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Abstract :  In this paper, it is shown how various familiar 
problems in control design and system identification can be 
formulated as interpolation problems, where powerful methods 
that have been recently developed can be used. This leads to 
new, more effective, and more practical solutions to classical 
system and control problems. Numerical issues and computer 
algorithm development are also discussed. 

I .  Introduction 
Many system and control problems can be formulated in 

terms of matrix equations where polynomial or rational 
solutions with specific properties are of interest. It is known 
that equations involving just polynomials can be solved by 
either equating coefficients of equal power of the indeterminate 
s or equivalently by using the values obtained when appropriate 
values for s are substituted in the given polynomials; in the 
latter case one uses results from the classical theory of 
polynomial interpolation. Similarly one may solve 
polynomial matrix equations using the theory of polynomial 
matrix interpolation; this approach has significant advantages 
and it appears in a rather complete form in [ 11. 

In this paper, recent developments in control design using 
methods based on matrix interpolation theory are outlined. 
Numerous control system constraints and properties that are 
expressed in terms of conditions on a polynomial or rational 
matrix R(s), can be written in an easier to handle form in terms 
of R(sj), where R(Sj) is R(s) evaluated at certain (complex) 
values s * S j  j-1,R. We shall call such conditions in terms of 
R(Sj), interpolation (type) conditions on R(s). The 
relationship between conditions on R(Sj) and properties of R(s) 
has been addressed in [l] and they have led to a new 
methodology further explained here which offers alternative 
approaches to many well known control problems. In 
particular, in section 11, the fundamental results from matrix 
interpolation theory are outlined. A loop gain design approach 
based on the interpolation algorithm is introduced in section 
111; results on a new approach to self-tuning control are 
presented. An efficient algorithm for system identification in 
frequency domain is described in section IV. In section V, the 
Diophantine equation is solved. Other control applications are 
illustrated in section VI. Computer code development is 
discussed in section VII. 

11. Matrix Interpolation Theory 
Certain fundamental results from the theory of polynomial 

and rational matrix interpolation are briefly outlined here; 
additional results are included in section V. Full details can be 
found in [l]. 

Polvnomial Matrix Interpolation: 

as follows: 
The basic polynomial interpolation problem can be stated 
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Given l distinct complex scalars Sj j = 1, R and 1 
corresponding complex values bj, there exists a unique 
polynomial q(s) of degree n = R - 1 for which 

That is, an nth degree polynomial q(s) can be uniquely 
represented by the l = n+ 1 interpolation (points or doublets or) 
pairs (Sj, bj) j - 1,B. 

The polynomial matrix interpolation theory deals with 
this interpolation problem in matrix case. Let S ( s )  :- blk 
diag([ 1, s, ..., sdi]') where di i - 1, m are non-negative 
integers; let a, * 0 and bj denote (mxl) and (pxl) complex 
vectors respectively and Sj complex scalars. 

Theorem 2.1[1]: Given interpolation (points) triplets (Sj, aj, 
bj) j = 1 , l  and nonnegative integers di with l * di + m such 
that the (1 di + m)xl matrix 

has full rank, there exists a unique (pxm) polynomial matrix 
Q(s), with ith column degree equal to di, i = 1, m for which 

Proof: Since the column degrees of Q(s) are di, Q(s) can be 
written as 

where Q (px(xdi + m)) contains the coefficients of the 
polynomial entries. Substituting in (2.3), Q must satisfy 

where Bl:=[bl ,  ..., b ~ ] .  Since S i  is nonsingular, Q and 
0 

It should be noted that when p=m=l and dl=R-l=n this theorem 
reduces to the polynomial interpolation theorem. 

Rational Matrix Inxmolation: 
Similarly to the polynomial matrix case, the problem here 

is to represent a (pxm) rational matrix H(s) by interpolation 
triplets or points (sj, aj, bj) j - 1, B which satisfy 

where sj are complex scalars and aj * 0, bj complex (mxl), 
(pxl) vectors respectively. 

It is shown[l] that the rational matrix interpolation 
problem reduces to a special case of polynomial matrix 
interpolation. To see this: 

Write H(s) = 6'1(s)i(s) where &s) and N(s) are (pxp) and 
(pxm) polynomial matrices respectively. Then (2.6) can be 

q(sj) = bj j = 1, l (2.1) 

S i  :- [S(si)ai,..., S(sn)anl (2.2) 

Q(sj) aj - bj j * 1 , l  (2.3) 

Q(s)  - QSW (2.4) 

Q ~ R  - BR (2.5) 

therefore Q(s) are uniquely determined. 

H(sj)aj - bj j = 1, l (2.6) 

I I 

written as N(sj)aj D(Sj)bj or as 

G C S j ) ,  -D(Sj)] [ti] Q(Sj)Cj ,, 0 j = 1, R (2.7) 

That is the rational matrix interpolation problem for a pxm 
rational matrix H(s) can be seen as a polynomial interpolation 
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problem for a px@+m) polynomial matrix as) :- [N(s), -D(s)] 

There is also the additional constraint that D-l(s) exists. 

111. A New Loop Gain Design Approach 
Consider the linear, time invariant, SISO control system in 

Figure 1. P(s) is the transfer function of the plant, C(s) is the 
compensator to be determined. A classical approach to 
feedback design is to work directly with the loop gain transfer 
function, L(s)-P(s)C(s). The stability and performance 
specifications are interpreted as constraints on the loop gain 
frequency response, ujw)-P(jw)C(jw). From these constraints, 
the designer knows that the IL(jo)l should be large up to a 
frequency and small beyond another frequency; he also knows 
roughly where the crossover frequency, wc, should be from the 
transient response requirements. The Nyquist stability theorem 
puts additional constraints on L a w )  in terms of the 
encirclement of the -l+jO point by the graph of L(jw), gain and 
phase margins, etc. 

In the existing loop shaping design techniques, C(s) is 
determined iteratively such that u j w )  satisfies all constraints. 
This process of finding the appropriate C(s) requires a great deal 
of human intuition and experience. Compromises are often 
made in the transient response specifications, the compensator 
complexity, the actuation limit, and the stability robustness, 
etc. In the following, a new procedure is introduced. 

Problem Formulation[3] 
Let the design specifications be expressed as interpolation 

constraints of the form, 
Yjoi) ai, i - 1, R (3.1) 

where a i  are complex numbers. Note that this is a reasonable 
assumption since most design specifications such as command 
following in certain frequency range, crossover frequency, gain 
and phase margins, stability robustness against high frequency 
unmodeled dynamics, etc. can be translated as constraints on 
magnitude and phase of Loo) at a set of frequencies, {mi) . Thus, 
the design problem becomes to find a compensator C(s) such 
that 

where PQwi) is the given frequency response of the plant 
evaluated at mi. Write L(j0i) 1 , R ;  the 
numerator and denominator coefficients of C(s) can then be 
obtained by solving the set of linear algebraic equations 

with interpolation points (Sj, Cj, 0) (Sj, [aj', bj']', 0) j 1 , R .  

L(j0i) P(jwi)C(joi) i 1, R (3.2) 

a i  and P(jWi) = pi, i 

C(jwi)& ai, i 1, R (3.3) 
Given the degree of C(S), a i ,  and pi, solving C(s) from 

(3.3) can be seen as the rational function interpolation problem 
in the form of (2.6). 

Discussion 
One can find a proper C(s) that satisfies all constraints in 

(3.3) by picking the degree of C(s) high enough. In practice, 
however, it is often required to find the compensator of lowest 
order which meets all the specifications. Furthermore, the loop 
gain constraints are usually indications, rather than absolute 
criterion, of the open loop frequency response that will lead to 
satisfactory closed loop performance. Therefore, the design 
objective can be seen as to find a compensator C(s) of lowest 
order such that the loop gain frequency response stays in a close 
neighborhood of the points specified in (3.3). The tolerance of 

error can be predetermined by the designer and a search 
algorithm can be used to find the solution. This algorithm will 
repeatedly solve the interpolation problem (3.3) while 
increasing the order of C(s) until it finds the solution within the 
error tolerance. A computer algorithm of this type was 
developed in [6] for system identification purposes. 
Modification of it for design purposes is straightforward. 

The loop gain constraints in the loop shaping design 
approach are mostly given as a set of inequalities, such as 
IL(jo)l > a, for w1<w<w2, etc. This is obviously more flexible 
than the equality constraints shown in (3.1). Note that the 
solutions are usually least square solutions and they do not 
solve equation (3.3) exactly. The constraints (3.1) must be 
selected reasonably so that they can be met by using a 
relatively simple compensator. For example. if the loop gain 
is required to have the magnitude decreasing over a frequency 
range, one should allow the phase to drop over the same range. 

A unique feature of this design approach is that it does not 
require the explicit mathematic model of the plant. To carry out 
the design, the only information needed from the plant is its 
frequency response at a set of frequencies, [ wi) . Consequently, 
not only the major portion of the system identification process 
is eliminated, but also the errors associated with it. 
Furthermore, it makes it feasible to implement an automatic 
design process on-line such that the compensator can be 
adjusted as the dynamics of the plant changes. This will be 
addressed later in Section IV. 

The extension of the new design method to MIMO system 
design requires the design specifications be expressed in terms 
of frequency response of the loop gain transfer matrix L(s) at a 
set of discrete frequencies, L(joi), i-1, 1 . Once this is 
accomplished, the same procedure for SISO systems can be 
applied with few modifications. 

-k Consider the feedback control system shown 
in Figure 1. Assume that P(s) - Y(s+l)(s+5) and the design 
specifications are as follows: the cross over frequency be around 
0-1 rad/sec; the output disturbance be attenuated at least 40 dB 
for w S .01 racUsec; the gain and phase margin be above 4 and 
30 degrees, respectively; and finally, the system remains 
stable when there is unmodeled dynamics of the magnitude up to 
40 dB for w 2 10 &sec. 

Translating the closed-loop specifications to loop 
constraints, the crossover frequency and stability margin 
conditions are directly applied to the loop gain; the disturbance 
rejection and stability robustness conditions can be interpreted 
as IP(iw)C(jw)l2100, 01.01 &sec, and IP(jw)C(jw)l<.Ol, a l l 0  
radsec. From these constraints, four interpolation pairs are 
selected as shown in Table 1. Note that the interpolation 
constraints are selected with some conservatism so that the 
inaccuracies in the approximate solutions can be tolerated to a 
certain degree. 

Solving the interpolation problem in (3.3), an 
approximate solution is found 

- . 2 6 ~ +  6.27 
C(s) --y 

The resulting crossover frequency is .9 r d s e c ;  gain margin is 
3.8, phase margin is about 35'; IP(jo)CQw)I - 104, at w - .01, 
IP(jw)C(jo)l= .006 at w - 10 and dropping. 
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Towards Self-Tuning Control[3] 
The dynamics of the physical process may change. The 

change may happen quickly or slowly depending on the nature 
of the plant. For example, the performance of actuators may 
degrade slowly with time which corresponds to slow changes in 
the dynamics of the system. On the other hand, if a failure 
suddenly occurs in an actuator, it will introduce dramatic 
variations in the system which corresponds to quick changes in 
system dynamics. In either situation, the compensator C(s) 
designed for the original plant P(s) may become ineffective and 
needs to be adjusted during operation. In the following, a self- 
tuning control system is proposed to address such problems. 

The new design approach discussed above integrate the 
modeling and design into one process. Once the design 
specifications are given in terms of loop gain frequency 
response, the rest of the design can be carried out by a computer 
algorithm. The frequency response of the plant can be found as 
the ratio of Fourier transform of the input and output. Or, it can 
be calculated as 

Suu dui) 
SuyWi) 

P(joi) - 

where Suu(jUi) and S,y(jWi) are the auto- and CTOSS spectra of the 
input and output time history. With L(jWi) and P(iWi) given for 
i - 1,L, the compensator C(s) is obtained by solving the linear 
algebraic equation (2.5) on-line. 
Svstem Configuration 

Based on the above discussion, a conceptual configuration 
of a self-tuning control system is shown in Figure 2. In this 
system, the input and output data in time domain is 
continuously recorded and the frequency response P(jwi) is 
obtained using the fast Fourier transform (FFT). From the new 
(P(jwi)J and the given constraints on loop gain, (LQUi)], the 
supervisory control, a higher level decision making 
mechanism, determines if the compensator should be updated. 
This is done by comparing the frequency response of the loop 
gain transfer function at a set of frequencies { m i ]  with the 
desired one. If the difference exceeds a predetermined limit, the 
tuning algorithm will be executed. The tuning algorithm 
receives P(ioi) and L(jWi) from the supervisory control block 
and determines the new compensator C(s) using the design 
method discussed in Section 11. Thus, as the dynamics of the 
plant changes, the performance of the closed loop system is 
maintained by adjusting C(s). This process can be completely 
automated without human intervention. Furthermore, the 
computational complexity of the algorithm is expected to be 
reasonable for on-line operation since it only involves solving 
a set of linear algebraic equations. 
ComDarison to self-tuninn adaDtive control 

The proposed tuning method is similar in concept to self- 
tuning adaptive control, as it is defined in the literature. The 
objective of both methods is to adjust the compensator to 
accommodate the changes in the plant. The implementations, 
however, are very different. The new method has the following 
unique characteristics 

a) It does not estimate the parameters of the plant, directly or 
indirectly. 
b) There is no assumption made on the structure of the 
compensator. The order of the compensator is determined only 
to satisfy the design constraints. 
c) The compensator is only adjusted when necessary and it is 
done quickly in one step. For this purpose, a decision making 
mechanism, perhaps in forms of a rule based system, is required. 

IV. Applications in System Identification 
The current results in literature on system identification 

from frequency response all require that the frequency response 
of the system to be identified, ?;(jwi), i=1,2, ..., be given. For 
SISO systems, this does not pose much difficulty as one can 
always take the ratio of y(jWi) and U(iWi) to obtain the frequency 

response G(jwi). Unfortunately, it is not so trivial for MIMO 
systems considering all possible couplings between various 

inputs and outputs. Therefore, the assumption that GCjwi) is 
given seems quite restrictive and impractical, particularly for 
MIMO systems. 

The nature of system identification problem dictates that 
one must work with the measurements y(jwi) and U(jWi), instead 

of G(jui). Ideally, the transfer function matrix G(s) should be 
determined such that it fits the measurements as follows 

For SISO systems Goo), u(jw) and yaw) are scalars; while for 
MIMO systems G(jw) is a matrix; u(jw) and yQw) are vectors. 
The problem of interests is to determine G(s) such that the error, 
y(ioi) - G(iwi)U(jWi), is minimized in some sense. 

It is usually more convenient to deal with polynomial 
matrices than rational matrices. Assuming G(s) is a pxm 
rational matrix, let G(s)-D-l(s)N(s) be a left coprime fraction 
representation, where D(s) and N(s) are (pxp) and (pxm) 
polynomial matrices, respectively. Equation (4.1) is equivalent 
to 

N(ioj)U(iWi) - D(joi)Y(ioi) i 1, 2, ... (4.2) 
and the error can be defined as 
Ei N(iwi)u(iwi) - DCjwi)y(jwi) i 1,2, ... (4.3) 
Now the problem can be formulated as follows: 

Problem Formulation [6] 
Given column degrees of N(s) and D(s), and the input and 

output measurements, u(jwi) and y(iwi) i- l ,2,  ..., find a proper 
transfer function matrix, G(s)=D-'(s)N(s), such that the cost 
function J - llEWllf is minimized. Here, the matrix W - 
diag(w1, w2, ...}, is a diagonal weighting matrix where Wi 
reflects the weight at frequency Wi; E is the error matrix defined 
as E = [El, E2, ... 1, where Ei is defined in (4.3). Note that the 
column degrees of N(s) must not be greater than those of D(s) 
for a proper solution transfer function matrix to exist. 

Computer algorithms have been developed to solve the 
SISO and MIMO identification problems using this matrix 
interpolation method [4,5,6]. The new algorithms are more 
numerically efficient than the existing ones, because the 
solutions are obtained by solving a set of linear equations while 
the existing approaches [8-111 formulate the problem as a 
nonlinear least square problem and employ mathematical 
programming techniques to iteratively determine the solution. A 
simple illustrative example is given as follows: 

I 

I 

G(ioi)u(ioi) y(jwi) i 1, 2, ... (4.1) 
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DamDle 4.1 A 2x2 transfer function matrix is given as 

G(s) = ["I' s + 0 2 ] ' [ s  0 'I=[ 1 (r+l)(s+Z) i!T -8 (r+l)(s+2) " I  8-1 

From matrix interpolation theory, R - d i +  m + p - 7 
measurements can be used to uniquely determine this transfer 
function matrix. Seven frequencies Wi i - 1,7 are arbitrarily 
chosen within the range of zero to ten radidsecond. Seven 
arbitrary input, UOWi) i - 1,7, are generated and the output 

response is obtained as y( jo  i )  - &jo i)U(jW i). Using 
(y(jWi),u(joi), i-l,7], the method determined the G(s). The 

difference between the coefficients of e(s) and G(s) is in the 
range of 

V. Solving The Diophantine Equation 
The solution methodology is based on certain fundamental 

theoretical results[l] repeated here for convenience. They are 
developed first for general polynomial matrix equations and 
they are later specialized for the Diophantine equation. 
Consider the equation 

M(s)L(s) - Q(s) (5.1) 
where L(s) (txm) and Q(s)  (kxm) are given polynomial matrices. 
Determine the polynomial matrix solutions M(s) (kxt) when 
they exist. 

First consider the left hand side of equation (5.1). Let 

More details can be found in [5,6]. 

M(s) :- MO + ... + MrSr (5.2) 

as) :- M(s)L(s) (5.3) 

and di := degci[L(s)] i = 1, m. If 

then degCi[Q(s)] - di + r for i - 1, m. According to the basic 
polynomial matrix interpolation Theorem 2.1, the matrix as) 
can be uniquely specified using x(di+r))+m - Edi+m)(r+l)  
interpolation points. Therefore consider R interpolation 
points (Sj, aj, bj) j 

Let Sr(S) :- blk diag([l, s, ..., sdi+r]'] and assume that the 

( C d i  + m(r+l))xR matrix 
(5 .5 )  

has full rank; that is the assumptions in Theorem 2.1 are 
satisfied. Note that for distinct Sj, S r l  will have full column 
rank for almost any set of nonzero aj [l]. Now in view of 
Theorem 2.1 the matrix e(s) which satisfies 

is uniquely specified given these R interpolation points (sj, aj, 
bj). To solve (5.1), these interpolation points must be 
appropriately chosen so that the equation &s) (- M(s)L(s)) = 
Q(s) is satisfied: 
Write (5.1) as 

where 

1 , R  where 
R - C d i  + m(r+l) (5.4) 

SrR := [Sr(sl) ai,..., S r ( s ~ ) a ~ l  

&Sj)aj bj j 1, R (5.6) 

MWs) - Q(s) (5.7) 

M := [MO, ..., Mr1 onrt(r+l)) 
L+) : = ~ ( s ) ' ,  ..., S~L(S  j j  (t(r+l)xm). 

bj :- Q(Sj)aj j 1 ,R  (5 .8)  

%R -BR (5.9) 

Let s 
aj j = 1, R must be so that &R above has full rank. 

and combine the equations to obtain 

where 

Sj and postmultiply (5.7) by aj j - 1 , R ;  note that Sj and 
Define 

hi :- [Ll(si) ai,..., Lr(s.t)a~l ( t ( r + W )  and 
BR :- Ibi. ...,b i l  W). 

Theorem 5.1: Given us), a s )  in (5.1), let di :- & & i n S ) ]  i - 
1, m and select r to satisfy 

degci[Q(~)] I di + r i 1, m (5.10) 
Then a solution M(s) of degree r exists if an4 only if a solution 

0 
It is not difficult to show that solving (5.9) is equivalent to 

solving 
M(sj)cj (5.1 1) 

where 
Cj :- L(sj)aj, bj :- Q(sj)aj j 1 , R  (5.12) 

M(s) that satisfy (5.1 1) are obtained by solving 
M%l 'Bl (5.13) 

where f+i :- [sr(sl)cl, ..., Sr(s,~)c,~] (t(r+l)x*c), with Ws) :- 
SI, ..., srI]' (t(r+l)xt) and B i  :- [bl, ..., b i ]  (lcd). Solving 
(5.13) is an alternative to solving (5.9). 

The Diophantine Equation 

M of (5.9) does exist; M(s) - M & SI, ..., srI]. 

bj j 1, R 

An important case of (5.1) is the Diophantine equation: 

where the polynomial matrices D(s), N(s) and Q(s) are given and 
X(s), Y(s)  are to be found. Theorem 5.1 guarantees that all 
solutions of (5.14) of degree r are found by solving (5.9) (or 
(5.13)). In the theory of Systems and Control the Diophantine 
equation used involves a matrix L(s) - [D'(s), N'(s)T which has 
rather specific properties. These are exploited to solve the 
Diophantine equation and to derive conditions for existence of 
solutions to (5.14) of degree r. 
Theorem 5.2: Let r satisfy 

Then the Diophantine equation (5.14) has solutions of degree r, 
which can be found by solving (5.9). 
ExamDle 5.1: k t  

degci[Q(s)] 5 di +r i - 1, m and r 2 v -1. 

From which d l  - d2 - 1; de&iQ(S) 

For r 1, si -2, -1,O, 1,2, 3 and 

0, ill ,  2; and 1 2 + 

2(r+ 1) 

a solutionis 
s - 1  - s  s + l  

p(s)9y(s)l-[ 1 / 3  1 / 3  0 -1/3s+2/3] 0 

Numerical Considerations: 
Recent study[l2] shows that the polynomial matrix 

interpolation method(P1M) is computational very efficient 
compared to other methods in the literature, including the 
elementary operations method(E0M) and the state-space 
realization method(SSM). It performed satisfactorily in 
solving both well-conditioned and ill-conditioned Diophantine 
equations. The benchmark problem used to test all three 
alporithms was defined as follows: 
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Note that when e=O, there exists a nontrivial greatest common 
right divisor which makes the equation unsolvable. 
Furthermore, the equation becomes ill-conditioned when e+O. 

The initial results in [12] indicate that PIM is significantly 
more efficient than EOM and SSM. The Matlab codes used in 
112) were taken from [l] with little modification. 

VI, O t h e r  Control Applications 
Ouwut Feedback 

All proper output feedback controllers of degree r (of order 
mr) that assign all the closed loop eigenvalues to arbitrary 
locations are characterized in a convenient way using 
interpolation results. We are interested in solutions [X(s), Y(s)] 
(mx@+m)) of the Diophantine equation where only the roots of 
IQ(s)l are specified; furthermore X-l(s)Y(s) should exist and be 
proper. Here the equation to be solved is 

or M h 1  - 0 (1 - I d i  + mr) ; that is the Edi + mr roots of IX(s) 
D(s) + Y(s)N(s)l are to take on the values Sj j - 1 , R .  Note the 
difference between the problem studied in Section IV, where 
Q ( s )  is known, and the problem studied here where only the 
roots of IQ@) I (or IQ(s) I within multiplication by some nonzero 
real scalar) are given. It is clear that there are many (in fact an 
infinite number) of Q(s) with the desired roots in IQ(s) I. So if 
one selects in advance a Q(s) with desired roots in IQ(s) I that 
does not satisfy any other design criteria as it is typically done, 
then one really solves a more restrictive problem than the 
eigenvalue assignment problem. It is shown here that one does 
not have to select Q(s) in advance. The vectors aj can then be 
seen as design parameters and they can be selected almost 
arbitrarily to satisfy requirements in addition to pole 
assignment. 
Theorem 6.1 Let r 2 v-1. Then (X(s), Y(s)) exists such that all 
the n+mr zeros of IX(s) D(s) + Y(s)N(s)l are arbitrarily assigned 

Examule 6.1: 

(X(sj) D(sj) + Y(sj)N(sj))aj 0 j - 1, L (6.1) 

and X-l(s)Y(s) is proper. 0 

with n - degID(s)l - 2 Here the; are &glX(s)D(s) + Y(s)N(s)l = 

n + tnr - 2 + 2r closed-loop poles to be assigned. Note that r 2 v 
- 1 - 1 - 1 - 0. 
i) For r - 0 and ((Sj, aj),j - 1,2) - [(-l, [l O]'), (-2, [0 l]')], 
a solution of M k l  - 0 is 

Note that X(s)-lY(s) exists and it is proper. 0 

Choosinz a Closed Loow Transfer Function Matrix 
One of the challenging problems in control design is to 

choose an appropriate closed loop transfer function matrix that 
satisfies all the control specifications, which can be obtained 
from the given plant by applying an internally stable feedback 
loop. To guarantee the internal stability of feedback control 
systems, both locations and zero directions of the RHP zeros of 
the plant must be considered; these zeros must appear as zeros 

of the closed loop transfer function matrix. Consider the stable 
model matching problem [15]: 

Given proper rational matrices P(s) (pxm) and T(s) (pxq), 
find a proper and stable rational matrix M(s) such that the 
equation 

holds. Here, P(s) usually represents the open loop plant, M(s) 
the open loop compensator, and T(s) the desired transfer 
function. It is known that a stable solution for (6.2) exists if 
and only if T(s) has as it zeros all the RHP zeros of P(s) together 
with their directions[lS]. Such conditions can be Easily 
interpreted as interpolation constraints as shown below. 

Let the coprime fraction representations of H(s) and T(s) be 

P(s) - N(s)D-~(s) and T(s) = NT(s)D:(s). The direction 

associated with a zero of P(s), Zj, is given by the vector aj 
which satisfies ajN(zi) - 0. T(s) will have the same zero, zi, 
together with its direction i.e. ajN.T(Zi) - 0 and this must be 
taken into consideration when T(s) IS selected. 
Examule 6.2: Consider a diagonal T(s); that is the control 
specifications demand diagonal decoupling of the system. Let 

P(s)M(s) - T(s) (6.2) 

with a zero at  s= l .  Then aP(1)=0 gives a=[l 01 and T(s) must 
satisfy aT(1)-[l OlT(1)-0. Since T(s) must be diagonal, t i  1(1) - 0; that is the RHP zero of the plant should appear in the (1,l) 
entry of T(s). Any T(s) satisfying such condition guarantees 

0 that a stable solution exists for (6.2). 

ADDliCatiOnS to 2-D Matrix Intemolation Problems 
In many system and control applications, one has to deal 

with polynomial and rational matrices of two or  more 
independent variables[l5]. Recent results in [14] have shown 
that the matrix interpolation theory for single variable, s, can 
be easily extended to two dimensional systems where the 
polynomial and rational matrix are of the form P(s,z) and 
H(s,z), respectively. The definition of the interpolation 
problem and the existence of the solutions were all developed 
along similar lines to those described in section TI. 

VII. Development of Computer Algorithms 
Several Matlab programs based on matrix interpolation 

theory have been developed to solve a variety of problems. The 
Matlab programs developed to solve the basic interpolation 
problem defined in (2.2) to (2.5) were presented in the technical 
report version of [I], together with the routines that solve the 
polynomial equation of the form M(s)L(s)=Q(s) and the 
Diophantine equation of the form X(s)D(s)+Y(s)N(s)-Q(s). 
These programs were used to find solutions for many examples 
in [l]. Later, a comprehensive Matlab program was developed 
for the purpose of SISO system identification in frequency 
domain. Details can be found in [4]. This program was 
compared favorably against an existing Fortran program[ 131. 

a Matlab 
program was developed in [SI for MIMO system identification 
in frequency domain, which has not been adequately addressed 
in literature. The few existing publications concerning this 
issue [lo-121 were rather brute force extensions of the SISO 
approach which were quite computational intensive. The new 
Matlab program offers much improved efficiency and is more 
practical since it does not require that the frequency response of 
the system be given. It determines transfer function matrix 
from a set of input-output data in frequency domain. To improve 

Based on the encouraging results from [4], 
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the numerical property of the algorithm, the Chebyshev 
polynomials are used as the basis. 

Currently, software development for the loop gain design 
approach discussed in section III is underway at Cleveland State 
University. It will play a key role in the proposed self-tuning 
control system, which has many advantages over the adaptive 
control approach. 

Conc lus ion  
Interpolation appears to offer a very flexible and efficient 

set of tools to solve system and conml  problems. The results 
up to now have been extremely encouraging. 
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Figure 1 A feedback control system 

m Figure 2 A self-tuning control system 
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