1+uξ +
u2

2

)

∂uξ +∂vξ =

(
1
2

ξ 2 +uξ +1

)

, ξ (u,0) = 0 ,

and the inverse function ξ (0,θ) = ξ 7−→ θ is defined by the elliptic integral

θ =
∫ ξ

0

dt
√

t4/4− t2 +2ξ t +1
. (2.1)
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3. Proof of the asymptotic estimate

Using the recurrence formula B we deduce that for every n ≥ 1 we have

(2n+1)h(n) ≥ 1
2

n−1

∑
k=0

h(k)h(n−1− k) .

We multiply this equality by t2n and we deduce

∑
n≥1

(2n+1)h(n)t2n ≥ 1
2 ∑

n≥1

(n−1

∑
k=0

h(k)h(n−1− k)

)

t2n

(g(0) = 1)

⇐⇒ dξ
dt

≥ 1+
1
2

ξ 2.

This implies that the Taylor coefficients of ξ are bounded from below by the Taylor
coefficients of the solution of the initial value problem

du
dt

= 1+
1
2

u2 , u(0) = ξ (0) = 0 .

The latter initial value problem can be solved by separation of variables

du

1+ u2

2

= dt =⇒ u =
√

2 tan(t/
√

2) .

The function tan has the Taylor series (see [3, § 1.41])

tan x =
∞

∑
k=1

22k(22k −1)|B2k|
(2k)!

x2k−1 ,

where Bn denote the Bernoulli numbers generated by

t
et −1

=
∞

∑
n=0

Bn
tn

n!
.

The Bernoulli numbers have the asymptotic behavior [2, Sect. 6.2]

|B2k| ∼
2(2k)!
(4π2)k .

If Tk denotes the coefficient of x2k+1 in tanx we deduce that

Tk =
22k+2(22k+2 −1)|B2k+2|

(2k +2)!
∼ 22k+3(22k+2 −1)

(4π2)k+1 .
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Thus the coefficient uk of t2k+1 in
√

2 tan(t/
√

2) has the asymptotic behavior

uk ∼
1
2k

22k+3(22k+2 −1)

(4π2)k+1 =
2k+3(22k+2 −1)

(4π2)k+1 .

We deduce that

g(k) > (2k +1)!
2k+3(22k+2 −1)

(4π2)k+1 (1+o(1)) as k → ∞ . (†)

Let us produce upper bounds for g(n). We will give a combinatorial argument
showing that

g(n) ≤ (2n+1)!Cn ,

where Cn = 1
n+1

(2n
n

)
is the n-th Catalan number.

As explained in [1, 4], a geometric equivalence class of a Morse function on S2

with 2n+2 critical points is completely described by a certain labelled tree, dubbed
a Morse tree in [4] (see Fig. 1, where the Morse function is the height function).
For the reader’s convenience we recall that a Morse tree (with 2n+2 vertices) is a
tree with vertices labelled by {0,1, . . .} and having the following two properties.

• Any vertex has either one neighbor, or exactly three neighbors, in which case
the vertex is called a node.

• Every node has at least one neighbor with a higher label, and at least one
neighbor with a lower label.

Fig. 1. Associating a tree with a Morse function on S2

We will produce an injection from the set Mn of Morse functions with 2n+2
critical points to the set Pn × S2n+1 where Pn denotes the set of Planted, Triva-
lent, Planar Trees (PTPT) with 2n + 2 vertices, and S2n+1 denotes the group of
permutations of 2n+1 objects.
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As explained in [4, Proposition 6.1], to a Morse tree we can canonically assign
a PTPT with 2n+2 vertices. The number of such PTPT’s is Cn, [5, Exercise 6.19.f,
p. 220]. The tree in Fig. 1 is already a PTPT.

The non-root vertices of such a tree can be labelled in a canonical way with
labels {1,2, . . . ,2n + 1} (see the explanation in [5, Fig. 5.14, p. 34]). More pre-
cisely, consider a very thin tubular neighborhood N of such a tree in the plane. Its
boundary is a circle. To label the vertices, walk along ∂N in the counter-clockwise
direction and label the non-root vertices in the order they were first encountered
(such a walk passes three times near each node). In Fig. 2, this labelling is indi-
cated along the points marked ◦. The Morse function then defines another bijection
from the set of non-root vertices to the same label set. In Fig. 2 this labelling is
indicated along the vertices marked •.

Fig. 2. Labelling the vertices of a PTPT

We have thus associated with a Morse tree a pair, (T,ϕ), where T is a PTPT
and ϕ is a permutation of its non-root vertices. In Figure 2 this permutation is

1 → 2 , 2 → 3 , 3 → 5 , 4 → 4 , 5 → 1 .

The Morse tree is uniquely determined by this pair. We deduce that

g(n) = #Mn ≤ #Pn ×#S2n+1 = Cn(2n+1)!

=
(2n)!

(n+1)!n!
(2n+1)! =

2 ·4 · · · (2n) ·1 ·3 ·5 · · · (2n−1)

n! ·n!
· (2n+1)!

n+1
.

Hence

g(n) < 2n · (2n+1)!
n+1

n−1

∏
k=0

2k−1
k +1

≤ 22n

(n+1)
(2n+1)! . (‡)

The estimates (†) and (‡) coupled with Stirling’s formula show that

lim
n→∞

logg(n)

n log n
= 2 ,
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which is Arnold’s prediction, (1.1).

Remark 3.1. (a) Numerical experiments suggest that

g(n) < (2n+1)! .

Is it possible to give a purely combinatorial proof of this inequality?

(b) It would be interesting to have a more refined asymptotic estimate for g(n)
of the form

logg(n) = 2n log n+ rn , rn = an+b log n+ c+O(n−1) , a,b,c ∈ R .

The refined Stirling’s formula

log(2n+1)! =

(

2n+
3
2

)

log(2n+1)−2n−1+
1
2

log(2π)+O(n−1)

implies that

logh(n) = logg(n)− log(2n+1)!

= 2n log n+ rn −
(

2n+
3
2

)

log(2n+1)+2n+1− 1
2

log(2π)+O(n−1)

= rn +2n

(

1+ log
n

2n+1

)

− 3
2

log(2n+1)+1− 1
2

log(2π)+O(n−1) .

Hence

rn = log h(n)−2n

(

1+ log
n

2n+1

)

+
3
2

log(2n+1)−1+
1
2

log(2π)

︸ ︷︷ ︸

δn

+O(n−1) .

We deduce that
rn

n
=

δn

n
+O(n−2) .

Here are the results of some numerical experiments.

n δn/n
10 −0.634
20 −0.750
30 −0.790
40 −0.811
50 −0.824

100 −0.849
150 −0.858
200 −0.862

This suggests a ≈−0.8 . . .
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