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Abstract

We employ discrete-time queueing theory to analyze the end-to-end (e2e) delay

of wireless multihop networks for two MAC schemes, m-phase TDMA and slot-

ted ALOHA. Unlike general two-dimensional networks where there exists sufficient

traffic multiplexing that would permit the arrival processes to be approximated

as independent, in linear networks with multihop communication, the arrival pro-

cesses are correlated due to the lack of traffic multiplexing. This paper studies an

extreme scenario, a linear network fed with a single flow. A decomposition approach

is used to decouple the whole network into isolated nodes. Each node is modeled as

a GI/Geo/1 queueing system. We derive the complete per-node delay distribution,
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accounting for both the queueing delay and access delay. Additionally, we charac-

terize the departure processes by a correlated and bursty on-off traffic model. The

per-node analysis provides the e2e delay mean while for the e2e delay variance,

the strong correlations between the arrival processes need to be considered. Our

study shows that the sign of the correlation coefficients depends on both the MAC

scheme and the traffic burstiness, both of which determine the relative burst size of

the source flow compared to a Bernoulli process, which constitutes an “eigentraffic”

process. There is a wide gap in the e2e delay variances for the source flows with

different burst sizes even if they have identical average rates. The relative burst

size also determines from which direction and at which rate the departure processes

converge to the eigentraffic process after traversing multiple relay nodes.
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1 Introduction

With the growing demand for real-time applications over wireless networks,

increasing attention is paid to the delay analysis of transmissions over error-

prone channels. In multihop networks, like ad hoc, mesh, and multihop cellu-

lar networks, the analysis is more challenging than in single-hop networks due
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to the delay accumulation at each hop. Many factors affect the end-to-end

(e2e) delay, including the routing algorithm, the MAC and packet schedul-

ing algorithm and error-prone wireless channels. The analysis is unlikely to

be tractable if all these factors are considered together. We assume a single

active path and FIFO as the local packet scheduling discipline. Then, the

two-dimensional (2-D) topology (Fig. 1(a)) is reduced to one dimension (1-D),

which, in an ideal case, can be further simplified to a regular line network

(Fig. 1(b)). Due to the zero inter-flow interference assumption and the equal

node spacing, the analysis of the regular line network provides an upper per-

formance bound for general 2-D networks.

From the perspective of queueing theory, this linear topology causes more

complications than the 2-D topology. In general network topologies, there are

usually multiple flows so that the arrival process to a node is an aggregation

of multiple flows (e.g., node 2 in Fig. 1(a)). Such multiplexing would eliminate

or weaken the correlations between the arrival processes, permitting these

processes to be approximated as independent, which would greatly simplify

the analysis. In linear networks, at most two traffic flows (relayed flow and local

flow) are multiplexed at each node, and it is hardly possible to assume that the

arrival processes are independent. Consider the extreme scenario where there

is a single source (Fig. 1(b)). Then, the departure process of node i is exactly

the arrival to node i + 1 and so forth. In this sense, node i + 1 is correlated

not only with its immediate neighbor node i but also all other nodes. Such
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correlations not only affect the network performance but also substantially

complicate the e2e analysis.
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Fig. 1. Wireless multihop networks

Due to the multihop transmission pattern, MAC schemes are needed to effi-

ciently schedule node transmission orders to mitigate interference and achieve

spatial reuse, i.e., allowing multiple nodes to transmit simultaneously (e.g.,

node 2 and N − 2 in Fig. 1(b)). MAC incurs extra access delays, which should

be accounted for in the calculation of the packet delay at each node together

with the queueing delay during which the buffer is cleared up. On the other

hand, the MAC control also changes the correlations between nodes. In this

paper, we take into account the impact of the MAC scheme on the correlations

between arrival processes.

1.1 Previous work

The throughput and single-hop delay of many MAC schemes have been com-

prehensively studied in the literature [1, 2]. However, little work has been
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carried out on their multihop delay. Moreover, previous MAC studies usually

assume that traffic is generated in a way that incurs no queueing delay, e.g., a

new node is generated to represent the newly generated packet; or new packets

are generated only when the buffer is empty [2–4]. These models are simplified

and unrealistic. In practice, new packets may be generated when the buffer

is non-empty and thus experience a queueing delay. On the other hand, the

study of queueing networks is concerned with the queueing delay rather than

the access delay [5–8].

Due to the presence of the queueing delay, queueing models are needed. If we

assume independent wireless channel errors, the service time is geometrically

distributed and a single node can be modeled as a GI/Geo/1 system. In the

literature, the queue length distribution of general GI/Geo/1 queues has been

well studied [9]. However, to analyze multihop networks, the requirement for a

departure process characterization arises. In the literature, only a few papers

address the departure process when the arrival process has correlation in time,

e.g., [10]. Moreover, for non-Bernoulli and non-Poisson arrivals, it is known

that the departure process is correlated with the queue length and arrival

process [11], which results in cumbersome expressions [10, 12] that prohibit a

scalable e2e analysis. Closed-form solutions for the delay of wireless regular line

networks with a single source (like Fig. 1(b)) are available only if the arrival

is Bernoulli [6] or the channels are error-free [8]. For other cases, approxima-

tions are needed. [13] analyzed discrete-time tandem queueing networks with
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bursty and correlated input traffic by ignoring the correlation between nodes.

An IEEE 802.11 wireless ad hoc network is modeled as a series of independent

M/G/1 systems to obtain a delay distribution in product-form [14]. Similarly,

in [15], the e2e delay variance of a two-node tandem network is derived by

assuming that the two nodes are independent. The “independence” assump-

tion usually holds for general network topologies with flow multiplexing. For

linear networks without multiplexing, such an assumption may lead to a very

pessimistic or overly optimistic performance expression, especially in terms of

delay variance.

1.2 Our contributions

This paper studies the e2e delay of a wireless linear network (Fig. 1(b)) with

a single source, considering both the access delay and queueing delay. For a

tractable queueing analysis, we consider two simple but typical MAC schemes,

m-phase spatial TDMA [1] and slotted ALOHA. In TDMA, a node is sched-

uled to transmit once in m time slots, and nodes m hops apart may transmit

simultaneously. In ALOHA, every node independently transmits with proba-

bility pm whenever it has packets. TDMA (with nodes fully cooperative) and

ALOHA (with nodes completely independent) represent the two extremes in

terms of the level of the node coordination and are expected to provide up-

per and lower performance bounds for other meaningful MAC schemes. The

arrival processes to every node are all relayed versions of the original traffic
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flow generated at the source node. Traffic models under investigation include

CBR (for voice data [16] and periodic traffic in sensor networks), correlated

on-off and Bernoulli (for bursty data).

Our contributions are two-fold. First, we use discrete-time queueing theory to

analyze the MAC-controlled nodes, deriving a complete delay and departure

process characterization. This analysis provides the e2e delay mean and shows

that TDMA outperforms ALOHA in terms of not only throughput, but also

delay. It also proves that as the number of hops increases, the departure pro-

cesses inside the network spatially converge to a MAC-dependent reference

Bernoulli process, regardless of the original traffic statistics. Second, we use

simulation results to reveal the impact of the MAC schemes and the traffic

burstiness on the correlations in the single-node delays and on the e2e delay

variance.

The rest of the paper is organized as follows. The system model is introduced

in Section 2. In Section 3, we first present two approaches to derive the delay

and departure process characterization of GI/Geo/1 systems. Then we estab-

lish and analyze GI/Geo/1 models for each node in the TDMA and ALOHA

networks in Sections 4 and 5, respectively. Section 6 compares the single-node

delays of TDMA and ALOHA and studies the convergence of the departure

processes. Section 7 extends the analysis to the e2e delay and studies the

correlation property. Section 8 concludes the paper.
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2 System Model

The regular line network under consideration (Fig. 1(b)) is composed of N

transmitting nodes and a sink or base station (BS). Denote node i by ni

(i = 0, 1, 2, . . . , N − 1) and the delay experienced at ni by Di with mean Di

and variance σ2
i . The e2e delay is given by D =

N−1∑

i=0

Di with mean D and

variance σ2. A FIFO discipline is used at ni. A flow of fixed-length packets is

generated at the source n0 at rate λ, and all remaining nodes are pure relays.

The time is slotted to the duration of one packet transmission. So the network

is modeled as a discrete-time tandem queueing network. For non-Bernoulli and

non-Poisson arrivals, the departure process of a node is correlated with the

queue length and its arrival. Therefore, the Di’s are correlated, which leads

to σ2 6=
N−1∑

i=0

σ2
i while previous work usually assumed σ2 =

N−1∑

i=0

σ2
i . If Di’s are

positively (negatively) correlated, then σ2 >
N−1∑

i=0

σ2
i (σ2 <

N−1∑

i=0

σ2
i ).

The channel is characterized by a “capture” model [17] with a capture proba-

bility µ , Pr(SNIR ≥ Θ), i.e., a transmission is successful with probability µ.

It is assumed that the channels are subject to independent errors (e.g., AWGN

or block fading channels). To guarantee 100% reliability, the failed packets will

be retransmitted at each hop until received successfully. The number of trans-

mission attempts to successfully send a packet is geometrically distributed

with parameter µ, denoted by Gµ. Note that in practice, TDMA and ALOHA

result in different capture probabilities [18]. So, we denote the capture prob-
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ability of TDMA and ALOHA by µT and µA, respectively.

The traffic flow to n0 is characterized by the interarrival time A, whose prob-

ability mass function (pmf) is ak = Pr{A = k}) and probability generating

function (pgf) is A(z) =
∞∑

k=0

akz
k. The arrival and departure processes of ni

(i > 0) are characterized by the interarrival time Ai and interdeparture time

Ti, respectively. We consider three typical traffic models, i) CBR, where the

packet interarrival time is an integer constant r = 1/λ; ii) Bernoulli, where a

packet is generated with probability λ in each time slot; iii) On-off, where the

arrival process is modulated by a two-state Markov chain that alternates be-

tween ON (1) and OFF (0) states. One packet is generated when the Markov

chain is in state ON. The transition probabilities between ON and OFF are

a01 and a10, respectively. The pmf is

ak =






1 − a10 k = 1

a10(1 − a01)
k−2a01 k > 1.

(1)

The on-off source generates a stream of correlated bursty and silent periods

both of which are geometrically distributed in length. The mean burst size is

B = 1/a10. The average rate is λ = a01/(a10 +a01). Bernoulli is a special on-off

process with a01 +a10 = 1 so that the burst and silent periods are independent.

The delay Di consists of two parts, the queueing delay and access delay, as

shown in Fig. 2. In TDMA, define m time slots as a frame. The transmission
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is successful with probability µT. So the service time is S ∼ GµT
and a TDMA

node can be modeled as a GI/Geo/1 system at the frame level, where the access

delay is hidden in the frame. In ALOHA, a packet is successfully transmitted

if and only if the node attempts to transmit and the transmission is successful,

with probability µs , µApm (given that the arrival and the channel state are

independent 2 ). Both the access delay and the failed transmission attempts can

be regarded as unsuccessful transmission attempts. Since the channel errors are

independent and the transmit probability pm is fixed, the service time is S ∼

Gµs
at the slot level. So, an ALOHA node can also be modeled as GI/Geo/1

although the arrival process characterization is different from TDMA.
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Fig. 2. Packet transmission procedure in TDMA and ALOHA

We use a decomposition approach to analyze the tandem queueing network

that decomposes the network into single nodes in isolation [19, 20]. The e2e

analysis is based on the single node analysis and thus requires not only the

node delay performance but also node departure process characterization.

Since both TDMA and ALOHA nodes can be modeled as GI/Geo/1, we start

with the analysis of GI/Geo/1 systems.

2 To account for the half-duplex restriction, here µA is the conditional capture
probability given that the receiver is listening.
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3 GI/Geo/1 Queueing Systems

The delay distribution of GI/Geo/1 systems can be derived in two ways. The

first one is to use a conventional queueing model that provides the queue

length distribution [6, 21]. The second one is to use a delay model [22] that

directly tracks the evolution of the delay of the Head-of-Line (HOL) packet

in the queue. Both approaches will be used in this paper depending on the

arrival process characterization.

3.1 Queueing Models

In a conventional queueing model, the system state is denoted by the queue

length [6, 21]. For a GI/Geo/1 system, the pmf of the queue length is [9, 23]

πk =






1 − ρ k = 0

ρ(1 − γ)γk−1 k > 0,

(2)

where ρ is the traffic intensity, the ratio of the average arrival rate to the

service rate. γ is the unique solution of z = A(1 − µ + µz) that lies in the

region (0, 1). From (2), the pmf of the queue length viewed by an arrival is

derived in a geometric form qk = (1 − γ)γk (k ≥ 0) [24]. However, (2) holds

under the condition that the interarrival times are integers, i.e., there are no

bulk or batch arrivals (multiple arriving epochs during a single time unit).
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In TDMA GI/Geo/1 systems, since the system is analyzed at the frame level

and packet arrivals occur at the slot level, more than one packet may arrive

during one frame. So the interarrival times are no longer integer. Specially,

consider a TDMA node with CBR arrivals with frame length of m and inter-

arrival time of r slots (r > m). Even though the system is reduced to D/Geo/1

with A(z) = zr/m, Theorem 1 shows that the pmf of the queue length is more

complex than (2) if r/m is irreducible.

Theorem 1 Consider a discrete-time D/Geo/1 system with a geometric server

Gµ and constant interarrival time r/m (r > m, r, m ∈ N and r/m is irre-

ducible). The pmf of the queue length distribution is

πk =






1 − ρ k = 0

m∑

j=1

Cjγ
k−1
j k > 0

(3)

where ρ = m/rµ is the traffic intensity, Cj is a normalizing constant and

{γj | j = 1, 2, . . . , m} are the m roots of zm = (1− µ + µz)r that lie inside the

unit circle.

PROOF. Denote the system states at the beginning of frame t by a two-

dimensional Markov chain {Q(t), Y (t)}, where Q(t) ≥ 0 is the queue length

and Y (t) = 1, 2, . . . , r is the number of slots to the next packet arrival. Divide

the set {1, 2, . . . , r} into two parts Y0 , {1, . . . , ∆} and Y1 , {∆ + 1, . . . , r}
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(∆ , r − m), where the subscript represents the number of packets arriving

during one frame. Denote the steady-state system probability by Q(k, y) :=

lim
t→∞

Pr{Q(t) = k, Y (t) = y}. The balance equations are

y ∈ Y0 : Q(k, y) =





(1 − µ)Q(k, y + m) + µQ(k + 1, y + m) k > 0

Q(0, y + m) + µQ(1, y + m) k = 0

y ∈ Y1 : Q(k, y) =






(1 − µ)Q(k − 1, y − ∆) + µQ(k, y − ∆) k > 1

Q(0, y − ∆) + µQ(1, y − ∆) k = 1

(4)

Define the row vector ~vk := {Q(k, 1), . . . , Q(k, r)} (k ≥ 0). For n ≥ 1, (4) can

be rewritten in a matrix form ~vkM0 + ~vk+1M1 + ~vk+2M2 = 0, where

M0 =




0 (1 − µ)Im

0∆ 0




, M1 =




0 µIm

(1 − µ)I∆ 0




− I, M2 =




0 0m

µI∆ 0




.

This is a homogeneous vector difference equation with constant coefficients.

Its characteristic matrix polynomial is Q(z) = M0 + M1z + M2z
2. Using the

eigenvalue method [25], ~vk is solved as ~vk = CZ
kΦ, where the diagonal matrix

Z = diag(zj) and the matrix Φ = [~φj]
T are composed of the eigenvalues

{zj} and eigenvectors {~φj} of Q(z) in the form of ~φQ(z) = 0 with ~φj =

{φj(1), φj(2), . . . , φj(r)}. The eigenvalues are solved from det|Q(z)| = 0, which
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leads to zm = (1 − µ + µz)r. Then, Q(k, y) is

Q(k, y) =
m∑

j=1

Cj(1 − ξj)γ
k
j ξ−y

j

1 − γj
, (5)

which leads to the queue length probability πk =
r∑

y=1

Q(k, y) as in (3).

From (5), we derive the pmf of the queue length viewed by an arrival and then

calculate the delay distribution in Theorem 2.

Theorem 2 Consider a discrete-time D/Geo/1 system with a geometric server

Gµ and constant interarrival time r/m (r > m, r, m ∈ N and r/m is irre-

ducible). The pmf of the delay is

dk =
1

ρ

m∑

j=1

Cj

1 − γj
· (1 − ξj)ξ

k−1
j , k ≥ 1, (6)

where {γj | j = 1, 2, . . . , m} are the m roots of zm = (1 − µ + µz)r inside the

unit circle and ξj = γ
1/r
j is the root of µTxr − xm + 1 − µT = 0.

PROOF. In terms of slots, the packet delay D0 is composed of three indepen-

dent parts, the access delay DA ∈ {0, . . . , m − 1}, the waiting time DW , and

the service time DS. If a packet arrives in the middle of frame t, then the access

delay is DA = m− Y (t) (Y (t) < m) and Y (t + 1) = Y (t) + ∆ = r−DA ∈ Y1.
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The probability that this packet sees k − 1 packets in the buffer is

Q(k | DA) ,
Q(k, r − DA)
∞∑

k=1

∑

y∈Y1

Q(k, y)

=
r

m

m∑

j=1

Cj(1 − ξj)γ
k−1
j ξDA

j

1 − γj
. (7)

The waiting time DW is the sum of service times DS0
of the k − 1 buffered

packets. Here DS0
∼ Gµ at the frame level. So at the slot level, the pgf is

GDS0
(z) =

µzm

1 − (1 − µ)zm
. Given independent service times, the pgf of DW is

GDW
(z) = (GDS0

(z))k−1. The service time of the packet under consideration

has a pmf Pr{DS = km + 1} = µ(1 − µ)k (k ≥ 0) with pgf GDS
(z) =

µz

1 − (1 − µ)zm
. So, the pgf of the total delay D0 = DA + DW + DS is

GD0
(z) =

∞∑

n=1

m−1∑

DA=0

GDW
(z)GDS

(z)π(k | DA)zDA =
1

ρ

m∑

j=1

Cj(1 − ξj)z

ξj(1 − γj)(1 − ξjz)
.

Inverse z-transform yields (6).

Theorem 1 and 2 can be regarded as a generalized analysis of D/Geo/1 systems

with non-integer interarrival times. In fact, (2) represents a special case of

m = 1 in Theorem 1. With non-integer interarrival times, among the m > 1

roots {γj | j = 1, 2, . . . , m} inside the unit circle, there exist complex and

negative real roots. In this case, the pmf calculation of the queue length and

delay is only possible numerically if m and r are large.

If r < 2m, we simplify the results by ignoring the complex and negative roots
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and considering the unique real positive root ξ1 ∈ (0, 1). Then, (6) is reduced to

dk ≈ (1−ξ1)ξ
k−1
1 (k ≥ 1), which, however, is still difficult to calculate for large

m and r since ξ1 is the root of a high degree polynomial µxr −xm +1−µ = 0.

Lemma 3 gives an approximate calculation of ξ1.

Lemma 3 Consider the polynomial µxr − xm + 1 − µ = 0 with 0 < µ < 1,

0 < m/(rµ) < 1 and r < 2m. The real positive root ξ1 in the region (0, 1) can

be well approximated by

ξ1 ≈ 1 −
2(1 − ρ)

∆ρ
, where ρ =

m

rµ
, ∆ = r − m < m. (8)

PROOF. Based on Descartes’ Sign Rule, there are exactly two real positive

roots, one of which is 1 and the other is ξ1 ∈ (0, 1). A single local minimum

xmin = ρ
1

∆ < 1 lies between ξ1 and 1. Using two inequalities, −
1 − ρ

ρ
< ln ρ ≤

∆(ρ
1

∆ − 1) [26], xmin is lower bounded by xmin ' 1− (1− ρ)/(∆ρ). Assuming

an equal distance from xmin to 1 and ξ1, i.e., ξ1 ≈ 2xmin − 1, leads to (8).

The approximation (8) is tight when ∆ is large and ρ is close to 1, both of

which also guarantee ξ1 / 1. Now that D0 ∼ G1−ξ1 , the corresponding delay

mean and variance are approximately

D0 ≈
1

1 − ξ1
≈

∆ρ

2(1 − ρ)
, σ2

0 ≈
ξ1

(1 − ξ1)2
= D0(D0 − 1) (9)
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3.2 Delay Models

In a delay model, the system state is denoted by the current delay of the HOL

packet [22]. The advantage of the delay model is the convenience to trace

both the evolution of the packet delay and the interdeparture time. Consider

a GI/Geo/1 system with on-off arrivals (a01, a10) (1). The delay distribution

is shown to be geometric in [27], but the mean is not calculated. In Lemma 4,

we use the delay model to derive the mean.

Lemma 4 Consider a discrete-time GI/Geo/1 queueing system with service

rate µ and on-off arrival with transition probabilities a01 and a10. Then, the

delay is geometrically distributed with parameter 1 − α where

α =
1 − µ

µa10 + (1 − µ)(1 − a01)
. (10)

PROOF. Let the system state be the delay of the HOL packet. Negative

states indicate an idle server. All probabilities of going beyond a delay −1 are

included in the state −1. The transition probabilities Pjk are

Pjk =





µbl j ≥ 0, k = j + 1 − l

1 − µ j ≥ 0, k = j + 1

a01 j = −1, k = 0,

(11)
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where bl = al for k ≥ 0 and bl =
∞∑

h=l

ah = a10(1 − a01)
l−2 for k = −1. From

(11), we obtain the steady-state probability πj = π0α
j for non-negative states

j ≥ 0. Since the pmf {dj | j ≥ 1} of the delay involves only non-negative states

dj+1 ,
µπj

∞∑

k=0

µπk

=
πj∑∞

k=0 πk

, (12)

where
∞∑

k=0

µπk is the normalization constant and the factor µ is needed to ac-

count for successful packet transmissions, the delay is geometrically distributed

with parameter 1 − α.

From (11), we calculate the system busy probability πB =
∑

k≥0

πk = mλ/µ = ρ

and idle probability πI = 1 − ρ at any frame. The delay model can also be

used to derive the departure process characterization.

Lemma 5 Consider a discrete-time GI/Geo/1 queueing system with service

rate µ and on-off arrival with transition probabilities (a01, a10). The interde-

parture time T has the pgf

GT (z) = π̃BS(z) + (1 − π̃B)
a01z

1 − (1 − a01)z
S(z), (13)

where π̃B = 1−
a01(1 − ρ)

λ
is the system busy probability viewed by a departure

and S(z) =
µz

1 − (1 − µ)z
.
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PROOF. Let the system state be the delay of the HOL packet at the moment

of a packet departure. The transition probabilities are modified from (11) to

Pjk = µ(1 − µ)l−1ah,





k = j + l − h, j ≥ 0

k = l − h, j < 0.

(14)

The absolute value of the negative state represents the system idle time. De-

note the steady-state probability by πj. The interdeparture time T is the

sum of the packet service time S and system idle time, i.e., T = S − j if

the system is in negative states j < 0 and T = S if the system is busy

with probability π̃B =
∑

j<0

πj when the packet departs. Given independent ar-

rival and service processes, the pgf of the interdeparture time T is GT (z) =

π̃BS(z) +
∞∑

j=1

π−jz
jS(z). From (14), we obtain π−j = (1− a01)

j−1π−1 for j ≥ 1

and π̃I = 1− π̃B =
∑

j<0

πj = π−1/a01. For stable systems, the average departure

rate equals to the average arrival rate, i.e., the average interdeparture time is

T = 1/λ = (a01 + a10)/a01, from which we can calculate π̃B and π̃I . Plugging

these parameters into GT (z) yields (13).

Recall that πI = 1 − ρ while π̃I = (a10 + a01)(1 − ρ). The conditional idle

probability π̃I upon the departure moment is identical to the system idle

probability πI at any moment only if a10+a01 = 1, i.e., the arrival is Bernoulli,

which is consistent with previous work.
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Note that the second part of GT (z) (13) is a convolution of two geometric dis-

tributions Gµ and Ga01
. Unsurprisingly, the departure processes would exhibit

a state explosion problem if it were fed into a tandem network [12]. A natural

approximation is to model the departure process as an on-off process, which

captures both the correlation and burstiness property of a traffic flow. The

corresponding transition probabilities are calculated as follows

a
′

11 = Pr{T = 1} = π̃Bµ = µ −
a01(1 − ρ)

ρ
, a

′

01 =
λ

1 − λ
(1 − a

′

11). (15)

The conventional queueing model can be used for the delay analysis of conven-

tional GI/Geo/1 systems with integer interarrival times while the delay model

is convenient for the delay analysis of systems with non-integer interarrival

times and the departure process characterization. In the following sections,

every node analysis consists of two parts, the delay and the departure char-

acterization. The pmf of Di is denoted by {d
(i)
j } and the arrival to ni (or the

departure of ni−1) is characterized by parameters like (a
(i)
10 , a

(i)
01 ) or r(i).

4 Single Node Analysis for TDMA

A TDMA node is modeled as a GI/Geo/1 system with service rate µT at the

frame level. Note that the average arrival rate should be cumulated over the

frame of m slots. Therefore, given the arrival rate λ packets/slot, the traffic

intensity of a TDMA GI/Geo/1 system is ρ , mλ/µT < 1.
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4.1 Source Node: CBR Traffic

For a TDMA node with CBR traffic of rate 1/r, using the conventional queue-

ing model (Section 3.1), Theorem 2 shows that an accurate calculation of the

delay’s pmf is possible only numerically. For r < 2m, Lemma 3 provides an

approximate geometric expression for D0’s distribution. For the heaviest sta-

ble traffic load r = m + 1 that can be accommodated by the system, we can

use the delay model to derive the exact delay distribution.

Theorem 6 Consider a D/Geo/1 system with interarrival time r/m and ser-

vice rate µT. If r = m + 1, the pgf, mean and variance of the delay D0 are

GD0
(z) =

(1 − zm)z

(1 − µT)zm+1 − z + µT

·
1 − ρ

ρ
, ρ =

m

rµT

(16)

D0 =
1

2(1 − ρ)
, σ2

0 =
1

4(1 − ρ)2
−

m + 2

6(1 − ρ)
. (17)

PROOF. Let the system state be the delay of the HOL packet in terms of

slots. All state transitions occur at the frame boundaries. The state transition

probabilities are

Pkj =





µ k ≥ 0, j = k − ∆,

1 − µ k ≥ 0, j = k + m,

1 k < 0, j = k + m,

(18)
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where ∆ = r − m. The ∆ negative states represent an idle system. For r =

m + 1, the steady-state probabilities for non-negative states are

πk =





µπk+1 0 ≤ k < m − 1

µπk+1 + µπ0 k = m − 1

µπk+1 + (1 − µ)πk−m k ≥ m,

(19)

which can be transformed to the pmf {d
(0)
k | k ≥ 1} based on (12). Then, the

pgf of the delay is

GD0
(z) =

(zm − 1)zµT

z − µT − (1 − µT)zm+1
d

(0)
1 , (20)

which contains one unknown parameter d
(0)
1 . From GD0

(1) = 1, it follows that

d
(0)
1 =

1 − (m + 1)(1 − µT)

mµT

= 1 +
1

m
−

1

µT

. (21)

Plugging (21) into (20) leads to (16). The delay mean and variance (17) are

calculated through the first two derivatives of GD0
(z) at z = 1.

Note that (18) hold for all r > m. But for r > m + 1, the pgf contains ∆ > 1

unknown parameters and cannot be solved as for r = m + 1. So we need the

approximate delay analysis (9) if r > m + 1. Plugging ∆ = 1 into (9) and

comparing with the exact analysis (17) justify that the approximation is tight
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if ρ → 1.

The departure process is studied at the frame level since according to the

TDMA policy, the packet departs only at the boundary of frames. Theorem 7

proves that for m < r < 2m, the departure is an on-off process.

Theorem 7 Consider a D/Geo/1 system with service rate µT and interarrival

time r/m (m < r < 2m). Then the departure process is an on-off process with

transition probabilities a
(1)
01 = µT and a

(1)
10 = ∆µT/m, where ∆ = r − m.

PROOF. Consider the packet departure moment. With probability π̃B, the

queue is non-empty, and the interdeparture time is T0 = S; while with prob-

ability π̃I = 1 − π̃B, the queue is empty, and the interdeparture time is

T0 = 1 + S, the service time S plus the system idle time, which is exactly

one frame for r < 2m. The system idle and busy probabilities π̃I and π̃B

viewed by the departing packet can be deduced from the stability condition

T 0 = r/m. That is, π̃BµT = 1−
∆µT

m
. The pgf GT0

(z) = π̃BS(z)+(1−π̃B)zS(z)

gives rise to a closed-form pmf {t0(k) | k ≥ 1} of T0:

t0(k) =





1 −
∆µT

m
k = 1

(
µT(1 − µT)k−2

)∆µT

m
k > 1,

(22)

which corresponds to an on-off process (1) with transition probabilities a
(1)
10 =

1 − π̃BµT = ∆µT/m and a
(1)
01 = µT.
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If r > 2m, the system idle time may exceed one frame, and the departure

process is more complex than an on-off process. For a tractable e2e analysis,

we approximate the departure process as an on-off process. The corresponding

transition probabilities {a
(1)
01 , a

(1)
10 } can be derived from (18). More specifically,

a
(1)
11 = 1 − a

(1)
10 is the probability that two packet depart the system consec-

utively, i.e., the system stays in non-negative states (since negative states

imply an empty buffer) in two consecutive frames and is accompanied with a

successful transmission with probability µT,

a
(1)
11 = Pr{D(t + 1) ≥ 0, S(t + 1) = 1 | D(t) ≥ 0, S(t) = 1}

=

µT

∞∑

k=∆

πk

∑

l≥0

πl

=

µT(ρ −
∆−1∑

k=0

πk)

ρ
= µT −

1 − ρ

ρ
= 1 −

∆µT

m
. (23)

The numerator excludes states 0 through ∆ − 1 since these states transit to

negative states after a successful transmission. Besides, from (18), we obtain

∆−1∑

k=0

πk =
πI

µT
=

1 − ρ

µT
. Then, based on a

(1)
01 /(a

(1)
01 + a

(1)
10 ) = m/r, we have

a
(1)
10 = ∆µT/m and a

(2)
01 = µT, consistent with the result given in Theorem 7.

4.2 Source Node: On-off traffic

For CBR traffic with constant interarrival time r > m, there is at most one

packet arrival during a frame. However, for bursty on-off traffic, due to arrival

cumulation, there may be multiple arrivals during one frame, constituting a
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batch arrival process. The conventional queueing model (Section 3.1) is not

convenient to solve the delay distribution problem for batch arrivals. So, we

use the delay model (Section 3.2) instead.

Theorem 8 Consider a GI/Geo/1 system with batch arrivals, which are gen-

erated by an on-off source (a01, a10) in a frame of m time slots. The service

rate is µT. Then, the pgf, mean and variance of the delay D0 are

GD0
(z) =

(1 − ρ)H0(z)/ρ

1 − µT(1 −
a01

λ
)zm−1 − (1 − µT)zm − H0(z)

, ρ = mλ/µT (24)

D0 =
1

1 − ρ

(
ρ − λ

a01
− ρ −

m − 3

2

)
, H0(z) =

a01(1 − zm)

1 − z
(25)

σ2
0 =

1

(1 − ρ)2

(
m2 − 1

12
+

(m − 1)(m − 2)ρ

6

−
(1 − µT)ρ2 + (m − 2)ρ + λ

a01
+

(ρ − λ)2

a2
01

)
. (26)

PROOF. Let the system state be the delay of the HOL packet in terms

of slot while all transitions occur at the frame boundaries. The transition

probabilities are:

Plj =





µTak, j = l + m − k, l ≥ 0

1 − µT, j = l + m, l ≥ 0

1, j = l + m, l < 0.

(27)
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The negative states indicate an empty buffer. Denoting the steady-state prob-

abilities by {πk}, we derive the balance equations

πk =





πk−m + µT

∞∑

j=0

aj+m−kπj, 0 ≤ k < m

(1 − µT)πk−m + µT

∞∑

j=k−m+1

aj+m−kπj, k ≥ m

µT

1 − am
00

∞∑

j=0

aj+m−kπj, k < 0,

(28)

which leads to πk = a
|k|
00π0 for k < 0 with π0 =

µTam

1 − am
00

∞∑

j=0

aj
00πj. Since the delay

distribution {d
(0)
k | k ≥ 1} involves only the non-negative states {πk | k ≥ 0}

as in (12), the pgf GD0
(z) of D0 can be calculated by multiplying both sides

of (28) by zk for the non-negative states k ≥ 0 and plugging πk = a
|k|
00π0.

The obtained pgf contains only one unknown parameter π0 (or d
(0)
1 ), which is

deduced from GD0
(1) = 1 to be d

(0)
1 =

a01

1 − a01

·
1 − ρ

ρ
and then leads to (24).

Differentiating GD0
(z) gives rise to the mean (25) and variance (26).

The system idle probability is πI =
∑

k<0

πk = 1− ρ. The pmf {d
(0)
k | k ≥ 1} can

be derived from GD0
(z) using the inverse z-transform. Comparing (24) with

Lemma 4 reveals the impact of TDMA on the single node delay distribution.

Though TDMA results in a completely different and more complex delay dis-

tribution from that without TDMA (Lemma 4), an analogous characterization

of the departure process exists (Lemma 9) as in Lemma 5 without TDMA.
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Lemma 9 Consider a GI/Geo/1 system with service time S ∼ GµT
and batch

arrivals, which is generated by an on-off source (a01, a10) in a frame of m time

slots. Then, the interdeparture time T0 has the pgf

GT0
(z) =

(
π̃B + (1− π̃B)

(1 − am
00)z

1 − am
00z

)
S(z), π̃B = 1−

(1 − am
00)(1 − ρ)

mλ
. (29)

PROOF. Let the system state be the delay of the HOL packet at a packet

departing moment in terms of slots. The transition probabilities are

Plj = µT(1 − µT)k−1ah,





j = l + km − h, l ≥ 0

j = km − h, l < 0,

(30)

Negatives states represent the system idle time. Denote the steady state prob-

ability by πk. We obtain πk = a
|k|
00π0 for k < 0 and π̃I =

−∞∑

k=−1

πk =
a00π0

1 − a00

that is the system idle probability viewed by a departure. Unlike the delay

distribution, the interdeparture time T0 involves only the negative states,

GT0
(z) = π̃BS(z) + S(z)

−∞∑

k=−1

z|k|
−km∑

j=1−(k+1)m

πk

=
(
π̃B +

(1 − am
00)z

1 − am
00z

·
a00π0

1 − a00

)
S(z). (31)

Plugging π̃I = 1− π̃B =
a00π0

1 − a00
and deducing π̃B from the stability condition

lead to (29).
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Note that (29) differs from (13) in that a00 is replaced by am
00 and λ is replaced

by mλ. At the frame level, am
00 is the probability that no packet arrives dur-

ing one frame and mλ is the average arrival rate, just like a00 and λ at the

slot level. Therefore, the MAC control does not change the departure process

characterization. Like in Section 3.2, the departure process (31) needs to be

simplified for a tractable e2e analysis. As usual, we approximate it as an on-off

process with transition probabilities a
(1)
10 and a

(1)
01 calculated from (28) based

on the principle provided in (23), i.e.,

a
(1)
11 = 1 − a

(1)
10 =

µT

∞∑

k=0

πk

m+k∑

j=1

aj

ρ
= µT − (1 − am

00)
1 − ρ

ρ
, (32)

and a
(1)
01 = mλa

(1)
10 /(1 − mλ).

The delay and departure process of Bernoulli traffic are analyzed by setting

a01 + a10 = 1. The impact of TDMA is reflected through the deviation of the

departure process from the arrival Bernoulli process since without TDMA,

a geometric server and a Bernoulli arrival guarantees the equivalence of the

departure process to the arrival process [9, 11]. In other words, the TDMA

control generates a batched MMBP arrival process at the frame level and

destroys the memoryless property.

In summary, for all three traffic models, smooth CBR, memoryless Bernoulli,

and bursty and correlated on-off, all the departure processes of the source

node n0 can be characterized by an on-off process with transition probabilities
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(a
(1)
01 , a

(1)
01 ). So the analysis of the relay nodes is identical for all traffic models.

4.3 Relay Nodes

The arrival process to the first relay node n1 is an on-off (a
(1)
01 , a

(1)
01 ). So n1

is modeled as a GI/Geo/1 system, whose delay distribution is geometric as

proved in Lemma 4. Here a modification is required since the delay should be

evaluated at the slot level while the system is analyzed at the frame level, i.e.,

the pmf is d
(1)
km+1 = (1 − α)αk (k ≥ 0), where α is given in (10). The pgf is

GD1
(z) =

(1 − α)z

1 − αzm
. The mean and variance are

D1 = 1 +
mα

1 − α
= 1 + mε, σ2

1 =
m2α

(1 − α)2
= m2ε(1 + ε), (33)

where ε ,
ρ

1 − ρ
·
1 − µ

a
(1)
01

. The departure process of such a GI/Geo/1 system

can be approximated as another on-off process with (a
(2)
01 , a

(2)
01 ) calculated as

in (15), in which λ replaced by mλ. The remaining relay nodes are analyzed

in the same way by iteratively calculating (a
(i+1)
01 , a

(i+1)
01 ) from (a

(i)
01 , a

(i)
01 ).

5 Single Node Analysis for ALOHA

m-phase TDMA achieves a high throughput but incurs a substantial amount of

overhead to establish the frame structure and requires a complete cooperation

between all nodes involved. Moreover, in networks with multi-directional flows,
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TDMA favors the flows that have the same direction as the TDMA order while

the flows in the opposite directions would experience much longer delays. In

wireless networks, slotted ALOHA may be more practical since every node

operates in a completely independent way. Besides, ALOHA is insensitive to a

flows’ direction. The disadvantage of ALOHA is its random and independent

transmission pattern that generally results in poor performance unless the

traffic load is light. This section analyzes ALOHA nodes that are modeled as

GI/Geo/1 but analyzed at the slot level. So all interarrival times are integer

and there are no batch arrivals. The conventional queueing model (Section

3.1) is used for the delay analysis. Note that the service rate is defined as

µs = µApm and the traffic intensity is ρ = λ/µs.

For CBR traffic, the source node n0 is a D/Geo/1 system with an interarrival

time r, corresponding to the case of m = 1 in Theorem 2. Therefore, inside the

unit circle, there is a unique root ξ of the polynomial µsy
r − y + 1−µs. Based

on Theorem 2, the delay D0 ∼ G1−ξ. However, if r is large, µsy
r−y+1−µs = 0

can be solved only numerically. Using a similar approach as in Lemma 3, we

approximate ξ as follows

ξ ≈ 1 −
2(1 − ρ)

(r − 1)ρ
. (34)

The mean and variance of D0 are

D0 =
1

1 − ξ
≈

(r − 1)ρ

2(1 − ρ)
, σ2

0 =
ξ

(1 − ξ)2
≈

(r − 1)ρ

2(1 − ρ)

(
(r − 1)ρ

2(1 − ρ)
− 1

)
. (35)
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For the departure process, we use the delay model to derive the interdeparture

time distribution in Lemma 10.

Lemma 10 Consider a D/Geo/1 queueing system with interarrival time r ∈

N and service rate µs. Then, the departure process can be approximated as on-

off with transition probabilities a
(1)
01 = (1−µs)/((r−1)ξ) and a

(1)
10 = (1−µs)/ξ,

where ξ is the unique root of µsy
r − y + 1 − µs = 0 in the region (0, 1).

PROOF. Let the system state be the delay of the HOL packet. Given the

delay’s pmf d
(0)
k = (1−ξ)ξk−1 (k ≥ 1) and the relationship between {πk |k ≥ 0}

and {d
(0)
k | k ≥ 1}(12), plugging m = 1 into the transition probabilities (18),

it can be proved that πB =
∑

j≥0

πj = 1 − ρ and

a
(1)
11 =

µs

∞∑

k=r−1

πk

∑

j≥0

πj

=

µs(ρ −
r−2∑

k=0

πk)

ρ
= µsξ

r−1 = 1 −
1 − µs

ξ
, (36)

where the last part is obtained from µsξ
r − ξ +1−µs = 0. Then a

(1)
10 = 1−a

(1)
11

and a
(1)
01 = a

(1)
10 λ/(1 − λ).

For on-off traffic, Lemma 4 proves that the delay D0 ∼ G1−α (10). The depar-

ture process is approximated as an on-off process as in (15). Like in TDMA,

all the departure processes of the source node n0 are approximated as on-off

so that all the relay nodes are analyzed in the same way as in TDMA.
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6 Comparison of TDMA and ALOHA Nodes

Sections 4 and 5 present the analysis of single nodes in TDMA and ALOHA,

respectively, considering three traffic models, CBR, on-off and Bernoulli. The

on-off process is featured by its correlation and burstiness, both of which

can be characterized through the burst size B = 1/a10. Using the burst size

Br = 1/(1 − λ) of the Bernoulli process as a reference, an on-off process with

longer (shorter) burst size than Br is referred to as heavy (light). Specially,

we set a10 = (1− λ)/2 for heavy on-off and a10 = 1 − λ/2 for light on-off. We

compare the delay of single nodes from the following aspects:

• Source node: CBR vs. on-off. The ratio of the delay means D0 for on-off

and CBR is

ηTDMA =
D0,on-off

D0,cbr

= 2
(

B

Br
·
m − µT

µT
− ρ

)
− m + 3 > 1 (37)

ηALOHA =
D0,on-off

D0,cbr

= (1 − ξ)
(
1 +

1

1 − ρ
·
1 − µs

µs

·
B

Br

)
> 1, (38)

where ξ is the unique root of µsy
r − y + 1 − µs in the region (0, 1). In both

TDMA and ALOHA, CBR traffic (with burst size B = 1) always causes the

smallest delay. For on-off traffic, the longer the burst size B, the longer the

delay (mean) and delay jitter (variance).

• Relay nodes: TDMA vs. ALOHA. The departure processes in the linear

network are all approximated as on-off. So the delays in relay nodes are

geometrically distributed. Fig. 3 shows that such on-off departure processes
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converge to Bernoulli rapidly with a
(i)
01 → mλ for TDMA and a

(i)
01 → λ for

ALOHA. If we set pm = 1/m, the ratio of the delay means Di in relay nodes

for TDMA and ALOHA is

η =
Di,TDMA

Di,ALOHA

= 1 −
µ(m − 1)

m(1 − λ)
< 1, (39)

i.e., TDMA outperforms ALOHA in the delay in terms of both mean and

variance. From the perspective of traffic shaping, TDMA acts as a leaky

bucket regulator, while ALOHA behaves like a Bernoulli regulator. So TDMA-

shaped traffic is more regular than ALOHA-shaped traffic and it is well

known that smooth traffic causes smaller delays than bursty traffic [9].
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Fig. 3. The convergence of the analytical a
(i)
01 to mλ and λ in TDMA and ALOHA

networks, respectively, with m = 3, pm = 1/3, λ = 0.25, µT = µA = 0.8, N = 15.
For light on-off, a01 = 0.292, a10 = 0.875; for heavy on-off, a01 = 0.125, a10 = 0.375.

To justify the on-off approximation for the departure processes, we use sim-

ulations to show the tightness of the approximations. In the simulations, all

traffic flows have the same rate λ. All channels have the same success prob-
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ability µ = µT = µA. Moreover, we let the transmit probability of ALOHA

be pm = 1/m such that the average number of transmission opportunities are

equivalent for TDMA and ALOHA. Delays are measured in the number of

time slots that the packet stays in the system.

Fig. 4 and Fig. 5 compare the simulated per-node delay mean and variance

with our analysis and lead to the following observations:

• as the node index i increases, the simulated per-node delay mean and vari-

ance converge to the analytical results Di and σ2
i . In other words, the longer

the chain of nodes that the traffic flow traverses, the tighter the on-off ap-

proximation;

• the delay depends on traffic burstiness, i.e., the heavier the traffic burstiness,

the larger the delay and delay jitter;

• traffic burstiness mainly affects the single node delays in the first few nodes,

like at the source node n0, as shown previously in the comparison (37) and

(38). After the traffic flow traverses a long path, the influence of the traffic

burstiness on the delays at the relay nodes diminishes (e.g., for TDMA, the

Di’s (i ≥ 5) are almost identical for all four traffic flows (Fig. 4(a)). Finally,

the delay mean and variance at the relay nodes converge to the same value

regardless of the original traffic burstiness;

• our analysis (the dash-dotted lines in Fig. 4 and Fig. 5) represents the limit-

ing delay performance. It also shows in Fig. 3 the convergence of the approx-

imate on-off processes to Bernoulli. In [27], a GI/Geo/1 queue is viewed as
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a “Markov operator” that produces a departure process distribution from

an arrival process distribution. Passing an arbitrary arrival process through

a series of independent and identically distributed GI/Geo/1 queues is like

observing the evolution of a discrete-time Markov chain, which establishes a

connection to the existence of invariant distributions. Using entropy theory,

the invariant distribution was shown to be Bernoulli [27], which justifies

the on-off approximation theoretically. This Bernoulli process constitutes

an “eigentraffic” process since it represents the “eigenvalue” towards which

the arrival traffic properties are tended to transform [28];

• the departure processes converge to Bernoulli from different directions, de-

pending on the relative burstiness B/Br of the original traffic flow. Assum-

ing that the eigentraffic process has the reference burst size Br, a traffic flow

with a longer burst size (B > Br) causes a longer delay and thus will con-

verge from above. Similarly, a flow with a shorter burst size (B < Br) will

converge from below. Note that Br depends on the established GI/Geo/1

system. In TDMA, the nodes are analyzed at the frame level. So Br should

be the burst size of a Bernoulli process at the frame level. Therefore, even

if the original traffic flow is Bernoulli at the slot level, it is still regarded

to have a longer burst size at the frame level due to the packet cumulation

during one frame. The similar principle is applied to both heavy and light

on-off traffic. Accordingly, in TDMA, only CBR traffic has B < Br while all

three remaining flows (Bernoulli, heavy and light on-off) have B > Br. That

is why the asymptotic value lies between CBR and all three bursty flows
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(Fig. 4). In ALOHA, the nodes are analyzed at the slot level. So the original

Bernoulli process itself is the eigentraffic process. Then, both light on-off

and CBR have B < Br and only heavy on-off has B > Br. Accordingly, the

asymptotic value lies between the heavy on-off and the light on-off.

Therefore, our analysis provides the limiting delay performance and thus gives

delay bounds. That is, for traffic flows with lighter burstiness than the eigen-

traffic process, our analysis provides upper bounds on the delay and vice versa.

The eigentraffic process is obtained from the established GI/Geo/1 model.
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Fig. 4. The mean Di and variance σ2
i of single node delays Di at ni in TDMA

networks with with m = 3, λ = 0.25, µT = 0.8, N = 15. For light on-off,
a01 = 0.292, a10 = 0.875; for heavy on-off, a01 = 0.125, a10 = 0.375. The heavy
on-off flow causes a delay variance σ2

0 = 5176 at n0. The dash-dotted lines represent
analytical results while the solid lines are for simulation results.

In short, the linear network of GI/Geo/1 queues turns the flows with different

correlation and burstiness into the same memoryless Bernoulli process. The

error-prone wireless channel behaves as an “entropy booster” [29] that inserts

“holes” into the arrival flows randomly (with probability µ). This inserting

operation limits the maximum burstiness the traffic flow can sustain as it tra-
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Fig. 5. The mean Di and variance σ2
i of single node delays Di at ni in ALOHA

networks with with pm = 1/3, λ = 0.25, µA = 0.8, N = 15. For light on-off,
a01 = 0.292, a10 = 0.875; for heavy on-off, a01 = 0.125, a10 = 0.375. The dash-dotted
lines represent analytical results while the solid lines are for simulation results.

verses through the network. In other words, Bernoulli possesses the “natural”

level of burstiness that is favored by the network under a given traffic load.

The rate at which the flows converge to Bernoulli depends on the relative

burst size B/Br and the channel quality µ. Generally, the longer the burst

size, the faster the convergence (Fig. 4 and Fig. 5). The relative burstiness is

determined by both the original traffic statistics and the MAC scheme. For

example, TDMA incurs arrival cumulations. Thus the relative burstiness is

higher than in ALOHA and all traffic flows cause a sharp decrease in a
(i)
01

(Fig. 3). On the other hand, a good channel is able to maintain the original

traffic statistics in that most packets can be sent out without retransmissions.

So the interdeparture time is almost equivalent to the interarrival time and

it takes a very long path for the flows to converge to Bernoulli. In contrast,

a bad channel causes multiple retransmissions and the interdeparture time is
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mainly determined by the geometric service time. Therefore, the traffic flows

converge to Bernoulli very quickly.

7 End-to-End Delay in Multihop Networks

Our analysis shows that the arrival processes to the nodes of a linear network

converge to Bernoulli and the delays at each node converge to a geometric

distribution. However, these arrival processes are not independent so the delays

Di’s are not independent either. In general, delay Di experienced at ni depends

on both the service and the arrival process, the latter of which is the departure

of ni−1 and, as stated before, except for Bernoulli processes, is correlated with

the delay Di−1. Iteratively, Di is correlated with all Dj’s (j 6= i). The accurate

calculation of the e2e delay variance σ2 should take into account all these

correlations and thus quickly becomes intractable as N grows. In this section,

we use simulations to reveal the influence of the correlations.

Fig. 6 show the e2e delay variance σ2 and
N−1∑

i=0

σ2
i in TDMA and ALOHA, re-

spectively. Previous work assumed “independent” Di’s, meaning σ2 =
N−1∑

i=0

σ2
i ,

which holds only if the original traffic flow is Bernoulli (or Poisson). For other

arrival processes, due to the existence of the correlations, σ2 6=
N−1∑

i=0

σ2
i . As

shown in Fig. 6, a gap exists between σ2 and
N−1∑

i=0

σ2
i except for Bernoulli traf-

fic in ALOHA (Fig. 6(b)). For some traffic flows such as heavy on-off and

38



CBR, the gap is too large to permit the assumption σ2 =
N−1∑

i=0

σ2
i . Therefore,

it is critical to study the impact of the correlations in Di’s in the multihop

topology.

We observe in Fig. 6 that different traffic flows cause different correlations:

• in TDMA, the CBR source results in a negative correlation while all three

on-off sources including Bernoulli result in a positive correlation;

• in ALOHA, both CBR and light on-off cause a negative correlation while

heavy on-off causes a positive correlation;

• in ALOHA, the Bernoulli source causes zero correlation.

Recall that in TDMA, the nodes are modeled as GI/Geo/1 at the frame level.

All traffic flows except CBR cause converge to the eigentraffic process from

above because they have a longer relative burst size. On the other hand, in

ALOHA, the nodes are GI/Geo/1 systems at the slot level, at which the

Bernoulli flow itself represents the asymptotic process and only heavy on-

off has a longer relative burstiness and converges to Bernoulli from above.

Therefore, it is natural to connect the type of the correlation with the relative

burst size B/Br. That is, i) a flow with B/Br < 1 causes a negative correlation;

ii) a flow with B/Br > 1 leads to a positive correlation; iii) a flow with

B/Br = 1 causes no correlation at all.

The relative burst size is MAC-dependent. With TDMA, a Bernoulli flow gen-

erated at the slot level is not Bernoulli at the frame level and thus loses the
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Fig. 6. The e2e delay variance in TDMA and ALOHA networks with with
m = 3, pm = 1/m, λ = 0.25, µ = µT = µA = 0.8, N = 15. For light on-off,
a01 = 0.292, a10 = 0.875; for heavy on-off, a01 = 0.125, a10 = 0.375. The solid lines
represent the simulated e2e variance σ2 with Di’s correlated while the dash-dotted
lines would be the variance as if all Di’s were independent.

memoryless property and causes a positive correlation in Di’s, which leads to

σ2 >
N−1∑

i=0

σ2
i (Fig. 6(a)). Similarly, a light on-off flow at the slot level is trans-

formed into a heavy on-off flow at the frame level and cause a positive cor-

relation. It is because TDMA acts like a leaky bucket regulator that destroys

the correlation and burstiness of the on-off flows. On the other hand, ALOHA

makes transmission decisions independently and acts like a random geomet-

ric (or Bernoulli) regulator that can preserve i) the memoryless property so

σ2 =
N−1∑

i=0

σ2
i for Bernoulli; and ii) the burstiness property so σ2 <

N−1∑

i=0

σ2
i for

light on-off in ALOHA (Fig. 6(b)).

The relative burst size also determines the correlation coefficients. The larger

the relative burst size, the larger the correlation. For instance, in Fig. 6, for

heavy on-off, σ2 ≈ 4
N−1∑

i=0

σ2
i in TDMA and σ2 ≈ 2.5

N−1∑

i=0

σ2
i in ALOHA, while for

40



light on-off, σ2 ≈ 2
N−1∑

i=0

σ2
i in TDMA and σ2 ≈ 1.2

N−1∑

i=0

σ2
i in ALOHA. Besides,

if σ2 ≥ 2
N−1∑

i=0

σ2
i , strong correlations exist not only between neighboring nodes,

but also between nodes that are more than one hop from each other. Therefore,

if the arrival processes are correlated, the linear network evolves in a more

complex way than a Markov chain [27], in which non-neighboring nodes are

conditionally independent.

The regular spacing introduced by TDMA results in not only a small single

node delay but also a small e2e delay than ALOHA. Furthermore, smooth

traffic results in a negative correlation that decreases the e2e delay variance

while bursty traffic causes a positive correlation that increases the e2e delay

variance. Therefore, the gap in σ2 between CBR and heavy on-off is huge,

e.g., in TDMA, σ2
heavy on-off ≈ 14σ2

CBR and in ALOHA, σ2
heavy on-off ≈ 11σ2

CBR.

In order to guarantee the e2e delay bound for delay-sensitive applications,

the traffic flow should be shaped, that can be implemented by both traffic

regulation and MAC control.

The other interesting observation from Fig. 6 is that even with the existence

of the correlations, the e2e delay variance is almost linear with the number of

nodes (Fig. 6). It means that the impact of the correlations is uniform in the

linear network.
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8 Conclusions

This paper uses queueing theory to analyze the delay performance of two

MAC schemes, TDMA and ALOHA, in a wireless line network. The queueing

models are established in such a way that the service time is geometric and

the access delay is incorporated into the service process for both TDMA and

ALOHA. For the e2e analysis, we calculate the pmf of the delays at each node

(including the source node and relay nodes) and derive the departure process.

For a tractable analysis, we approximate the departure process by a correlated

and bursty on-off process, which is proved to be accurate as the network length

increases. Regardless of the original traffic statistics, all departure processes

converge to an identical eigentraffic process as the number of nodes N increases

– albeit from different directions and at different rates, all depending on the

relative burst size with respect to the asymptotic Bernoulli process.

The traffic burstiness also affects the correlations in the per-node delays Di. A

flow with a long burst size B/Br > 1 causes a positive correlation, leading to

an increased e2e delay variance while a flow with a short burst size B/Br < 1

causes a negative correlation, leading to a decrease in the e2e delay variance.

It is also shown that the MAC policy may change the relative burst size and,

in turn, change the type of the correlation. For example, TDMA destroys the

memoryless property of the original Bernoulli flow and causes a positive cor-

relation while ALOHA preserves the memoryless property. Simulation results

42



reveal the significance of the correlations in the Di’s. So simply assuming inde-

pendent Di’s and σ2 =
N−1∑

i=0

σ2
i would lead to very optimistic and conservative

e2e delay variances for bursty and smooth traffic, respectively.

Generally, smooth traffic leads to smaller delays than bursty traffic. TDMA

outperforms ALOHA since it introduces a more regular spacing between packet

arrivals than ALOHA. Similarly, CBR traffic results in a much smaller e2e de-

lay variance than bursty traffic. Therefore, a MAC scheme should be designed

together with a traffic regulator to optimize the e2e delay performance. Note

that although TDMA achieves a better delay performance, it also incurs a sub-

stantial overhead to establish and maintain the frame structure, which may

be impractical in certain wireless multihop networks. Furthermore, TDMA

favors traffic flows that have the same direction as the TDMA transmission

order and incurs a large access delay for flows with opposite direction. There-

fore, an ideal delay-guaranteed MAC scheme should be able to smooth the

traffic flows like TDMA but also be able to operate more independently and

with less sensitivity to the traffic flow’s direction like ALOHA.
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