
 Categorical Data Analysis 
 
Related topics/headings: Categorical data analysis; or, Nonparametric statistics; or, chi-square 
tests for the analysis of categorical data. 
 
OVERVIEW 
 

For our hypothesis testing so far, we have been using parametric statistical methods.  
Parametric methods (1) assume some knowledge about the characteristics of the parent 
population (e.g. normality) (2) require measurement equivalent to at least an interval scale 
(calculating a mean or a variance makes no sense otherwise). 
 

Frequently, however, there are research problems in which one wants to make direct 
inferences about two or more distributions, either by asking if a population distribution has some 
particular specifiable form, or by asking if two or more population distributions are identical.  
These questions occur most often when variables are qualitative in nature, making it impossible 
to carry out the usual inferences in terms of means or variances.  For such problems, we use 
nonparametric methods.  Nonparametric methods (1) do not depend on any assumptions about 
the parameters of the parent population (2) generally assume data are only measured at the 
nominal or ordinal level. 
 

There are two common types of hypothesis-testing problems that are addressed with 
nonparametric methods:  
 

(1) How well does a sample distribution correspond with a hypothetical population 
distribution?  As you might guess, the best evidence one has about a population distribution is 
the sample distribution.  The greater the discrepancy between the sample and theoretical 
distributions, the more we question the “goodness” of the theory. 
 
  EX:  Suppose we wanted to see whether the distribution of educational achievement had 
changed over the last 25 years.  We might take as our null hypothesis that the distribution of 
educational achievement had not changed, and see how well our modern-day sample supported 
that theory.   
 

(2) We often wish to find evidence for association between two qualitative variables - 
hence we analyze cross-classifications of two discrete distributions.  
 

EX:  What is the relationship between sex and party vote -  are women more likely than 
men to support Democratic party candidates? 

 
 

CASE I.  COMPARING SAMPLE AND POPULATION DISTRIBUTIONS. 
 

Suppose that a study of educational achievement of American men were being carried on. 
 The population studied is the set of all American males who are 25 years old at the time of the 
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study.  Each subject observed can be put into 1 and only 1 of the following categories, based on 
his maximum formal educational achievement:  
 

1 = college grad 
2 = some college  
3 = high school grad 
4 = some high school  
5 = finished 8th grade 
6 = did not finish 8th grade 

 
Note that these categories are mutually exclusive and exhaustive.   

The researcher happens to know that 10 years ago the distribution of educational 
achievement on this scale for 25 year old men was:  
 

1 - 18% 
2 - 17%  
3 - 32%  
4 - 13%  
5 - 17%  
6 - 3% 

 
A random sample of 200 subjects is drawn from the current population of 25 year old 

males, and the following frequency distribution obtained:  
 

1 - 35 
2 - 40  
3 - 83  
4 - 16  
5 - 26  
6 -  0 

 
The researcher would like to ask if the present population distribution on this scale is 

exactly like that of 10 years ago.  That is, he would like to test 
 
H0: There has been no change across time. The distribution of education in the present 

population is the same as the distribution of education in the population 10 years ago 
HA: There has been change across time. The present population distribution differs from the 

population distribution of 10 years ago. 
 
PROCEDURE:  Assume that there has been “no change” over the last 10 years.  In a sample of 
200, how many men would be expected to fall into each category?   

For each category, the expected frequency is 
 

N * pj = Ej = expected frequency for jth category, 
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where N = sample size = 200 (for this sample), and pj = the relative frequency for category j 
dictated by the null hypothesis.  For example, since 18% of all 25 year old males 10 years ago 
were college graduates, we would expect 18% of the current sample, or 36 males, to be college 
graduates today if there has been no change.  We can therefore construct the following table: 
 

Category Observed freq (Oj) Expected freq (Ej)

   

1 35 36 = 200 * .18

2 40 34 = 200 * .17

3 83 64 = 200 * .32

4 16 26 = 200 * .13

5 26 34 = 200 * .17

6 0  6 = 200 * .03

 
Question:  The observed and expected frequencies obviously differ from each other - but we 
expect some discrepancies, just because of sampling variability.  How do we decide whether the 
discrepancies are too large to attribute simply to chance? 
 
Answer:  We need a test statistic that measures the “goodness of fit” between the observed 
frequencies and the frequencies expected under the null hypothesis.  The Pearson chi-square 
statistic is one appropriate choice.  (The Likelihood Ratio Chi-Square, sometimes referred to as 
L2, is another commonly used alternative, but we won’t discuss it this semester.)  The formula 
for this statistic is 
 

χ2
c-1 = Σ (Oj - Ej)2/Ej

 
Calculating χ2

c-1 for the above, we get 
 

Category Oj Ej (Oj - Ej) (Oj - Ej)2/Ej

     

1 35 36 -1 1/36 =  0.0278

2 40 34 6 36/34 =  1.0588

3 83 64 19 361/64 =  5.6406

4 16 26 -10 100/26 =  3.8462

5 26 34 -8 64/34 =  1.8824

6 0 6 -6 36/ 6 =  6.0000

 
Summing the last column, we get χ2

c-1 = 18.46. 
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Q:  Now that we have computed χ2

c-1, what do we do with it??? 
 
A:  Note that, the closer Oj is to Ej, the smaller χ2

c-1 is.  Hence, small values of χ2
c-1 imply good 

fits (i.e. the distribution specified in the null hypothesis is similar to the distribution found in the 
sample), big values imply poor fits (implying that the hypothesized distribution and the sample 
distribution are probably not one and the same).   

To determine what “small” and “big” are, note that, when each expected frequency is as 
little as 5 or more (and possibly as little as 1 or more), 

 
χ2

c-1 - Chi-square(c-1), where  
c = the number of categories, 
c - 1 = v = degrees of freedom 

 
Q: Why does d.f. = c - 1? 
A: When working with tabled data (a frequency distribution can be thought of as a 1 
dimensional table) the general formula for degrees of freedom is 
 

d.f. = number of cells - # of pieces of sample information required  
for computing expected cell frequencies. 

 
In the present example, there are c = 6 cells (or categories).  In order to come up with expected 
frequencies for those 6 cells, we only had to have 1 piece of sample information, namely, N, the 
sample size.  (The values for pj were all contained in the null hypothesis.) 
 
Q: What is a chi-square distribution, and how does one work with it? 
 

Appendix E, Table IV (Hayes pp. 933-934) gives critical values for the Chi-square distribution.  
The second page of the table has the values you will be most interested in, e.g. Q = .05, Q =.01. 

 
 
A: The chi-square distribution is easy to work with, but there are some important differences 
between it and the Normal distribution or the T distribution.  Note that 

T The chi-square distribution is NOT symmetric 
T All chi-square values are positive 
T As with the T distribution, the shape of the chi-square distribution depends on the 

degrees of freedom. 
T Hypothesis tests involving chi-square are usually one-tailed.  We are only interested 

in whether the observed sample distribution significantly differs from the 
hypothesized distribution.  We therefore look at values that occur in the upper tail of 
the chi-square distribution.  That is, low values of chi-square indicate that the sample 
distribution and the hypothetical distribution are similar to each other, high values 
indicate that the distributions are dissimilar. 

T A random variable has a chi-square distribution with N degrees of freedom if it has 
the same distribution as the sum of the squares of N independent variables, each 
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normally distributed, and each having expectation 0 and variance 1.  For example, if 
Z - N(0,1), then Z2 - Chi-square(1).  If Z1 and Z2 are both - N(0,1), then Z1

2 + Z2
2 - 

Chi-square(2). 
 
EXAMPLES:   
 
Q. If v = d.f. = 1, what is P(χ2

1 $ 3.84)? 
A. Note that, for v = 1 and χ2

1 = 3.84, Q = .05.  i.e. F(3.84) = P(χ2
1 # 3.84) = .95, hence P(χ2

1 
$ 3.84) = 1 - .95 = .05.  (Incidentally, note that 1.962 = 3.84.  If Z - N(0,1), then P(-1.96 
# Z # 1.96) = .95 = P(Z2 # 3.84).  Recall that Z2 - Chi-square(1).) 

 
Q. If v = 5, what is the critical value for χ2

5 such that 
P(χ2

5 $ χ2
5) = .01? 

 
A. Note that, for v = 5 and Q = .01, the critical value is 15.0863.  Ergo,  

P(χ2
5 $ 15.1) = 1 - .99 = .01 

 
Returning to our present problem - we had six categories of education.  Hence, we want to know 
P(χ2

5 $ 18.46).  That is, how likely is it, if the null hypothesis is true, that we could get a Pearson 
chi-square value of this big or bigger in a sample?  Looking at Table IV, v = 5, we see that this 
value is around .003 (look at Q = .005 and Q = .001).  That is, if the null hypothesis is true, we 
would expect to observe a sample distribution that differed this much from the hypothesized 
distribution fewer than 3 times out of a thousand.  Hence, we should probably reject the null 
hypothesis. 
 
To put this problem in our usual hypothesis testing format, 
 
Step 1:  H0: Distribution now is the same as 10 years ago 

HA: Distribution now and 10 years ago differ 
 
Step 2: An appropriate test statistic is 
 

χ 2
c-1 = Σ (Oj - Ej)2/Ej,  where Ej = Npj

 
Step 3: Acceptance region:  Accept H0 if 
 

P(χ2
c-1 # χ2

c-1) = 1 - α. 
 
In the present example, let us use α = .01.  Since v = 5, accept H0 if 
 
χ 2

c-1 # 15.1 (see v =5, Q = .01) 
 
Step 4. The computed test statistic = 18.46. 
 
Step 5. Reject H0.  The value of the computed test statistic lies outside of the acceptance region. 
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SPSS Solution.  The NPAR TESTS Command can be used to estimate this model in SPSS.  If 
using the pull-down menus in SPSS, choose ANALYZE/ NONPARAMETRIC TESTS/ CHI-
SQUARE. 
 
* Case I:  Comparing sample and population distributions 
* Educ distribution same as 10 years ago. 
data list free / educ wgt. 
begin data. 
1 35 
2 40 
3 83 
4 16 
5 26 
end data. 
weight by wgt. 
 
NPAR TEST 
  /CHISQUARE=educ  (1,6) 
  /EXPECTED=36 34 64 26 34 6 
  /STATISTICS  DESCRIPTIVES 
  /MISSING ANALYSIS. 
 
NPar Tests 
 

Descriptive Statistics

200 2.7900 1.20963 1.00 5.00EDUC
N Mean Std. Deviation Minimum Maximum

 
Chi-Square Test 

Frequencies

1.00 35 36.0 -1.0
2.00 40 34.0 6.0
3.00 83 64.0 19.0
4.00 16 26.0 -10.0
5.00 26 34.0 -8.0

0 6.0 -6.0
200

1
2
3
4
5
6
Total

Category Observed N Expected N Residual
EDUC

 
Test Statistics

18.456
5

.002

Chi-Squarea

df
Asymp. Sig.

EDUC

0 cells (.0%) have expected frequencies less than
5. The minimum expected cell frequency is 6.0.

a. 
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OTHER HYPOTHETICAL DISTRIBUTIONS:  In the above example, the hypothetical 
distribution we used was the known population distribution of 10 years ago.  Another possible 
hypothetical distribution that is sometimes used is specified by the equi-probability model.  The 
equi-probability model claims that the expected number of cases is the same for each category; 
that is, we test 
 
H0: E1 = E2 = ... = Ec
HA: The frequencies are not all equal. 
 
The expected frequency for each cell is (Sample size/Number of categories).  Such a model 
might be plausible if we were interested in, say, whether birth rates differed across months.  If 
we believed the equi-probability model might apply to educational achievement, we would 
hypothesize that 33.33 people would fall into each of our 6 categories. 
 
Calculating χ2

c-1 for the equi-probability model, we get 
 

Category Oj Ej (Oj - Ej)2/Ej

    

1 35 33.33  0.0837

2 40 33.33 1.3348

3 83 33.33 74.0207

4 16 33.33 9.0108

5 26 33.33 1.6120

6 0 33.33 33.3333

 
Summing the last column, we get χ2

c-1 = 119.39.  Obviously, the equi-probability model does not 
provide a very good description of educational achievement in the United States. 
 
SPSS Solution.  Again use the NPAR TESTS Command. 
 
* Equi-probability model.  Same observed data as before. 
NPAR TEST 
  /CHISQUARE=educ  (1,6) 
  /EXPECTED=EQUAL 
  /STATISTICS  DESCRIPTIVES 
  /MISSING ANALYSIS. 
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NPar Tests 
 

Descriptive Statistics

200 2.7900 1.20963 1.00 5.00EDUC
N Mean Std. Deviation Minimum Maximum

 
Chi-Square Test 
 

Frequencies

1.00 35 33.3 1.7
2.00 40 33.3 6.7
3.00 83 33.3 49.7
4.00 16 33.3 -17.3
5.00 26 33.3 -7.3

0 33.3 -33.3
200

1
2
3
4
5
6
Total

Category Observed N Expected N Residual
EDUC

 

Test Statistics

119.380
5

.000

Chi-Squarea

df
Asymp. Sig.

EDUC

0 cells (.0%) have expected frequencies less than
5. The minimum expected cell frequency is 33.3.

a. 

 
 

CASE II. TESTS OF ASSOCIATION 
 

A researcher wants to know whether men and women in a particular community differ in 
their political party preferences.  She collects data from a random sample of 200 registered 
voters, and observes the following: 
  
 

 
Dem 

 
Rep 

 
Male 

 
55 

 
65 

 
Female 

 
50 

 
30 

 
 

Do men and women significantly differ in their political preferences?  Use α = .05. 
 
PROCEDURE.  The researcher wants to test what we call the model of independence (the 
reason for that name will become apparent in a moment).  That is, she wants to test 
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H0: Men and women do not differ in their political preferences 
HA: Men and women do differ in their political preferences. 
 

Suppose H0 (the model of independence) were true.  What joint distribution of sex and 
party preference would we expect to observe? 

Let A = Sex, A1 = male, A2 = female, B = political party preference, B1 = Democrat, B2 = 
Republican.  Note that P(A1) = .6 (since there are 120 males in a sample of 200), P(A2) = .4, 
P(B1) = .525 (105 Democrats out of a sample of 200) and P(B2) = .475. 

If men and women do not differ, then the variables A (sex) and B (party vote) should be 
independent of each other.  That is, P(Ai 1 Bj) = P(Ai)P(Bj).  Hence, for a sample of size N, 
 

Eij = P(Ai) * P(Bj) * N 
 
For example, if the null hypothesis were true, we would expect 31.5% of the sample (i.e. 63 of 
the 200 sample members) to consist of male democrats, since 60% of the sample is male and 
52.5% of the sample is Democratic.  The complete set of observed and expected frequencies is 

 
Sex/Party Observed Expected

   

Male Dem 55 P(Male)*P(Dem) =.6 * .525 * 200 = 63

Male Rep 65 P(Male)*P(Rep) = .6 * .475 * 200 = 57

Female Dem 50 P(Fem)*P(Dem) = .4 * .525 * 200 = 42

Female Rep 30 (P(Fem)*P(Rep) = .4 * .475 * 200 = 38

 
Q: The observed and expected frequencies obviously differ - but we expect some 
differences, just because of sampling variability.  How do we decide if the differences are too 
large to attribute simply to chance? 
 
A: Once again, the Pearson chi-square is an appropriate test statistic.  The appropriate 
formula is 
 

χ2
v = ΣΣ (Oij - Eij)2/Eij, 

 
where r is the number of rows (i.e. the number of different possible values for sex), c is the 
number of columns (i.e. the number of different possible values for party preference), and  
v = degrees of freedom = rc - 1 - (r-1) - (c-1) = (r-1)(c-1). 
 
Q: Why does d.f. = rc - 1 - (r-1) - (c-1) = (r-1)(c-1)? 
A: Recall our general formula from above: 
 

d.f. = number of cells - # of pieces of sample information required 
for computing expected cell frequencies. 
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In this example, the number of cells is rc = 2*2 = 4.  The pieces of sample information required 
for computing the expected cell frequencies are N, the sample size; P(A1) = P(Male) = .6; and 
P(B1) = P(Democrat) = .525.  Note that, once we knew P(A1) and P(B1), we immediately knew 
P(A2) and P(B2), since probabilities sum to 1; we don’t have to use additional degrees of 
freedom to estimate them.  Hence, there are 4 cells, we had to know 3 pieces of sample 
information to get expected frequencies for those 4 cells, hence there is 1 d.f.  NOTE: In a 2-
dimensional table, it happens to work out that, for the model of independence, d.f. = (r-1)(c-1).  
It is NOT the case that in a 3-dimensional table d.f. = (r-1)(c-1)(l-1), where l is the number of 
categories for the 3rd variable; rather, d.f. = rcl - 1 - (r-1) - (c-1) - (l-1). 
 
Returning to the problem - we can compute 
 

Sex/Party Observed Expected (Oij - Eij)2/Eij

    

Male Dem 55 63 64/63 = 1.0159

Male Rep 65 57 64/57 = 0.9552

Female Dem 50 42 64/42 = 1.5238

Female Rep 30 38 64/38 = 1.6842

 
 
Note that v = (r - 1)(c - 1) = 1.  Adding up the numbers on the right-hand column, we get χ2

1 = 
5.347.  Looking at table IV, we see that we would get a test statistic this large only about 2% of 
the time if H0 were true, hence we reject H0. 
 
To put things more formally then, 
 
Step 1. 
 
H0: Men and women do not differ in their political preferences 
HA: Men and women do differ in their political preferences. 
 
or, equivalently, 
 
H0: P(Ai 1 Bj) =  P(Ai)P(Bj)   (Model of independence) 
HA: P(Ai 1 Bj) <> P(Ai)P(Bj)   for some i, j 
 
Step 2. An appropriate test statistic is 
 
χ2

v = ΣΣ (Oij - Eij)2/Eij,  v = rc-1-(r-1)-(c-1) = (r-1)(c-1) 
 
Step 3. For α = .05 and v = 1, accept H0 if  χ2

v # 3.84 
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Step 4. The computed value of the test statistic is 5.347 
 
Step 5. Reject H0, the computed test statistic is too high. 
 
Yates Correction for Continuity.  Sometimes in a 1 X 2 or 2 X 2 table (but not for other size 
tables), Yates Correction for Continuity is applied.  This involves subtracting 0.5 from positive 
differences between observed and expected frequencies, and adding .5 to negative differences 
before squaring.  This will reduce the magnitude of the test statistic.  To apply the correction in 
the above example, 
 

Sex/Party Observed Expected (with 
correction)

(Oij - Eij)2/Eij

    

Male Dem 55 62.5 -7.52/62.5 = .9

Male Rep 65 57.5 7.52/57.5 = .9783

Female Dem 50 42.5 7.52/42.5 = 1.3235

Female Rep 30 37.5 -7.52/37.5 = 1.5

 
After applying the correction, the computed value of the test statistic is 4.70. 
 
Fisher’s Exact Test.  The Pearson Chi-Square test and the Yates Correction for Continuity are 
actually just approximations of the exact probability; and particularly when some expected 
frequencies are small (5 or less) they may be somewhat inaccurate.  As Stata 8’s Reference 
Manual S-Z, p. 219 notes, “Fisher’s exact test yields the probability of observing a table that 
gives at least as much evidence of association as the one actually observed under the assumption 
of no association.” In other words, if the model of independence holds, how likely would you be 
to see a table that deviated this much or more from the expected frequencies?   
 
You are most likely to see Fisher’s exact test used with 2 X 2 tables where one or more expected 
frequencies is less than 5, but it can be computed in other situations.  It can be hard to do by 
hand though and even computers can have problems when the sample size or number of cells is 
large.  SPSS can optionally report Fisher’s exact test for 2 X 2 tables but apparently won’t do it 
for larger tables (unless perhaps you buy some of its additional modules).  Stata can, by request, 
compute Fisher’s exact test for any size two dimensional table, but it may take a while to do so. 
 
You don’t get a test statistic with Fisher’s exact test; instead, you just get the probabilities. For 
the current example, the 2-sided probability of getting a table where the observed frequencies 
differed this much or more from the expected  frequencies if the model of indepdence is true is 
.022; the one-sided probability is .015.  
 
SPSS Solution.  SPSS Has a couple of ways of doing this.  The easiest is probably the crosstabs 
command.  On the SPSS pulldown menus, look for ANALYZE/ DESCRIPTIVE STATISTICS/ 
CROSSTABS. 
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* Case II:  Tests of association. 
Data list free / Sex Party Wgt. 
Begin data. 
1 1 55 
2 1 50 
1 2 65 
2 2 30 
End data. 
Weight by Wgt. 
 
CROSSTABS 
  /TABLES=sex  BY party 
  /FORMAT= AVALUE NOINDEX BOX LABELS TABLES 
  /STATISTIC=CHISQ 
  /CELLS= COUNT EXPECTED . 
 

Crosstabs 
 

Case Processing Summary

200 100.0% 0 .0% 200 100.0%SEX * PARTY
N Percent N Percent N Percent

Valid Missing Total
Cases

 

SEX * PARTY Crosstabulation

55 65 120
63.0 57.0 120.0

50 30 80
42.0 38.0 80.0
105 95 200

105.0 95.0 200.0

Count
Expected Count
Count
Expected Count
Count
Expected Count

1.00

2.00

SEX

Total

1.00 2.00
PARTY

Total

 

Chi-Square Tests

5.347b 1 .021
4.699 1 .030
5.388 1 .020

.022 .015

5.320 1 .021

200

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

0 cells (.0%) have expected count less than 5. The minimum expected count is
38.00.

b. 
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CHI-SQUARE TESTS OF ASSOCIATION FOR 2 X 2 TABLES (NONPARAMETRIC 
TESTS, CASE II) VS. TWO SAMPLE TESTS, CASE V, TEST OF P1-P2 = 0. 
 
Consider again the following sample data. 
  
 

 
Dem 

 
Rep 

 
Male 

 
55 

 
65 

 
Female 

 
50 

 
30 

 
 

Note that, instead of viewing this as one sample of 200 men and women, we could view it 
as two samples, a sample of 120 men and another sample of 80 women.  Further, since there are 
only two categories for political party, testing whether men and women have the same 
distribution of party preferences is equivalent to testing whether the same proportion of men and 
women support the Democratic party.  Hence, we could also treat this as a two sample problem, 
case V, test of p1 = p2.  The computed test statistic is 

 

2.31 = 

80 + 120
50 + 55  1

80 + 120
50 + 55

80*  120
80 + 120

80
50  

120
55

 = 

N + N
X + X  1

N + N
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Hence, using α = .05, we again reject H0. 
 
NOTE: Recall that if Z - N(0,1), Z2 - Chi-square(1).  If we square 2.31229, we get 5.347 - 
which was the value we got for χ2 with 1 d.f. when we did the chi-square test for association.  
For a 2 X 2 table, a chi-square test for the model of independence and a 2 sample test of p1 - p2 = 
0 (with a 2-tailed alternative) will yield the same results.  Once you get bigger tables, of course, 
the tests are no longer equivalent (since you either have more than 2 samples, or you have more 
than just p1 and p2). 

 
CASE III: CHI-SQUARE TESTS OF ASSOCIATION FOR N-DIMENSIONAL TABLES 
 
A researcher collects the following data: 
            

Gender/Party Republican Democrat 

 W NW W NW 

Male 20 5 20 15 

Female 18 2 15 5 
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Test the hypothesis that sex, race, and party affiliation are independent of each other.  Use α = 
.10. 
 
Solution. Let A = Sex, A1 = male, A2 = female, B = Race, B1 = white, B2 = nonwhite, C = 
Party affiliation, C1 = Republican, C2 = Democrat.  Note that N = 100, P(A1) = .60, P(A2) = 
1 - .60 = .40, P(B1) = .73, P(B2) = 1 - .73 = .27, P(C1) = .45, P(C2) = 1 - .45 = .55. 
 
Step 1. 
H0: P(Ai 1 Bj 1 Ck) =  P(Ai) * P(Bj) * P(Ck)    (Independence model) 
HA: P(Ai 1 Bj 1 Ck) <> P(Ai) * P(Bj) * P(Ck)   for some i, j, k 
 
Step 2.  The appropriate test statistic is 
 

χ2
v = ΣΣΣ (Oijk - Eijk)2/Eijk 

 
Note that Eijk = P(Ai) * P(Bj) * P(Ck) * N. 

 
Since A, B, and C each have two categories, the sample information required for computing the 
expected frequencies is P(A1), P(B1), P(C1), and N.  (Note that once we know P(A1), P(B1), and 
P(C1), we automatically know P(A2), P(B2), and P(C2)).  Hence, there are 8 cells in the table, we 
need 4 pieces of sample information to compute the expected frequencies for those 8 cells, hence 
d.f. = 8 - 4.  More generally, for a three-dimensional table, the model of independence has d.f. = 
v = rcl - 1 - (r - 1) - (c - 1) - (l - 1). 
 
Step 3.  Accept H0 if χ2

4 # 7.78 (see v = 4 and Q = .10) 
 
Step 4.  To compute the Pearson Chi-square: 
 

Sex/Race/Party Oijk Eijk (O-E)2/E 

    

M / W / R 20 19.71 = .6*.73*.45*100 0.0043 

F / W / R 18 13.14 = .4*.73*.45*100 1.7975 

M / NW/ R 5 7.29 = .6*.27*.45*100 0.7194 

F / NW/ R 2 4.86 = .4*.27*.45*100 1.6830 

M / W / D 20 24.09 = .6*.73*.55*100 0.6944 

F / W / D 15 16.06 = .4*.73*.55*100 0.0700 

M / NW/ D 15 8.91 = .6*.27*.55*100 4.1625 

F / NW/ D 5 5.94 = .4*.27*.55*100 0.1488 

 
Summing the last column, we get a computed test statistic value of 9.28. 
 
Step 5. Reject H0, the computed test statistic value lies outside the acceptance region.  (Note that 
we would not reject if we used α = .05.) 
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SPSS Solution.  You can still do Crosstabs but SPSS doesn’t report the test statistics in a 
particularly useful fashion.  The SPSS GENLOG command provides one way of dealing with 
more complicated tables, and lets you also estimate more sophisticated models. On the SPSS 
menus, use ANALYZE/ LOGLINEAR/ GENERAL. I’m only showing the most important parts 
of the printout below. 
 
* N-Dimensional tables. 
 
Data list free / sex party race wgt. 
begin data. 
1 1 1 20 
1 1 2  5 
1 2 1 20 
1 2 2 15 
2 1 1 18 
2 1 2  2 
2 2 1 15 
2 2 2  5 
end data. 
weight by wgt. 
 
* Model of independence. 
GENLOG 
  party race sex 
  /MODEL=POISSON 
  /PRINT FREQ 
  /PLOT NONE 
  /CRITERIA =CIN(95) ITERATE(20) CONVERGE(.001) DELTA(.5) 
  /DESIGN party race sex  . 
 

General Loglinear 
 
Table Information 
 
                 Observed            Expected 
Factor    Value     Count       %       Count       % 
 
PARTY   1.00 
 RACE    1.00 
  SEX     1.00      20.00 ( 20.00)      19.71 ( 19.71) 
  SEX     2.00      18.00 ( 18.00)      13.14 ( 13.14) 
 RACE    2.00 
  SEX     1.00       5.00 (  5.00)       7.29 (  7.29) 
  SEX     2.00       2.00 (  2.00)       4.86 (  4.86) 
 
PARTY   2.00 
 RACE    1.00 
  SEX     1.00      20.00 ( 20.00)      24.09 ( 24.09) 
  SEX     2.00      15.00 ( 15.00)      16.06 ( 16.06) 
 RACE    2.00 
  SEX     1.00      15.00 ( 15.00)       8.91 (  8.91) 
  SEX     2.00       5.00 (  5.00)       5.94 (  5.94) 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
Goodness-of-fit Statistics 
 
                    Chi-Square       DF       Sig. 
 
Likelihood Ratio        9.0042        4      .0610 
         Pearson        9.2798        4      .0545 
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CONDITIONAL INDEPENDENCE IN N-DIMENSIONAL TABLES  
 
Using the same data as in the last problem, test whether party vote is independent of sex and 
race, WITHOUT assuming that sex and race are independent of each other.  Use α = .05. 
 
Solution.  We are being asked to test the model of conditional independence.  This model says 
that party vote is not affected by either race or sex, although race and sex may be associated with 
each other.  Such a model makes sense if we are primarily interested in the determinants of party 
vote, and do not care whether other variables happen to be associated with each other. 
 
Note that P(A1 1 B1) = .40, P(A2 1 B1) = .33, P(A1 1 B2) = .20, P(A2 1 B2) = 1 - .40 - .33 - .20 = 
.07, P(C1) = .45, P(C2) = 1 - .45 = .55, and N = 100. 
 
Step 1. 
H0: P(Ai 1 Bj 1 Ck) =  P(Ai 1 Bj) * P(Ck) 
HA: P(Ai 1 Bj 1 Ck) <> P(Ai 1 Bj) * P(Ck)   for some i, j, k 
 
Step 2.  The Pearson chi-square is again an appropriate test statistic.  However, the expected 
values for the model of conditional independence are 

Eijk = P(Ai 1 Bj) * P(Ck) * N. 
 
To compute the expected values, we need 5 pieces of sample information (N, P(C1), P(A1 1 B1), 
P(A2 1 B1), and P(A1 1 B2)), hence d.f. =  
 
v = rcl - 1 - (rc - 1) - (l - 1) = 8 - 1 - (4 - 1) - (2 - 1) = 3. 
 
Step 3.  For α = .05 and v = 3, accept H0 if χ2

3 # 7.81. 
Step 4.  To compute the Pearson Chi-square: 
 

Sex-Race/Party Oijk Eijk (O-E)2/E 

    

M-W / R 20 18.00 = .40*.45*100 0.2222

F-W / R 18 14.85 = .33*.45*100 0.6682

M-NW/ R 5  9.00 = .20*.45*100 1.7778

F-NW/ R 2  3.15 = .07*.45*100 0.4198

M-W / D 20 22.00 = .40*.55*100 0.1818

F-W / D 15 18.15 = .33*.55*100 0.5467

M-NW/ D 15 11.00 = .20*.55*100 1.4545

F-NW/ D  5  3.85 = .07*.55*100 0.3435

 
Summing the last column, the computed test statistic = 5.61. 

 
Step 5. Accept H0; the computed test statistic falls within the acceptance region. 
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SPSS Solution.  You can again use GENLOG.   
 
* Model of conditional independence.  Same data as above. 
 
GENLOG 
  party race sex 
  /MODEL=POISSON 
  /PRINT FREQ 
  /PLOT NONE 
  /CRITERIA =CIN(95) ITERATE(20) CONVERGE(.001) DELTA(.5) 
  /DESIGN party race sex race*sex  . 
 

General Loglinear 
 
Table Information 
 
                 Observed            Expected 
Factor    Value     Count       %       Count       % 
 
PARTY   1.00 
 RACE    1.00 
  SEX     1.00      20.00 ( 20.00)      18.00 ( 18.00) 
  SEX     2.00      18.00 ( 18.00)      14.85 ( 14.85) 
 RACE    2.00 
  SEX     1.00       5.00 (  5.00)       9.00 (  9.00) 
  SEX     2.00       2.00 (  2.00)       3.15 (  3.15) 
 
PARTY   2.00 
 RACE    1.00 
  SEX     1.00      20.00 ( 20.00)      22.00 ( 22.00) 
  SEX     2.00      15.00 ( 15.00)      18.15 ( 18.15) 
 RACE    2.00 
  SEX     1.00      15.00 ( 15.00)      11.00 ( 11.00) 
  SEX     2.00       5.00 (  5.00)       3.85 (  3.85) 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
Goodness-of-fit Statistics 
 
                    Chi-Square       DF       Sig. 
 
Likelihood Ratio        5.8322        3      .1201 
         Pearson        5.6146        3      .1319 
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