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1. INTRODUCTION 

 The empirical distributions of many economic and financial time series exhibit fat 

tails. This has been well documented in the literature.1 The presence of fat tails warrants 

the use of probability distributions that can accommodate the likelihood of large positive 

or negative shocks impacting the economy. Gaussian distributions do not admit this 

possibility. However, these distributions are well understood and analytically tractable. 

This explains their pervasive use across macroeconomics and finance. 

 Non-Gaussian fat-tailed distributions have been used to some extent, especially in 

models of asset pricing. In such studies, the underlying asset price is typically assumed to 

either follow a Gaussian distribution supplemented by features such as stochastic 

volatility and/or jumps (thus making the resulting distribution non-Gaussian), or simply 

assumed to follow a non-Gaussian distribution such as an α -stable distribution. 

However, one reason why departures from a Gaussian distribution are not more common, 

despite its documented deficiencies, is the added complexity concomitant with such 

departures. Also, often in economic models, the use of many non-Gaussian distributions 

precludes the possibility of finding exact analytical solutions to equilibrium quantities of 

interest. 

 One may then ask what the cost of ignoring fat tails in economic model building 

would be.2 One answer is available from the options pricing literature where the 

assumption of normality is relaxed to accommodate the possibility of large movements in 

prices of underlying assets. In this vein, Hales (1997) finds that an options pricing model 

                                                           
1 Studies documenting fat tails in macroeconomic series include, among others, 
Blanchard and Watson (1986), Balke and Fomby (1994), and Kiani and Bidarkota 
(2003). 
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with α -stable distributions that capture fat tails due to McCulloch (1987) reduces pricing 

biases relative to the Gaussian Black-Scholes (1973) model for valuing foreign currency 

options. A second answer is available from the asset allocation literature. Here, Tokat et 

al. (2003) find that the optimal allocation of wealth between risk-free and risky assets 

could be up to 26 percent different when one accounts for fat tails in the empirical 

distributions of underlying data. In an asset-pricing context, Bidarkota and McCulloch 

(2003) find that accounting for fat tails in the dividends data generates an additional 13 

percent of equilibrium equity returns in the standard consumption-based asset-pricing 

model.  

In this study we seek to provide another answer to the question on the economic 

costs of ignoring fat tails in economic models. We provide an answer in the context of the 

popularly used consumption-based asset-pricing model of Lucas (1978), augmented with 

a habit-formation feature as in Abel (1999). We study two versions of the model – one in 

which exogenous consumption stochastically evolves as a non-Gaussian process 

exhibiting fat tails and the benchmark version in which consumption evolves as a 

Gaussian process. We calculate the model-implied equilibrium rates of return, the equity 

and the term premia in the two versions and compare them to evaluate the economic 

impact of modeling fat tails. 

We model fat tails in this paper with the Dampened Power Law (DPL), recently 

utilized by Wu (2004) to examine the tail behavior of financial security returns and 

option prices. DPL nests α -stable distributions but, unlike these, has the advantage that 

                                                                                                                                                                             
2 Outside the context of an explicit economic model, the danger inherent in ignoring fat 
tails in empirical distributions in economic analysis is illustrated in studies such as those 
on value-at-risk measures (Khindanova et al., 2001). 



 4

all moments are finite under strictly positive dampening. This renders model-implied 

rates of return and equity and term premia finite under certain restrictions. 

The paper is organized as follows. We set out the asset-pricing model in section 2.  

In section 3, we specify the stochastic process that accounts for fat tails, discuss an 

estimation method, and then specialize solutions to equilibrium quantities of interest 

implied by the asset-pricing model to the postulated stochastic structure. In section 4, we 

report maximum likelihood estimates of the model with data from the US, and calculate 

the model-implied equilibrium rates of return and equity and term premia. In section 5, 

we conclude with the main observations derived from our study. 

 

2. THE ASSET-PRICING MODEL 

 In this section we provide a description of the asset-pricing model due to Abel 

(1999) that forms the basis for our study. We specify preferences, define a canonical 

asset, note the stochastic structure, outline the key steps for solving for equilibrium asset 

prices, and define the rate of return on the canonical asset and the term premium. The 

content of this section is largely derived from Abel (1999). 

 

2.1 Preferences 

The model economy is populated by a continuum of identical infinitely-lived 

agents. It is a closed economy, producing a single completely perishable output. Thus, 

consumption in every period must equal output.   

 A representative consumer maximizes expected lifetime utility given by: 

( )
( )











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= ∑
∞

=
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jtjtjtt ,cu

1
1EU      (1) 
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Here, r  is the coefficient of relative risk aversion (CRRA) and tν  is a benchmark level 

of consumption assumed exogenous to the individual consumer.  

The benchmark level of consumption is assumed to depend on the aggregate per 

capita level of consumption tC  as follows: 

  ( ) 210
hth

1t
h
tt GCC −≡ν        (3) 

where 1G ≥  and 1h0 i ≤≤  for 2,1,0i = . Setting 0h1 >  and 0hh 20 ==  produces the 

‘catching up with the Joneses’ utility specification of Abel (1990).  

 The intertemporal marginal rate of substitution (IMRS) between period t  and 

period 1t +  is given by: 

  
( )
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Using equations (2) and (3) and recognizing that, in equilibrium,  
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the IMRS can be written as: 

  θ−
++ β= t
A
1t1t xxM        (6a) 

where   ( ) 0G
1

1 1rh 2 >
δ+

≡β −       (6b) 

  ( ) 0hh1rA 00 >+−≡       (6c) 

and  ( )1rh1 −≡θ .        (6d) 

The equilibrium asset prices and returns depend on the IMRS. 
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 In the model, there are six preference parameters - Gand,h,h,h,r, 210δ - and all 

six parameters determine the IMRS as is evident from the equations above. However, 

there are only three independent parameters - θβ and,A,  - that determine the IRMS as 

given in equation (6a).  

 

2.2 The Canonical Asset 

 Abel (1999) introduces a canonical asset that includes fixed income securities of 

all maturities and equities as special cases. The canonical asset is an n-period asset, with 

the current period indexed by t  and terminal period by nt + . This asset pays λ
−+ jntjya  

in the period that is j periods before the terminal period for 1n,...,0j −= , where 

0y jnt >−+  is a random variable, 0a0 >  is a constant, and 1n,...,1j,0a j −=≥  are 

constants. The parameter λ  takes the value zero for fixed income securities and one for 

equities. 

 Thus, the payoff for fixed-income securities in period jnt −+  is the known 

amount ja . In the Lucas (1978) fruit-tree model, the dividend (per capita) on equity 

equals consumption per capita tC . In terms of the canonical asset, this equity can be 

represented with ∞=n , 1a j =  for all 0j ≥ , and tt Cy ≡ . 

 Let ( )λ,npt  denote the ex-payment price of the canonical n-period asset in period 

t. The dependence of this price on the sequence of constants 1n,...,0j,a j −=  and on the 

stochastic process for ty  is suppressed for notational convenience. The gross rate of 

return on the canonical asset between period t and period 1t +  is given by: 
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  ( ) ( )
( )λ

+λ−
≡λ

λ
+−+

+ ,np
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t

1t1n1t
1t ,  for 1n ≥ .  (7) 

 

2.3 The Stochastic Structure 

 The payoff growth rates t1t1t y/yz ++ ≡  and the consumption growth rates 

t1t1t C/Cx ++ ≡  observable at the beginning of period 1t +  are assumed throughout this 

paper to follow i.i.d. processes. 

 

2.4 Asset Prices 

Asset prices are postulated to be given by: 

 ( ) ( ) λθλω=λ ttt yx,n,np       (8) 

where ( )λω ,n  is a function to be determined. The first order condition for utility 

maximization in this model is as follows: 

  ( ){ } 1M,nRE 1t1tt =λ ++       (9) 

Substituting equation (8) in equation (7) and the resulting expression for the gross 

rate of return into the first order condition above yields the following difference equation 

in ( )λω ,n  under the assumption that 1tz +  and 1tx +  follows i.i.d. processes: 

  ( ) ( ) ( ) { }λ
+

−
+−β+λ−ωλκ=λω 1t
A
1t1n zxEa,1n,n    (10a) 

where   ( ) { }λ
+

−θ
+β=λκ 1t

A
1t zxE .      (10b) 

Throughout this paper, we assume as in Abel (1999) that ( ) 10 <λκ< . This assumption 

guarantees that the difference equation (10a) converges as n grows.  
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 The fact that the price of a zero-period asset has to be zero, i.e. that ( ) 0,0pt =λ , 

provides the boundary condition for solving the difference equation (10a). Using this 

boundary condition and equation (8) in equation (10a) yields: 

  ( ) { } 0zxEa,1 1t
A
1t0 >β=λω λ

+
−
+       (11) 

The solution to the difference equation with the above boundary condition, as can be 

easily verified, is given by: 

  ( ) ( ) ( )[ ]∑
=

−
− λκ

λω
=λω

n

1i

in
1i

0
a

a
,1,n .     (12) 

 

2.5 Expected Rate of Return on the Canonical Asset  

Starting from equation (7), the expected rate of return on the one-period canonical 

asset can be shown to be: 

 ( ){ }
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The expected rate of return on an n-period canonical asset can then be shown to be: 
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2.6 Term Premia  

The term premium on an n-period asset is defined as: 

 ( ) ( ){ }
( ){ } 1

,1RE
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λ
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Using equation (14a), this becomes: 

 ( ) ( ) ( )λΓ−Ψ=λ ,n1,nTP       (16a) 

where  ( ) ( )
( )

( )[ ]∑
=

−
−

−−

λκ

−=
λω
λω

−≡λΓ n

1i

in
1i
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0

1n

a
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,1

a
a1,n    (16b) 

 The term ( )1−Ψ  is the term premium scale factor; it does not depend on the 

maturity n. It can be easily seen from equation (14b) that when 0=θ , 1=Ψ  and hence 

the term premium scale factor is zero. This happens when either utility is logarithmic 

( 1r = or when 0h1 =  from equation (6d)). For an n-period discount bond, 

0a...a 1n1 === − . Therefore, from equation (16b), ( ) 10,n =Γ  for 1n > . Thus, the term 

premium is independent of the maturity n for pure discount bonds with more than one 

period to run.  

 

3. EXOGENOUS DRIVING PROCESS AND EQUILIBRIUM RATES OF 

RETURN AND TERM PREMIA 

In section 3.1 we define explicitly the dampened power law process for 

consumption growth rates, and in section 3.2 discuss estimation of the process. In section 

3.3 we specialize the formulae for the term premium and the expected rates of return on 

the canonical asset to risk-free discount bonds and equity that pays consumption goods as 

in the Lucas (1978) fruit tree model. In section 3.4 we outline the benchmark Gaussian 

consumption process. 

 

3.1 Stochastic Process for Consumption Growth Rates – Dampened Power Law. 
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Economic and financial asset returns have been shown to possess distributions 

displaying power law decay in their tails, indicating that the tails are thicker than what 

one would find in the Gaussian case. These fat-tailed distributions are often said to have 

“power tails” that are inconsistent with the common Gaussian distributional assumption. 

However, most asset returns also converge to a Gaussian distribution when aggregated 

over time. This fact is inconsistent with the assumption of an α -Stable distribution as a 

possible explanation for the observed power tails mentioned above, since time-

aggregation of Stable distributions yields a Stable distribution. In a recent article, Wu 

(2004) focuses on reconciling these apparently contradicting observations by modeling 

asset returns with a Dampened Power Law (DPL). 

The DPL model aims at reproducing the power tails observed in the finance and 

economics literatures, simultaneously allowing time aggregation to lead to Gaussian 

distributions (by permitting the Central Limit Theorem to hold). This is accomplished by 

the dampening of the tails of the probability distributions with an exponential function 

that nevertheless permits accurate modeling of the power tail distributions observed 

empirically. Dampening also guarantees the existence of finite moments of all orders. 

Without dampening, not all moments of the power tail distributions are finite and hence 

time aggregation would not necessarily lead to Gaussian behavior.  

In the DPL setting, we assume that the consumption growth rates follow: 

  t 1 t 1ln(x )+ += µ + ε ,      (17a) 

where εt is a pure jump Lévy process following a Dampened Power Law (DPL), with its 

Lévy density – controlling the distribution – defined by: 
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{ }
{ }

1

1

exp , 0
v( )

exp , 0

−α−
+ +

−α−
− −

γ −β ε ε ε >ε = 
γ −β ε ε ε <

     (17b) 

where (0,2] and , , , 0+ − + −α ∈ γ γ β β > . The β parameters control the amount of 

dampening, whereas the γ parameters determine the symmetry of the distribution. The α 

parameter is identical to the α parameter found in the traditional α-Stable distributions, 

guiding the amount of leptokurtosis in the tails.  

We adopt this DPL process for describing the exogenously evolving consumption 

growth rates in our paper because it allows simultaneously for fat tails and the existence 

of finite moments. The finance literature has recently produced a myriad of models that 

could be used for modeling fat tails, such as models of stochastic volatility with jumps 

developed in, among other studies, Bates (1996), Bakshi, Cao and Chen (1997), Duffie, 

Pan and Singleton (2000) or Pan (2002). However, these models have been only 

moderately successful at reconciling observed empirical facts with reasonable levels of 

jump magnitude and/or jump frequency, and have not in any way been proven superior to 

a general pure-jump Lévy process.  

The main reason for incorporating jump features in an asset-pricing framework is 

the possibility this affords at replicating the levels of skewness and leptokurtosis 

observed in the data. However, this can also be achieved alternatively using an 

appropriate type of Lévy process, such as the Dampened Power Law process entertained 

here. Instead of being an amalgam of Brownian motions, Poisson jumps and stochastic 

volatility, the Dampened Power Law process embeds various features in one clean model 

and is thus intuitively appealing.  
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It needs to be emphasized that the primary purpose of this article is measuring the 

impact of fat tails on the equilibrium rates of return and equity and term premia, not 

necessarily in finding the best possible model that generates the observed leptokurtosis in 

the consumption data. Thus a comparison of the DPL process with stochastic volatility 

models with jumps is not undertaken for this reason. 

 

3.2 Estimation Issues 

Before estimating the parameters associated with the Lévy process, we first 

estimate the mean growth rate of consumption and use it to demean the series. Note that 

properties of logarithms imply that computing a simple arithmetic average of log 

differences of consumption is essentially the same as averaging the first and last 

observation, which can yield a noisy estimate of the mean growth rate. Hence, following 

Wu (2004), we regress log consumption levels on time t instead, estimating 

  t tln C a bt u= + +        (18) 

From the discrete setting of equation (17a), the estimate for b is thus an estimate of the 

mean annualized growth rate of consumption µ. We use this estimate of µ to detrend the 

consumption series, and model the log-difference of detrended consumption data as a 

pure-jump Levy DPL process. 

The cumulant exponent of the Lévy DPL process given in section 3.1 above is 

derived in Wu (2004): 

 k(s) ( ) [( s) ] ( ) [( s) ] sQα α α α
+ + + − − −= Γ −α γ β − − β + Γ −α γ β + −β +   (19) 

where 1 1Q [ ( ) (1 , )] [ ( ) (1 , )]α− α−
+ + + − − −= γ β Γ −α α + Γ − α β − γ β Γ −α α + Γ − α β   (20) 



 13

 Note that the expression for Q depends on the choice of the truncation function 

selected during the application – needed for the derivation of the cumulant exponent – of 

the Lévy-Khinchine theorem to the DPL Lévy density. With ε following the DPL 

process, the implicit truncation applied is the widely used and accepted truncation 

function 1h( ) I ε <ε = ε . 

Since the cumulant exponent is defined as 

  { }t
1k(s) log E exp s
t

 = ε        (21) 

we can use the fact that E[exp{sεt}] = exp{t k(s)} along with the expression for k(s) from 

equations (19) and (20) in order to compute exponential moments of the DPL process. 

These exponential moments are directly utilized in computing the equilibrium expected 

riskless rate of return, the equity premium and the term premium in the empirical section 

of the paper. 

The characteristic function of the DPL process for an interval of time t is: 

  { }
t t(s) E exp is tk(is)ε  Φ = ε =       (22) 

We can thus use the expression for k(s) in order to recover the probability density 

function of the Lévy density by standard Fourier inversion transformation. Once the 

density function is retrieved, the parameters associated with the DPL can be estimated by 

maximum likelihood. 

 

3.3 Equilibrium Rates of Return and Term Premia 

In this section we specialize the formulae for the expected rates of return on the 

canonical asset and the term premium defined in sections 2.5 and 2.6 to risk-free discount 
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bonds and equity that pays consumption goods as in the Lucas (1978) fruit tree model. 

For this kind of equity, the stochastic payoff equals consumption per capita so that 

tt Cy ≡ , and hence the payoff growth rates equal consumption growth rates so that 

1t1t xz ++ ≡  in the notation introduced in section 2.3.  

Using the above identities, starting from equation (13), the unconditional mean of 

the riskless rate on a discount bond for which 0=λ  can be shown to be: 

  ( ){ } { }
{ }

t
t 1 A

t 1

E x
E R 1,0

E x

−θ

+ −
+

=
β

      (25) 

Similarly, starting from equation (14a), the unconditional mean of equity returns for 

which 1=λ  can be shown to be: 

  ( ){ } ( )( )[ ] ( ){ }1,1RE1111,RE 1t1t ++ −Ψκ+=∞     (26a) 

where  ( ){ } { } { }
{ } ( ){ }0,1RE
xE

xExE
1,1RE 1tA1

1t

A
1t1t

1t +−
+

−
++

+











= ,   (26b) 

and from equation (10b), 

  ( ) { }A1
1txE1 −θ+

+β=κ .       (27) 

From equation (14b), for discount bonds with 0=λ , 

  
{ } { }

{ }A
1t

A
1t1t

xE

xExE
−θ
+

−
+

θ
+=Ψ        (28) 

As indicated in section 2.6, the term premium on discount bonds is just the term premium 

scale factor ( )1−Ψ .  

Since the expressions for the mean risk-free rate, mean equity premium and term 

premium of equations (25)-(28) involve terms such as E{xA} or E{xθ-A}, we can compute 

these expressions using Wu’s (2004) cumulant exponent formula given in equations (19)-
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(20). Wu (2004) shows in his proposition 2 that with , , , 0+ − + −γ γ β β > , the cumulant 

exponent is well defined only for ( )s ,− +∈ −β β . Thus, we need to ensure that Wu’s 

proposition 2 is not violated when computing equilibrium mean rates of return and the 

term premium. Examining the expressions that need to be computed above, we can easily 

see that the following terms must lie in the interval ( ),− +−β β : θ-A, 1+θ-A, θ, -A, 1+θ, 1-

A, 1, and –θ. This imposes restrictions on the range of values that one can entertain for 

the preference parameters including the relative risk aversion coefficient used 

subsequently in calculating the model implied rates of return and the term premium. 

 

3.4 The Log-Normal Case. 

In the benchmark log-normal case, we assume that the consumption growth rates 

follow an i.i.d. Gaussian process: 

  t 1 t 1ln(x )+ += µ + ε , ),0(Niid~ 2
1t σε +     (29) 

Given the moment generating function of the normal distribution, we can readily 

evaluate analytically all the expressions given in section 3.3 for the model-implied 

equilibrium quantities of interest when the consumption growth rates 1tx +  (which equal 

the payoff growth rates 1tz + ) are assumed to be i.i.d. Gaussian. We present these 

formulae below. 

From equation (25), the expected gross rate of return on a discount bond equals:  

( ){ } ( ) ( )1 2 2 2
t 1

1E R 1,0 exp A A
2

−
+

 = β − θ µ − − θ σ 
 

   (30) 

From equation (26a), the expected gross rate of return on equity becomes: 
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( ){ } ( ) ( ){ }[ ] { } ( ) ( )






 σθ−−µθ−σ−σθκ+β=∞ −

+
222221

1t A
2
1AexpAexp1Aexp111,RE  

           (31) 

where from equation (27),  

  ( ) ( ) ( )






 σ−θ++µ−θ+β=κ 22A1

2
1A1exp1 .   (32) 

 From equation (28),   

{ }2Aexp σθ=Ψ        (33) 

From equation (16a) and the discussion that follows, the term premium on riskless 

discount bonds becomes: 

( ) 10,nTP −Ψ= .       (34) 

 

4. EVALUATING MODEL-IMPLIED PREMIA AND EXPECTED RATES OF 

RETURN 

In section 4.1 we discuss the consumption data series used and report summary 

statistics. In section 4.2 we report the maximum likelihood estimates of the DPL process 

and the benchmark Gaussian process for the data. In section 4.3 we compute the model-

implied expected rates of return and the term premium and discuss the quantitative 

implications of modeling fat tails. 

 

4.1 Characteristics of the Consumption Data 

 We use annual US real per capita consumption data on non-durables and services 

from Campbell and Cochrane (1999) spanning the period 1889-1997. Figure 1 plots the 

real consumption data and Table 1 presents summary statistics. The mean growth rate is 
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1.726 percent per annum. Kurtosis is measured to be in excess of, and statistically 

significantly greater than, 3 indicating fat tails in the empirical histogram. Normality is 

strongly rejected by the Jarque-Bera test (p-value is 4.43e-4).  

 

4.2 Model Estimates for the Consumption Growth Rates 

 Table 2 presents empirical results on maximum likelihood estimates of equations 

(17) and (29). We estimate the most general unconstrained version of the DPL process 

presented in equations (17) and several restricted versions. The first row reports 

estimation results for the most general version. The second row reports estimation results 

for the symmetric dampening case where the dampening parameters + −β = β . The third 

row reports estimates obtained by fitting a DPL process without dampening that is 

identical to fitting an α -stable process to the consumption growth rates. The next row 

reports estimates obtained by fitting a symmetric α -stable process. The last row reports 

results of fitting the benchmark Gaussian model. Incremental benefits of the most general 

version of the DPL process can be measured by the log-likelihood values in the last 

column. 

The most general model yields estimates of 1.73 for α, scaling parameters 

0.00029+γ =  and 0.00034−γ = , and dampening parameters 10+β =  and 7−β = . The 

difference in scaling parameters ( )+ −γ − γ  indicates a slight degree of negative skewness 

in the distribution of consumption growth rates. The dampening coefficients +β  and −β  

are both large, and statistically significantly positive, thus guaranteeing the existence of 

finite moments of all orders (see Wu’s (2004) proposition 1). All other estimates are also 

statistically significant at the 0.05 level.  
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Estimates of the common parameters for the restricted nested models are 

generally similar to those for the unrestricted case reported above. In the symmetric 

dampening case the common dampening coefficient 4β = . Standard likelihood ratio 

(LR) test (not reported) would reject symmetric dampening in favor of the general model 

in equations (17) at the 0.10 significance level. Similarly an LR test would reject the 

Gaussian process in favor of the dampened power law process for consumption growth 

rates at the 0.10 significance level. 

Armed with parameter estimates, rates of return and the equity and term premia 

implied by the model can now be computed alternatively under the DPL and Gaussian 

process for consumption growth rates. A comparison of these quantities would provide a 

quantitative assessment of the implications of modeling fat tails. 

 

4.3 Implied Premia and Expected Rates of Return 

As noted at the end of section 2.1 our asset-pricing model has six preference 

parameters. We need to select values for each of these parameters before we can compute 

equilibrium quantities of interest implied by our model. We follow Abel (1999) in 

imposing the following three restrictions on these parameters: 0h 0= , 0 1 2h h h 1+ + = , 

and G 1= + µ . The first restriction 0h 0=  implies that the benchmark level of 

consumption tν  does not depend on the current period aggregate per capita level of 

consumption tC  as evident from equation (3). The third restriction G 1= + µ  captures the 

intuitive notion that the growth rate of the benchmark level of consumption over time 

reflects the growth rate of the aggregate per capita level of consumption.  
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Following the model parameterization in Abel (1999), we choose 1h 0.15= . We 

choose the rate of time preference δ  to be 0.02. This leaves us with just one parameter to 

choose, namely, the coefficient of relative risk aversion r . We report results for different 

values of r  below. Following the discussion at the end of section 3.3, in order to ensure 

finiteness of exponential moments used in computing model-implied equilibrium rates of 

return and the term premium, the coefficient of relative risk aversion must be less than 

the estimate of −β . Thus, using the estimate of −β  for the unrestricted DPL model from 

section 4.2, r  is constrained to be less than 7. 

Table 3 presents the model-implied equilibrium expected risk-free rates, equity 

premium, and the term premium for the unrestricted DPL consumption growth rate 

process and the log-normal process. All rates of return and the term premium are 

expressed in percent per annum. As is evident from the table, the asset-pricing model is 

able to generate a low enough mean risk-free rate of under 3 percent per annum with 

relative risk aversion coefficient of about 6. The mean equity premium for this CRRA 

coefficient is 2.2 percent per annum, which is higher than what Mehra and Prescott 

(1985) are able to generate without habit formation but still much lower compared to the 

historical level of about 7 percent per annum.  

The model generates a term premium on risk-free bonds of about 0.6 percent per 

annum with a CRRA coefficient of 6. Abel (1999) reports a term premium on long term 

US government-issued fixed-income securities of 170 basis points per year. Abel (1999) 

has greater success in replicating both the empirically observed mean risk-free rate and 

the equity and term premium with the asset-pricing model used here by incorporating 

leverage in the model. Our main objective in this paper is to evaluate the quantitative 
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importance of modeling fat tails on the model-implied equilibrium rates of return and the 

term premium in a relatively simple framework. We therefore did not entertain the 

possibility of leverage in the version of the asset-pricing model considered here. 

 Comparing the model-implied rates of return in the DPL and log-normal cases in 

Table 3, we find that accounting for fat tails leads to a lower mean risk-free rate, and 

higher mean equity and term premiums. More specifically, the DPL model is able to 

lower the mean risk-free rate by as much as 20 percent, raise the mean equity premium 

by 80 percent or more, and raise the term premium by 20 percent compared to the log-

normal case. Thus, accounting for fat tails produces a closer match of the quantitative 

implications of the consumption-based asset-pricing model with the stylized facts 

observed in the macroeconomic and financial data. 

 Figure 2 plots the model-implied equilibrium mean risk-free rate, the mean equity 

and term premiums as a function of the coefficient of relative risk aversion in both the 

DPL and the log-normal cases. As the graphs indicate, accounting for fat tails has greater 

impact on the implied rates of return and the equity and term premiums at higher values 

of the CRRA coefficient.  

  

5.  CONCLUSIONS 

In this study we addressed the question: what are the costs of ignoring fat tails in 

the empirical distributions of macroeconomic time series on the equilibrium implications 

of macroeconomic models? We addressed this question within the context of the 

consumption-based asset-pricing model, modified to incorporate habit formation as in 

Abel (1999). We considered two versions of the model – one in which exogenous 

consumption evolves as a stochastic dampened power law (DPL) process as in Wu 
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(2004) and the other benchmark version in which consumption follows a Gaussian 

process. DPL nests α -stable distributions but has the advantage that all moments are 

finite under strictly positive dampening. This renders model-implied rates of return and 

equity and term premia finite under certain restrictions. 

We parameterized the two versions of the model with estimates derived from the 

annual US monthly real per capita consumption data. Choosing suitable values for the 

preference parameters of the model, our results show that accounting for fat tails 

improves the ability of the asset-pricing model to replicate empirically observed mean 

risk-free rate, equity and the term premia. Specifically, accounting for fat tails through a 

DPL process generates 20 percent lower mean risk-free rate, 80 percent higher equity 

premium, and 20 percent higher term premium compared to the log-normal case.  
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Table 1: Summary Statistics of Real Per Capita Consumption Data 

 

 Mean Variance Skewness Kurtosis Normality test 

      

Real per capita consumption 

growth rates 

1.726e-2 

(3.105e-3) 

1.041e-3 

(1.417e-4) 

-0.503 

(0.984) 

4.555 

(4.847e-4) 

15.442 

(4.434e-4) 

      

 

Notes to Table 1: 

1. Numbers in parentheses in the first two columns are the standard errors for the mean and variance. 

2. Numbers in parentheses in the third and fourth columns are the p-values for the null hypothesis of no skewness and no excess 

kurtosis, respectively. 

3. The normality test gives the Jarque-Bera test statistic and the p-value in parentheses. 
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Table 2: Maximum Likelihood Model Estimates 

 

Dampened Power Law Process t 1 t 1ln(x )+ += µ + ε , ),,,,(DPLiid~1t −+−++ ββγγαε    (17a) 

 

Gaussian Process   t 1 t 1ln(x )+ += µ + ε , ),0(Niid~ 2
1t σε +      (29) 

 

 α  +γ  −γ  + −γ = γ  +β  −β  + −β = β 2σ  Llog  

Most General Model 1.73 

(0.03) 

2.9e-4 

(1.2e-4) 

3.4e-4 

(1.2e-4) 

 10.00 

(3.41) 

7.00 

(3.52) 

  218.49 

Symmetric Dampening 1.74 

(0.01) 

2.3e-4 

(1.32e-6) 

2.9e-4 

(2.01e-7) 

   4.00 

(0.03) 

 216.67 

No Dampening 1.74 

(0.02) 

2.1e-4 

(1.1e-4) 

2.6e-4 

(1.2e-4) 

 0 

(restricted) 

0 

(restricted) 

  216.35 

No Dampening on 

Symmetric Stables 

1.74 

(0.01) 

  2.4e-4 

(8.3e-5) 

0 

(restricted) 

0 

(restricted) 

  215.92 

Gaussian 2 

(restricted) 

      1.11e-3 

(1.5e-4) 

213.92 

 

Notes to Table 2: 

1. Numbers in parentheses are the standard errors.  
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Table 3: Expected Rates of Return and Term Premia 

  r 1.5=  2r = 3r =  r 4= 5r = r 6=  r 7=  

         

Mean risk-free rate 

( ){ }0,1RE 1t +  

DPL  

Log-Normal 

% Difference 

4.540 

4.550 

-0.2 

4.449 

4.464 

-0.4 

4.161 

4.208 

-1.1 

3.749 

3.839 

-2.3 

3.205 

3.359 

-4.6 

2.521 

2.770 

-9.0 

1.677 

2.074 

-19.1 

         

Mean Equity Premium 

( ){ } ( ){ }0,1RE1,RE 1t1t ++ −∞
 

DPL  

Log-Normal 

% Difference 

0.390 

0.187 

108.4 

0.540 

0.266 

102.6 

0.871 

0.450 

93.5 

1.247 

0.667 

86.9 

1.671 

0.917 

82.3 

2.155 

1.199 

79.7 

2.729 

1.513 

80.4 

         

Term Premium 

( )0,nTP  

DPL 

Log-Normal 

% Difference 

0.014 

0.012 

8.4 

0.036 

0.033 

8.8 

0.110 

0.100 

9.8 

0.222 

0.200 

11.1 

0.376 

0.334 

12.8 

0.577 

0.501 

15.3 

0.842 

0.702 

20.0 

  

Notes to Table 3: 

1. All statistics are expressed in percent per annum. 

2. % Difference is the difference in the relevant statistic between the DPL and the Log-Normal cases,  

relative to the value in the Log-Normal case. 
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Figure 1. Plots of Real Per Capita Consumption Data 

 

Panel A 
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Panel B 
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Figure 2. Expected Rates of Return and Term Premia 

 

Panel A 
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Panel B 
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Panel C 
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