
EISENSTEIN ORIENTATION: CORE DUMP

MARK BEHRENS

This informal note is meant as a followup to my previous status report [Beh] to my
co-conspirators Mike Hopkins and Niko Naumann, with the goal of constructing a
generalization of the Â and Witten orientations to TAF. The associated Hirzebruch
series is supposed to be expressed in terms of Eisenstein series on Shimura varieties.
The present note describes an unsuccessful attempt to produce an orientation of
TAFE(1).

The material in [Beh] is somewhat complementary to the material here, but the
basic strategy (pulling back Eisenstein series a la Shimura) is the same. The opti-
mistic tone of [Beh] must be tempered by the fact that the very last equation there
is wrong - I misunderstood a coset result of Shimura’s, that brings in a constant
of proportionality expressible as a product of L-functions. The whole business
becomes more complicated, and I can’t get it to come together. Also, when I
wrote the notes [Beh], I thought this would solve the problem, as Harris-Li-Skinner
[HLS06] constructed Eisenstein measure for quasi-split unitary groups. Now that
I actually have read Harris-Li-Skinner, I realize that their Eisenstein measure is
“perpendicular” to the one we want: they give a p-adic interpolation based on
p-adic interpolation of the associated Hecke characters, where they insist that the
Hecke characters vary in p-adic families with the factor at ∞ fixed! We want to
only vary the factors at ∞, so their work is largely inapplicable to our problem.
More on this at the end of the introduction.

Fix

F = quadratic imaginary extension of Q
p = prime which splits as uū in F

V = F vector space of dimension n

〈−,−〉 = alternating hermitian form on V of signature (1, n− 1)

Let UV and GUV be the associated unitary and unitary similitude groups. Let
Kp,∞ be a maximal compact open in GU(Ap,∞), and let TAFUV (Kp,∞) be the
associated p-complete spectrum of topological automorphic forms.

We seek an E∞ orientation

MO〈4n〉 → TAFE(1).

By Ando-Hopkins-Rezk, we know this is provided by a sequence

b2k ∈ π4kTAFQ, k ≥ n
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satisfying

(1) We have
b2k ≡ bMiller

2k mod Z
where bMiller

2k ∈ π2kTAFQ/Z are Miller’s universal Bernoulli numbers.
(2) For c a topological generator of Z×p , there exists a V-valued measure µ(c)

on Z×p whose moments are given by∫
Z×p
xk−1dµ(c) = (ck − 1)b∗k, k ≥ 2n.

Here, bk = 0 for k odd, V = K∧0 (TAF) is the Katz-Hida space of p-adic
automorphic forms, and b∗k = log1(bk), where log1 is Rezk’s K(1)-local
logarithm.

Since π2kTAFQ is the space of rational holomorphic automorphic forms of scaler
weight k for GUV , the bk may be regarded as automorphic forms. Our candidate is

bk = Ek
where Ek are suitably normalized holomorphic Eisenstein series on GU .

Throughout, we write
V = V0 ⊕ V1 ⊕ V̄0.

Here, V1 is anisotropic, V0 is totally isotropic, and V̄0 is dual to V0:

dimF V0 = dimF V̄0 = 1
dimF V1 = n− 2

Our strategy is as follows:

(1) reduce the problem to finding a measure µ(`)
1 on Zp with moments (`k−1)Ek.

The desired measure µ(c) is obtained by restricting µ(`)
1 to Z×p ⊂ Zp.

(2) Define a Hermitian F -vector space

W = V0 ⊕ V1 ⊕ V̄0 ⊕−V1.

Then W has signature (n− 1, n− 1), and a corresponding decomposition

W = W0 ⊕ W̄0.

Use Shimura’s computation of the Fourier expansion of certain Eisenstein
series E′k(z; `) on UW to argue that a suitable normalization E′k(z; `) p-
adically interpolates to a measure ν(`) on Zp.

(3) Under the canonical inclusion UV ↪→ UW , the measure ν(`) pulls back to a
measure µ(`)

2 with moments∫
Zp
xk−1dµ

(`)
2 = ck(`k − 1)Ek.

Then, analyzing the p-adic properties of ck, deduce the existence of the
desired measure µ(`)

1



EISENSTEIN ORIENTATION: CORE DUMP 3

(4) Determine the agreement with the Miller invariants by analyzing the values
of the Ek on certain CM points. This essentially involves pullback under
the composite

UV1 ↪→ UV ↪→ UW .

WARNING: some of the definitions/statements which follow may be slightly incor-
rect, missing minor normalization factors, etc to not get me bogged down. More
seriously I will utterly ignore the possibility of any class numbers being larger than
1, because they will add distracting details. These ”moral” statements are just
meant to illustrate where it all falls apart for me. In particular, adelic language
is suppressed, and thus some statements are (deliberately) inaccurate. They are
accurate enough to sketch the main points.

Other constructions of Eisenstein measures in the literature. I know of
several different (recent) papers by number theorists related to the subject matter
of this note:

Harris-Li-Skinner [HLS06]: Harris-Li-Skinner construct an Eisenstein mea-
sure on U(m,m). Originally, I envisioned we could pull-back their measure
to the desired measure on U(1, n−1). However, the moments of their mea-
sure are all automorphic forms of a fixed weight k, but “change level”. We
want a fixed level, and varying weights. The paper is still a great resource
for p-adic automorphic forms, automorphic induction, integrality of Eisen-
stein series, etc... In fact, the paper uses Shimura’s computation of the
Fourier coefficients for unitary Eisenstein series [Shi97] in an essential way,
as well as Hida’s generalized “q-expansion principle”.

Panchishkin [Pan00]: Panchishkin constructs an Eisenstein measure for Sp(m).
This is closely related, and again uses Shimura’s Fourier expansion com-
putations [Shi83]. The moments are of varying weights, which make this
work closely related to what we want. The work pre-dates Hida’s work on
p-adic automorphic forms, an therefore the “measure” that is constructed
seems to live in a more nebulous space.

Hsieh [Hsib], [Hsia]: Ming-Luh Hsieh (student of Eric Urban) seems to have
the most relevant work, as is represented in some VERY recent preprints.
The author constructs Eisenstein measures on U(1, 2) and U(1, 3). In fact,
the method this author uses is exactly the Shimura pullback method that
I’ve been advocating and describe more fully in this note. Clearly, these
papers deserve close scrutiny by anyone wishing to do something for U(1, n−
1). But I grow tired and impatient, and have not been able to muster the
effort of reading the combined 100 pages of preprints on the subject Hsieh
has produced.

1. Hermitian symmetric domains, factors of automorphy, and some
Eisenstein series

1.1. The case of UV . Under the decomposition

V = V0 ⊕ V1 ⊕ V̄0
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we write matrices g ∈ UV as

g =

a1 b1 c1
a2 b2 c2
a3 b3 c3


Then we have a symmetric hermitian domain given by

HV = {(z, w) ∈ C× Cn−2 : i(z∗ − z) > 〈y, y〉V1}
with action

g · (z, w) =
(
a1z + b1w + c1
a3z + b3w + c3

,
a2z + b2w + c2
a3z + b3w + c3

)
.

For a weight k we define a factor of automorphy

Jk(g, z, w) = (a3z + b3w + c3)−k .

We fix lattices Li of Vi, and take L̄0 to be the lattice dual to L0. Thus we have a
lattice

L = L0 ⊕ L1 ⊕ L̄0

in V . We define a “level 1” congruence subgroup

Γ = {g ∈ UV (Q) : gL = L}.

More generally, for a “level N”, we define

Γ0(N) = {g ∈ Γ : a3L0 ⊆ NL̄0, b3L1 ⊆ NL̄0, b2 ≡ 1 mod N}.
This congruence subgroup is the one associated to the compact group Dψ of [Shi97,
20.6.8].

The relevant “weight k holomorphic automorphic forms of level N” are the holo-
morphic functions on HV that satisfy

f‖kγ = f

for every γ ∈ Γ0(N) where

(f‖kγ)(z, w) = Jk(γ, z, w)f(γ · (z, w)).

It is not necessary to specify a “growth condition at the cusp” [Shi00, Sec. 5.2]
unless n = 2.

We define a parabolic subgroup P ⊆ UV to be the stabilizer of the totally isotropic
subspace V̄0. It consists of matrices of the form∗ ∗ ∗0 ∗ ∗

0 0 ∗


We define Eisenstein series

Ek(z, w) =
∑

g∈(Γ∩P )\Γ

Jk(g, z, w),

Ek(z, w;N) =
∑

g∈(Γ0(N)∩P )\Γ0(N)

Jk(g, z, w).

These series converge for k > 2n− 2
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1.2. The case of UW . Under the decomposition

W = W0 ⊕ W̄0

we write matrices in g ∈ UW as

g =
[
a b
c d

]
Then we have a symmetric hermitian domain given by

HW = {z ∈Mn−1(C) : i(z∗ − z) > 0}
= {x+ iy ∈Mn−1(C) : x, y ∈ Hern−1(F ), y > 0}

with action
g · z =

az + b

cz + d
.

For a weight k we define a factor of automorphy

Jk(g, z) = (cz + d)−k .

The lattices L0 and L1 give rise to a natural choice of lattice L2 of W0. Letting L̄2

be the dual lattice, we get a lattice

L′ = L2 ⊕ L̄2

in W . We define a “level 1” congruence subgroup

Γ′ = {g ∈ UW (Q) : gL′ = L′}.

More generally, for a “level N”, we define

Γ′0(N) = {g ∈ Γ′ : cW0 ⊆ NW̄0}.

The relevant “weight k holomorphic automorphic forms of level N” are the holo-
morphic functions on HW that satisfy

f‖kγ = f

for every γ ∈ Γ′0(N) where

(f‖kγ)(z) = Jk(γ, z)f(γ · z).
It is not necessary to specify a “growth condition at the cusp” [Shi00, Sec. 5.2]
unless n = 2.

We define a parabolic subgroup P ′ ⊆ UW to be the stabilizer of the totally isotropic
subspace W̄0. It consists of matrices of the form[

∗ ∗
0 ∗

]
We define Eisenstein series

E′k(z) =
∑

g∈(Γ′∩P ′)\Γ′
Jk(g, z),

E′k(z;N) =
∑

g∈(Γ′0(N)∩P ′)\Γ′0(N)

Jk(g, z).

These series converge for k > 2n− 2.
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2. Fourier expansions

Let m = n − 1, and fix N > 1. A holomorphic automorphic form on UW has a
Fourier expansion:

f(z) =
∑

β∈Herm(F )

cβq
β

where
qβ(z) = exp(2πiTr(βz)).

The method of computation uses adelic methods to compute the Fourier coefficients
as an Euler product of “Whittaker integrals” - this is discussed in [Shi83]. Shimura
found that, if N > 1, the Fourier expansion of

E∗k(z;N) := E′k(z;N)‖k
[

0 −1m
1m 0

]
had better properties than that for E′k(z;N): the main advantage is cβ(E∗k(−;N)) =
0 for β which are not of full rank.

Theorem 2.1 ([Shi97, Thm. 19.2]). Let L be the dual lattice to Herm(OF ) in
Herm(F ) under the pairing

(α, β) 7→ Tr(αβ).

We have cβ(E∗(−, N)) = 0 unless β ∈ N−1L and β is positive definite. In this
case, we have

cβ(E′(z;N)) = C · ξk ·N−m
2
· αN (β, k)

where:

C = 2m(m−1)/2|∆F/Q|−m(m−1)/4

ξk =
2mk−m(m−1)(−i)mkπmk−m(m−1)/2 detβk−m∏m

j=1(k − j)!

αN (β, k) = ΛN (k)−1
∏
`∈Sβ

fβ,`(`−k)

and:

∆F/Q = the discriminant of F/Q

ΛN (k) =
m−1∏
j=0

LN (k − j, τ j)

τ = Dirichlet character associated to F/Q

LN (s, χ) = Dirichlet series of χ with Euler factors at primes dividing N removed

fβ,`(t) = integral polynomial with constant term 1

Sβ = {` 6 |N : ` ramified in F or det(β) 6∈ Z×` }

Note that the set Sβ above is a finite set of primes which depends on β. For such
` ∈ Sβ , the polynomials fβ,` and fN−1β,` agree.
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In summary, we have, for β ∈ L positive definite:

cN−1β = (−i/N)mk

m−1∏
j=0

(2π)k−j

|∆F/Q|j/2(k − j − 1)! · LN (k − j, τ j)

det(β)k−m
∏
`∈Sβ

fβ,`(`−k).

We will normalize these Eisenstein series and define

E∗k(z;N) := (iN)mk

m−1∏
j=0

|∆F/Q|j/2(k − j − 1)! · LN (k − j, τ j)
(2π)k−j

E∗k(z;N).

We similarly normalize the E′k(z;N):

E′k(z;N) := (iN)mk

m−1∏
j=0

|∆F/Q|j/2(k − j − 1)! · LN (k − j, τ j)
(2π)k−j

E′k(z;N).

Observe that we have

E′k(z;N) = E∗k(z;N)‖k
[

0 −1m
1m 0

]
.

3. p-integral and p-adic automorphic forms

3.1. The case of UW . Recall m = n− 1. The Shimura stack Sh(UW ) is a moduli
stack of tuples whose R-points (for p-complete R) are given by

(A′, i′, λ′)/R

where

A′ = abelian scheme over R of dimension 2m,

i′ : OF ↪→ End(A),

λ′ = polarization of A′ compatible with i

such that:

(1) the formal group A′(u)inf is m-dimensional,
(2) the Tate module (away from p, at a geometric fiber) with Weil pairing

(T̂ p(A′s), 〈−,−〉λ′) is isomorphic to (L′p,TrF/Q〈−,−〉′W ).

For us, an “automorphic form for UW over Zp of weight k” is a rule f which, for
p-complete rings R gives

(A′, i′, λ′, (vi))/R 7→ f(A′, i′, λ′, (vi)) ∈ R
where (vi) is a framing of LieA(u), satisfying

f(A′, i′, λ′, (α(vi)) = det(α)kf(A′, i′, λ′, (vi))

for all α ∈ GLm(R). We will denote the space of these things (M ′k)Zp .

Hida has proven a q-expansion principle for these things, which implies that if f
is a modular form for UW over C of weight k whose q-expansion has coefficients
which lie in Zp (i.e., the coefficients of the q-expansion of f lies in OF,(p), and we
regard these as being in Zp ∼= OF,u) then there is a corresponding f ∈ (M ′k)Zp .
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A “p-adic automorphic form for UW ” is a rule f which, for p-complete rings R gives

(A′, i′, λ′, φ′)/R 7→ f(A′, i′, λ′, φ′) ∈ R
where φ′ is an isomorphism of formal groups

φ′ : (Ĝm)×m
∼=−→ A(u)inf .

We will denote the space of these things V′. Note that using the canonical isomor-
phism

End(Ĝm) = Zp
we have

Aut((Ĝm)m) = GLm(Zp).
We therefore get an action of α ∈ GLm(Zp) on V′ by

([α] · f)(A′, i′, λ′, φ′) = f(A′, i′, λ′, φ′ ◦ α).

We let V′[k] denote the subspace consisting of those f for which

[α] · f = det(α)kf

for all α.

Let d
dt be the standard vector in Lie Gm. There is an embedding

(M ′k)Zp → V′[k]

f 7→ f̂

given by

f̂(A′, i′, λ′, φ′) = f(A′, i′, λ′, ((φ′)∗
∂

∂ti
)).

3.2. The case of UV . The Shimura stack Sh(UV ) is a moduli stack of tuples whose
R-points (for p-complete R) are given by

(A, i, λ)/R

where

A = abelian scheme over R of dimension n,

i : OF ↪→ End(A),
λ = polarization of A compatible with i

such that:

(1) the formal group A(u)inf is 1-dimensional,
(2) the Tate module (away from p, at a geometric fiber) with Weil pairing

(T̂ p(As), 〈−,−〉λ) is isomorphic to (Lp,TrF/Q〈−,−〉V ).

For us, an “automorphic form for UV over Zp of weight k” is a rule f which, for
p-complete rings R gives

(A, i, λ, v)/R 7→ f(A, i, λ, v) ∈ R
where v ∈ LieA(u) is non-zero, satisfying

f(A, i, λ, αv) = αkf(A, i, λ, v)

for all α ∈ R×. We will denote the space of these things (Mk)Zp .
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A “p-adic automorphic form for UV ” is a rule f which, for p-complete rings R gives

(A, i, λ, φ)/R 7→ f(A, i, λ, φ) ∈ R

where φ is an isomorphism of formal groups

φ : Ĝm

∼=−→ A(u)inf .

We will denote the space of these things V. Note that using the canonical isomor-
phism

End(Ĝm) = Zp
we have

Aut(Ĝm) = Z×p .

We therefore get an action of α ∈ Z×p on V′ by

([α] · f)(A, i, λ, φ) = f(A, i, λ, φ ◦ α).

We let V[k] denote the subspace consisting of those f for which

[α] · f = αkf

for all α.

There is an embedding

(Mk)Zp → V[k]

f 7→ f̂

given by

f̂(A, i, λ, φ) = f(A, i, λ, ((φ)∗
d

dt
)).

4. Eisenstein measure for UW

Using the q-expansion principle, and the explicit form of the Fourier expansions,
we deduce that there is a V′-valued measure ν(N) on Zp with moments∫

Zp
xk−1dν(N) = Êk(N).

Do I really know this? I think if p divides N , the argument of [Pan00] works. If
p does not divide N , we know the argument works in the case of n = 2 (classical
Eisenstein series) by the explicit form of the polynomials fβ,`. Here we need the
factor of det(β)k−m to correct for some p’s in the denominators: see Section 9.

5. Pullback of Eisenstein series

The Eisenstein series pull back in many different senses.
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5.1. Analytic pullback. The embedding

V = V0 ⊕ V1 ⊕ V̄0 ↪→ V0 ⊕ V1 ⊕ V̄0 ⊕−V1 = W

gives an embedding
ιWV : UV ↪→ UW

and hence an embedding of symmetric hermitian domains

ιWV : HV ↪→ HW
which has a conceptual interpretation in terms of “complex structures” (see [Beh]).
In terms of our explicit presentations of the symmetric hermitian domains, ιWV
is given by some elaborate formulas. We are interested in the pullback of the
Eisenstein series E′k(N) along ιWV .

This is done in [Shi97, 22.6.6] - see also [Shi00, Proof of Thm. 26.13] for a “synopsis”.
I have had a terribly difficult time understanding these formulas.

Basically, in our case, it seems to roughly say (modulo a “mass term” which I’m
deliberately omitting, although for Shimura it is a principle object of study - this
goes with my “class number 1” deception):n−3∏

j=0

LN (k − j; τ j)

 (iWV )∗E′k(N) =

n−3∏
j=0

LNF (−j;χ−k)

Ek(N).

Here, χ−k is the Hecke character whose associated ideal character satisfies

χ−k((α)) = α−k.

(Because I am pretending all class numbers are 1, it suffices to define on priciple
ideals). Note that some Euler factors in the above L-functions for F may need to
be tweaked to account for places of Q which do not split in F and which do not
divide N , for which the corresponding localization of 〈−,−〉W is not hyperbolic.

We deduce that

(iWV )∗(E′k) =

(iN)(n−1)k

n−3∏
j=0

|∆F/Q|j/2(k − j − 1)! · LNF (−j, χ−k)
(2π)k−j


·
|∆F/Q|(n−2)/2(k − n+ 1)! · LN (k − n+ 2, τn−2)

(2π)k−n+2
Ek(N).

5.2. algebraic interpretation. The map of Shimura varieties

ShV → ShW

has a moduli theoretic interpretation.

Namely, (ignoring class number issues), there is a “unique” polarized OF -linear
abelian variety (A1, i1, λ1)/Zp of dimension n−2 whose p-divisible summand A1(u)
is of dimension n− 2, and for which there is an isomorphism

(T̂ p(A1), 〈−,−〉λ1) ∼= (L̂p1,−TrF/Q〈−,−〉V1).
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(In reality, class numbers make there be a finite scheme’s worth of such (A1, i1, λ1)’s
- think elliptic curves with complex multiplication by F .)

The p-divisible group A(u) is necessarily formal, and there exists an isomorphism

φ1 : Ĝn−2
m

∼=−→ A(u).

I want to say that there is some preferred choice that is somehow dictated by the
form −〈−,−〉V1 , but for the life of me I can’t seem to come up with how.

The map on Shimura stacks is given on R-points by

(A, i, λ) 7→ (A×A1, i× i1, λ× λ1).

For any automorphic form f ∈ (M ′k)Zp , the pullback (iWV )∗f ∈ (Mk)Zp is given by

((iWV )∗f)(A, i, λ, v) = f(A×A1, i× i1, λ× λ1, (v, (φ1)∗
∂

∂t1
, . . . , (φ1)∗

∂

∂tn−2
)).

We also get an induced map on p-adic automorphic forms

(iWV )∗ : V′ → V
by

((iWV )∗f)(A, i, λ, φ) = f(A×A1, i× i1, λ× λ1, φ× φ1).

6. Eisenstein measure for UV

Define normalized Eisenstein series on UV by

Ek(N) =
[
Nk(k − 1)! · LNF (0, χ−k)

(−2πi)k

]
·
[
LN (k − n+ 2, τn−2)
LNF (−n+ 2, χ−k)

]
Ek(N)

We deduce that

(iWV )∗E′k(N) = (iN)(n−2)k

n−2∏
j=1

|∆F/Q|j/2(k − j − 1)! · LNF (−j, χ−k)
(2π)k−j

Ek(N)

Define

L∞,NF (−j, χ−k) =
|∆F/Q|j/2(k − j − 1)! · LNF (−j, χ−k)

(2π)k−j

Define a measure µN2 on Zp valued in V by pulling back the measure ν(N) along
iWV . Thus we have∫

Zp
xk−1µ

(N)
2 = (iN)(n−2)k

n−2∏
j=1

L∞,NF (−j, χ−k)Êk(N).

Now we have [Shi97, Lemma 12.7(2)]

Ek =
∑

γ∈Γ0(N)\Γ

Ek(N)‖kγ.

Define

Ek =
[

(k − 1)! · LF (0, χ−k)
(−2πi)k

]
·
[
L(k − n+ 2, τn−2)
LF (−n+ 2, χ−k)

]
Ek
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We have

(6.1) NkL−1
F,N (0, χ−k)

[
LF,N (−n+ 2, χ−k)
LN (k − n+ 2, τn−2)

]
Ek =

∑
γ∈Γ0(N)\Γ

Ek(N)‖kγ

where LN , LF,N denotes the products of Euler factors dividing N .

Alternatively, I would be perfectly satisfied with a measure µ̃(N) with moments∫
Zp
xk−1dµ̃(N) = (Nk − 1)Ek

6.1. What I would like, but don’t have. I would like a measure µ(N) on Zp
valued in V with moments∫

Zp
xk−1dµ(N) = NkL−1

F,N (0, χ−k)
[
LF,N (−n+ 2, χ−k)
LN (k − n+ 2, τn−2)

]
Êk.

Such a measure could be constructed from a measure µ(N)
1 with moments∫

Zp
xk−1dµ

(N)
1 = Êk(N).

But to get µ(N)
1 from µ

(N)
2 , we need to “divide” the moments of µ(N)

2 by

n−2∏
j=1

L∞,NF (−j, χ−k).

I don’t think I can do this for N > 1.

Ironically, I think one can do this for N = 1. This is because of the form of the Katz
2-variable p-adic L-function (See [Yag82, Thm 9], where his (k− 1)!L∞(k, ψ̄k+j) is
L∞F (−j, χ−(k+j)) in our notation.)

Alternatively, I would be perfectly satisfied with a measure µ̃(N) with measures∫
Zp
xk−1dµ̃(N) = (Nk − 1)Ek

Presumably such a thing could be obtained using the remark in the paragraph
above from a measure ν̃(N) valued in V′ with moments∫

Zp
xk−1dν̃(N) = (Nk − 1)E′k

but I don’t have a handle on how to understand the Fourier expansion of E′k(N)
when N = 1.

7. Eisenstein measure on Z×p

Up to this point we have only talked about constructing measures on Zp, and have
ignored the effect of the logarithm log1. We will now explain how these two things
probably happen “automatically”.
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Katz, in [Kat75], [Kat77], studies measures arising from power series F (X) lying
in (a suitable base change) of the coordinate ring of a formal group G. In Katz’s
set-up, the association is given by∫

Zp
xkdµF = DkF (0)

where D is an invariant differential operator “dual” to the coordinate x.

In [Kat75, Sec. IV] it is shown that∫
Z×p
xkdµF =

∫
Zp
xkdµF∗

where
F ∗(X) = F (X)− 1

p

∑
ζ∈G[p]

F (X +G ζ).

I think that this implies that∫
Z×p
xkdµF = log1

∫
Zp
xkdµ.

for the F ’s under consideration.

8. Compatibility with Miller invariants

If everything else in this note compiled (which it doesn’t), we would still be left
with showing that b2k ≡ bMiller

2k mod Z.

How do we compute the Miller invariants? Let E be an elliptic curve with complex
multiplication by F , chosen so that dimE(u) = 1. Let Ē be the curve with con-
jugate multiplication, so that dim Ē(u) = 0. Let (Ā1, ī1, λ̄1) denote conjugate of
the polarized F -linear abelian variety obtained from (A1, i1, λ1) of Section 5.2 (i.e.
conjugate F -linear structure) so that dim Ā1(u) = 0. Then

(E × Ē × Ā1, iE × īE × ī1, λE × λ̄E × λ̄1)

is a CM point of ShV .

Consider the following diagram of E∞-ring spectra obtained by using the unit maps:

S //

��

TAFE(1)

��
K // K ∧ TAFE(1)

Since Miller invariants are functorial in E∞ rings, we deduce that

bMiller
2k (TAF) ≡ bMiller

2k (K) mod Z.
But

π∗K ∧ TAF = V[u±1].
where the right hand side is p-adic automorphic forms. The inclusion

π0K → V
is the inclusion of “constant” p-adic automorphic forms.
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We therefore have two steps:

Step 1: Show that Ek is constant mod Z.
Step 2: Show that Ek(x) ≡ bMiller

2k (x) mod Z for one point x ∈ ShV .

I have no idea how to attack step 1. If an automorphic form is constant mod Z on
CM-points, is it constant mod Z? If this is true, then the strategy I outline for step
2 below could perhaps be adapted to handle step 1... (Actually, it looks like Hsieh
and Hida may have also studied this in the context of Hilbert moduli spaces: “On
the non-vanishing of Hecke L-values modulo p.”?)

Step 2: Take the point x to be the CM point given by

x = (E × Ē × Ā1, iE × īE × ī1, λE × λ̄E × λ̄1).

However, under the inclusion of Shimura stacks ShV ↪→ ShW , the CM point x gets
mapped to a CM point x′ of ShW given by

x′ = (E × Ē × Ā1 ×A1, iE × īE × ī1 × i1, λE × λ̄E × λ̄1 × λ1).

Of course, we then have

E′k(x′) = i(n−2)k

n−2∏
j=1

|∆F/Q|j/2(k − j − 1)! · LF (−j, χ−k)
(2π)k−j

Ek(x).

However, the point x′ is essentially the Shimura stack ShW0 , for the maximal totally
isotropic subspace W̄0 ⊂ W . Then, again using Shimura’s pullback formula, this
time for the inclusion of the group

UW̄0
↪→ UW

[Shi97, 22.6.6], we get something “like” the following:

Ek(x) =
(k − 1)! · LF (0, χ−k)

(−2πi)k
= −BHk

k

where BHk are the “Bernoulli Hurewitz numbers”. The inclusion of the CM point
x induces an E∞ map

TAF→ KE

where KE is the “form of K-theory” associated to the elliptic curve E. Since (say
by the restriction of the Witten orientation, and Dammerell’s formula) we have

bMiller
2k (KE) = −BHk

k
,

and step 2 would follow.
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9. Example: the case of n = 2

Same notation, specialized to n = 2, we show that everything works. We have

V = V0 ⊕ V̄0

SUV (Q) = SL2(Q)
HV = upper half plane

Jk(
[
a b
c d

]
, z) = (cz + d)−k

Ek(z) =
1
2

∑
(m,n)=1

1
(mz + n)k

Ek(z;N) =
1
2

∑
(m,n)=1

c≡0 (mod N)

1
(mz + n)k

E∗k(z;N) =
∞∑
β=1

cβ/Nq
β/N

=
(−2πi)k

NkζN (k)(k − 1)!

∞∑
β=1

βk−1
∏
`|β
` 6 |N

fβ,`(`−k)qβ/N

fβ,`(t) = 1 + `t+ `2t2 + · · ·+ `ν`(β)tν`(β)

We therefore get the usual q-expansion of the Eisenstein series E∗k(z;N) = Ek(z;N)‖k
[
0 −1
1 0

]
:

E∗k(z;N) =
(−2πi)k

NkζN (k)(k − 1)!

∞∑
β=1

∑
d|β

(d,N)=1

(β/d)k−1qβ/N

The normalization conventions thus specialize to give:

E∗k =
∞∑
β=1

∑
d|β

(d,N)=1

(β/d)k−1qβ/N .

In the n = 2 case, we have V = W , Ek(z;N) = E′k(z,N), and Ek(z;N) = E′k(z;N).
The coefficients of this q-expansion are easily seen to p-adically interpolate to the
moments of a measure (see [Kat75]). Therefore, the Eisenstein series

Ek(z;N) = E∗k(z;N)‖k
[
0 −1
1 0

]
p-adically interpolate to our desired V-valued measure µ(N)

2 = ν(N) on Zp with:∫
Zp
xk−1µ

(N)
2 = Êk(N).

Now, we have
Ek(z) =

∑
[γ]∈Γ0(N)\Γ(1)

Ek(z;N)‖kγ
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which gives
NkζN (k)Ek(z) =

∑
[γ]∈Γ0(N)\Γ(1)

Ek(z;N)‖kγ

We therefore get a measure µ(N)
1 with moments∫

Zp
xk−1µ

(N)
1 = NkζN (k)Êk.

If N = `, a prime different from p, this specializes to give∫
Zp
xk−1µ

(`)
1 = (`k − 1)Êk

which is the Katz Eisenstein measure.

Let me pause to point something out: the above construction differs from the
construction of Katz in [Kat75] in that we make no use of his “Key Lemma”. We
only used the q-expansion of E∗k(z; `). From the point of view of adelic Fourier
analysis (Whittaker integral technique) the computation of the coefficients of this
Fourier series is actually much simpler than that of Ek(z): this is because the
corresponding function in the parabolically induced representation for GL2(A) is
supported on the ”big cell”.

Note that we have

Ek(z;N) =
NkζN (k)(k − 1)!

(−2πi)k

1 +
∞∑
n=1

∑
d|n

(d,N)=1

dk−1qn


and in particular have

Ek(z) =
ζ(k)(k − 1)!

(−2πi)k

1 +
∞∑
n=1

∑
d|n

dk−1qn

 .

Thus, specializing the above to the constant terms gives a p-adic interpolation of
the values

−(`k − 1)Bk/k
giving the Kubota-Leopoldt ζ-measure.

As in [Kat75], the measure µ
(`)
1 constructed above, when restricted to Z×p , has

moments ∫
Z×p
xk−1µ

(`)
1 = (`k − 1) log1 Êk.

The verification of the equality of Miller invariants specializes to an analysis of
Bernoulli-Hurwitz numbers mod Z.

References

[Beh] Mark Behrens, Orientations and Eisenstein seris, handwritten digital notes, available at

www-math.mit.edu/∼mbehrens/preprints.
[HLS06] Michael Harris, Jian-Shu Li, and Christopher M. Skinner, p-adic L-functions for uni-

tary Shimura varieties. I. Construction of the Eisenstein measure, Doc. Math. (2006),

no. Extra Vol., 393–464 (electronic). MR MR2290594 (2008d:11042)



EISENSTEIN ORIENTATION: CORE DUMP 17

[Hsia] Ming-Lun Hsieh, Eisenstein congruence on unitary groups and Iwasawa main conjecture

for CM fields, available at http://www.math.ntu.edu.tw/∼mlhsieh/.

[Hsib] , p-adic ordinary Eisenstein series and p-adic L-functions for unitary groups,
available at http://www.math.ntu.edu.tw/∼mlhsieh/.

[Kat75] Nicholas M. Katz, p-adic L-functions via moduli of elliptic curves, Algebraic geometry

(Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974), Amer.
Math. Soc., Providence, R. I., 1975, pp. 479–506. MR MR0432649 (55 #5635)

[Kat77] , Formal groups and p-adic interpolation, Journées Arithmétiques de Caen (Univ.

Caen, Caen, 1976), Soc. Math. France, Paris, 1977, pp. pp 55–65. Astérisque No. 41–42.
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