Morse functions statistics ${ }^{\star}$

Liviu I. Nicolaescu

Abstract

We prove a conjecture of V. I. Arnold concerning the growth rate of the number of Morse functions on the two-sphere.

Keywords: geometric equivalence of Morse functions; asymptotic estimates; plane graphs
MSC-2000: 05A16; 57M15

1. Introduction

We are interested in excellent Morse functions $f: S^{2} \rightarrow \mathbb{R}$, where the attribute excellent signifies that no two critical points lie on the same level set of f. Two such Morse functions f_{0}, f_{1} are called geometrically equivalent if there exist orientation preserving diffeomorphisms $R: S^{2} \rightarrow S^{2}$ and $L: \mathbb{R} \rightarrow \mathbb{R}$ such that $f_{1}=L \circ f_{0} \circ R^{-1}$. We denote by $g(n)$ the number of equivalence classes of Morse functions with $2 n+2$ critical points. Arnold suggested in [1] that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log g(n)}{n \log n}=2 \tag{1.1}
\end{equation*}
$$

The goal of this note is to establish the validity of Arnold's prediction.
Acknowledgement. I want to thank Francesca Aicardi for drawing my attention to Arnold's question.

2. Some background on the number of Morse functions

We define

$$
h(n):=\frac{g(n)}{(2 n+1)!}, \quad \xi(\theta):=\sum_{n \geq 0} h(n) \theta^{2 n+1}
$$

In [4] we have embedded $h(n)$ in a 2-parameter family

$$
(x, y) \longmapsto \hat{H}(x, y), \quad x, y \in \mathbb{Z}_{\geq 0}, \quad h(n)=\hat{H}(0, n)
$$

[^0]which satisfies a nonlinear recurrence relation, $[4, \S 8]$.
A. $x>0$.
\[

$$
\begin{aligned}
(x+2 y+1) \hat{H}(x, y) & -(x+1) \hat{H}(x+1, y-1) \\
& =\frac{x+1}{2} \hat{H}(x-1, y)+\frac{x+1}{2} \sum_{\left(x_{1}, y_{1}\right) \in R_{x, y-1}} \hat{H}\left(x_{1}, y_{1}\right) \hat{H}\left(\bar{x}_{1}, \bar{y}_{1}\right),
\end{aligned}
$$
\]

where

$$
R_{x, y-1}=\left\{(a, b) \in \mathbb{Z}^{2} ; \quad 0 \leq a \leq x, 0 \leq b \leq y-1\right\}
$$

and for every $(a, b) \in R_{x, y-1}$ we denoted by (\bar{a}, \bar{b}) the symmetric of (a, b) with respect to the center of the rectangle $R_{x, y-1}$.
B. $x=0$.

$$
(2 y+1) \hat{H}(0, y)-\hat{H}(1, y-1)=\frac{1}{2} \sum_{y_{1}=0}^{y-1} \hat{H}\left(0, y_{1}\right) \hat{H}\left(0, y-1-y_{1}\right) .
$$

Observe that if we let $y=0$ in \mathbf{A} we deduce

$$
\hat{H}(x, 0)=\frac{1}{2} \hat{H}(x-1,0),
$$

so that $\hat{H}(x, 0)=2^{-x}$.
In [4] we proved that these recurrence relations imply that the function

$$
\xi(u, v)=\sum_{x, y \geq 0} \hat{H}(x, y) u^{x} v^{x+2 y+1}
$$

satisfies the quasi-linear PDE

$$
-\left(1+u \xi+\frac{u^{2}}{2}\right) \partial_{u} \xi+\partial_{\nu} \xi=\left(\frac{1}{2} \xi^{2}+u \xi+1\right), \quad \xi(u, 0)=0
$$

and the inverse function $\xi(0, \theta)=\xi \longmapsto \theta$ is defined by the elliptic integral

$$
\begin{equation*}
\theta=\int_{0}^{\xi} \frac{\mathrm{d} t}{\sqrt{t^{4} / 4-t^{2}+2 \xi t+1}} . \tag{2.1}
\end{equation*}
$$

3. Proof of the asymptotic estimate

Using the recurrence formula \mathbf{B} we deduce that for every $n \geq 1$ we have

$$
(2 n+1) h(n) \geq \frac{1}{2} \sum_{k=0}^{n-1} h(k) h(n-1-k) .
$$

We multiply this equality by $t^{2 n}$ and we deduce

$$
\sum_{n \geq 1}(2 n+1) h(n) t^{2 n} \geq \frac{1}{2} \sum_{n \geq 1}\left(\sum_{k=0}^{n-1} h(k) h(n-1-k)\right) t^{2 n}
$$

$$
(g(0)=1)
$$

$$
\Longleftrightarrow \frac{\mathrm{d} \xi}{\mathrm{~d} t} \geq 1+\frac{1}{2} \xi^{2}
$$

This implies that the Taylor coefficients of ξ are bounded from below by the Taylor coefficients of the solution of the initial value problem

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=1+\frac{1}{2} u^{2}, \quad u(0)=\xi(0)=0
$$

The latter initial value problem can be solved by separation of variables

$$
\frac{\mathrm{d} u}{1+\frac{u^{2}}{2}}=\mathrm{d} t \Longrightarrow u=\sqrt{2} \tan (t / \sqrt{2})
$$

The function tan has the Taylor series (see [3, § 1.41])

$$
\tan x=\sum_{k=1}^{\infty} \frac{2^{2 k}\left(2^{2 k}-1\right)\left|B_{2 k}\right|}{(2 k)!} x^{2 k-1}
$$

where B_{n} denote the Bernoulli numbers generated by

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}
$$

The Bernoulli numbers have the asymptotic behavior [2, Sect. 6.2]

$$
\left|B_{2 k}\right| \sim \frac{2(2 k)!}{\left(4 \pi^{2}\right)^{k}}
$$

If T_{k} denotes the coefficient of $x^{2 k+1}$ in $\tan x$ we deduce that

$$
T_{k}=\frac{2^{2 k+2}\left(2^{2 k+2}-1\right)\left|B_{2 k+2}\right|}{(2 k+2)!} \sim \frac{2^{2 k+3}\left(2^{2 k+2}-1\right)}{\left(4 \pi^{2}\right)^{k+1}}
$$

Thus the coefficient u_{k} of $t^{2 k+1}$ in $\sqrt{2} \tan (t / \sqrt{2})$ has the asymptotic behavior

$$
u_{k} \sim \frac{1}{2^{k}} \frac{2^{2 k+3}\left(2^{2 k+2}-1\right)}{\left(4 \pi^{2}\right)^{k+1}}=\frac{2^{k+3}\left(2^{2 k+2}-1\right)}{\left(4 \pi^{2}\right)^{k+1}} .
$$

We deduce that

$$
g(k)>(2 k+1)!\frac{2^{k+3}\left(2^{2 k+2}-1\right)}{\left(4 \pi^{2}\right)^{k+1}}(1+o(1)) \quad \text { as } k \rightarrow \infty .
$$

Let us produce upper bounds for $g(n)$. We will give a combinatorial argument showing that

$$
g(n) \leq(2 n+1)!C_{n},
$$

where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the n-th Catalan number.
As explained in [1, 4], a geometric equivalence class of a Morse function on S^{2} with $2 n+2$ critical points is completely described by a certain labelled tree, dubbed a Morse tree in [4] (see Fig. 1, where the Morse function is the height function). For the reader's convenience we recall that a Morse tree (with $2 n+2$ vertices) is a tree with vertices labelled by $\{0,1, \ldots\}$ and having the following two properties.

- Any vertex has either one neighbor, or exactly three neighbors, in which case the vertex is called a node.
- Every node has at least one neighbor with a higher label, and at least one neighbor with a lower label.

Fig. 1. Associating a tree with a Morse function on S^{2}
We will produce an injection from the set \mathcal{M}_{n} of Morse functions with $2 n+2$ critical points to the set $\mathcal{P}_{n} \times S_{2 n+1}$ where \mathcal{P}_{n} denotes the set of Planted, Trivalent, Planar Trees (PTPT) with $2 n+2$ vertices, and $S_{2 n+1}$ denotes the group of permutations of $2 n+1$ objects.

As explained in [4, Proposition 6.1], to a Morse tree we can canonically assign a PTPT with $2 n+2$ vertices. The number of such PTPT's is C_{n}, [5, Exercise 6.19.f, p. 220]. The tree in Fig. 1 is already a PTPT.

The non-root vertices of such a tree can be labelled in a canonical way with labels $\{1,2, \ldots, 2 n+1\}$ (see the explanation in [5, Fig. 5.14, p. 34]). More precisely, consider a very thin tubular neighborhood N of such a tree in the plane. Its boundary is a circle. To label the vertices, walk along ∂N in the counter-clockwise direction and label the non-root vertices in the order they were first encountered (such a walk passes three times near each node). In Fig. 2, this labelling is indicated along the points marked o . The Morse function then defines another bijection from the set of non-root vertices to the same label set. In Fig. 2 this labelling is indicated along the vertices marked \bullet.

Fig. 2. Labelling the vertices of a PTPT
We have thus associated with a Morse tree a pair, (T, φ), where T is a PTPT and φ is a permutation of its non-root vertices. In Figure 2 this permutation is

$$
1 \rightarrow 2, \quad 2 \rightarrow 3, \quad 3 \rightarrow 5, \quad 4 \rightarrow 4, \quad 5 \rightarrow 1
$$

The Morse tree is uniquely determined by this pair. We deduce that

$$
\begin{aligned}
g(n) & =\# \mathcal{M}_{n} \leq \# \mathcal{P}_{n} \times \# S_{2 n+1}=C_{n}(2 n+1)! \\
& =\frac{(2 n)!}{(n+1)!n!}(2 n+1)!=\frac{2 \cdot 4 \cdots(2 n) \cdot 1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n!\cdot n!} \cdot \frac{(2 n+1)!}{n+1} .
\end{aligned}
$$

Hence

$$
g(n)<2^{n} \cdot \frac{(2 n+1)!}{n+1} \prod_{k=0}^{n-1} \frac{2 k-1}{k+1} \leq \frac{2^{2 n}}{(n+1)}(2 n+1)!.
$$

The estimates (\dagger) and (\ddagger) coupled with Stirling's formula show that

$$
\lim _{n \rightarrow \infty} \frac{\log g(n)}{n \log n}=2
$$

which is Arnold's prediction, (1.1).
Remark 3.1. (a) Numerical experiments suggest that

$$
g(n)<(2 n+1)!
$$

Is it possible to give a purely combinatorial proof of this inequality?
(b) It would be interesting to have a more refined asymptotic estimate for $g(n)$ of the form

$$
\log g(n)=2 n \log n+r_{n}, \quad r_{n}=a n+b \log n+c+O\left(n^{-1}\right), \quad a, b, c \in \mathbb{R}
$$

The refined Stirling's formula

$$
\log (2 n+1)!=\left(2 n+\frac{3}{2}\right) \log (2 n+1)-2 n-1+\frac{1}{2} \log (2 \pi)+O\left(n^{-1}\right)
$$

implies that

$$
\begin{aligned}
\log h(n) & =\log g(n)-\log (2 n+1)! \\
& =2 n \log n+r_{n}-\left(2 n+\frac{3}{2}\right) \log (2 n+1)+2 n+1-\frac{1}{2} \log (2 \pi)+O\left(n^{-1}\right) \\
& =r_{n}+2 n\left(1+\log \frac{n}{2 n+1}\right)-\frac{3}{2} \log (2 n+1)+1-\frac{1}{2} \log (2 \pi)+O\left(n^{-1}\right)
\end{aligned}
$$

Hence

$$
r_{n}=\underbrace{\log h(n)-2 n\left(1+\log \frac{n}{2 n+1}\right)+\frac{3}{2} \log (2 n+1)-1+\frac{1}{2} \log (2 \pi)}_{\delta_{n}}+O\left(n^{-1}\right)
$$

We deduce that

$$
\frac{r_{n}}{n}=\frac{\delta_{n}}{n}+O\left(n^{-2}\right)
$$

Here are the results of some numerical experiments.

n	δ_{n} / n
10	-0.634
20	-0.750
30	-0.790
40	-0.811
50	-0.824
100	-0.849
150	-0.858
200	-0.862

This suggests $a \approx-0.8 \ldots$

References

1. V. I. Arnold. Smooth functions statistics. Preprint, http://www.math.jussieu.fr/seminaires/singularites/Arnold.html
2. E. A. Bender. Asymptotic methods in enumeration. SIAM Rev., 1974, 16(4), 485-515.
3. I. S. Gradshteyn, I. M. Ryzhik. Table of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
4. L. I. Nicolaescu. Counting Morse functions on the 2 -sphere. Preprint, math.GT/0512496.
5. R. P. Stanley. Enumerative Combinatorics, Vol. II. Cambridge Univ. Press, 1999 (Cambridge Stud. Adv. Math., 62).

Liviu I. Nicolaescu

Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556-4618, U.S.A.
E-mail: nicolaescu.1 @nd.edu
URL: http://www.nd.edu//lnicolae/

[^0]: * This work was partially supported by NSF grant DMS-0303601.

