
 Standard errors for regression coefficients; Multicollinearity 
 
Standard errors.  Recall that bk is a point estimate of βk. Because of sampling variability, this 
estimate may be too high or too low.  sbk, the standard error of bk, gives us an indication of how 
much the point estimate is likely to vary from the corresponding population parameter.  We will 
now broaden our earlier discussion. 

Let H = the set of all the X (independent) variables. 

Let Gk = the set of all the X variables except Xk. 

The following formulas then hold: 

General case: 
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The first formula uses the 
standard error of the estimate.   

 

The second formula makes it 
clearer how standard errors are 
related to R2. 
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When there are only 2 IVs, 
R2

XkGk = R2
12. 
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When there is only 1 IV, R2
XkGk 

= 0. 

 

For example, if K = 5, then RYH5 is the multiple R5 obtained by regression Y on X1, X2, X3, X4, 
and X5; and, if we wanted to know sb3 (i.e. the standard error for X3) then RX3G35 would be the 
multiple R5 obtained by regressing X3 on X1, X2, X4, and X5.  Note that, when there are 2 
independent variables, RX1G15 = RX2G25= R125. 
 
Question.  Suppose K = 1, i.e. there is only 1 independent variable.  What is the correct formula 
then? 
 
Answer.  When K = 1, RXkGk5 = 0 (because there are no other X’s to regress on X1).  The general 
formula then becomes the same as the formula we presented when discussing bivariate 
regression. 
 
Question.  What happens as RXkGk5 gets bigger and bigger? 
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Answer.  As RXkGk5 gets bigger and bigger, the denominator in the above equations gets smaller 
and smaller, hence the standard errors get larger and larger.  For example: 
 

If R125 = 0,  and nothing else changes, then, 
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If R125 = .25 and nothing else changes,  then, 
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Similarly, you can show that, if R125 = .5, then sb1 = .295 and sb2 = .242. 
 
Question.  Suppose RXkGk5 is very large, say, close to 1.  What happens then? 
 
Answer.  If RXkGk5 = 1, then 1 - RXkGk5 = 0, which means that the standard error becomes 
infinitely large.  Ergo, the closer RXkGk5 is to 1, the bigger the standard error gets.  Put another 
way, the more correlated the X variables are with each other, the bigger the standard errors 
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become, and the less likely it is that a coefficient will be statistically significant.  This is known 
as the problem of multicollinearity. 

Intuitively, the reason this problem occurs is as follows: The more highly correlated 
independent variables are, the more difficult it is to determine how much variation in Y each X is 
responsible for.  For example, if X1 and X2 are highly correlated (which means they are very 
similar to each other) it is difficult to determine whether X1 is responsible for variation in Y, or 
whether X2 is.  As a result, the standard errors for both variables become very large.  In our 
current example, if R125 = .95, then sb1 = .933 and sb2 = .765.  Note that, under these conditions, 
neither coefficient would be significant at the .05 level, even though their combined effects are 
statistically significant. 
 
Comments: 
 

1. It is possible for all independent variables to have relatively small mutual 
correlations and yet to have some multicollinearity among three or more of them.  The multiple 
correlation RXkGk can indicate this. 
 

2. When multicollinearity occurs, the least-squares estimates are still unbiased and 
efficient.  The problem is that the estimated standard errors of the coefficients tend to be inflated. 
 That is, the standard error tends to be larger than it would be in the absence of multicollinearity 
because the estimates are very sensitive to changes in the sample observations or in the model 
specification.  In other words, including or excluding a particular variable or certain observations 
may greatly change the estimated coefficients. 
 

3. One way multicollinearity can occur is if you accidentally include the same 
variable twice, e.g. height in inches and height in feet.  Another common error occurs when one 
of the X’s is computed from the other X’s (e.g. Family income = Wife’s income + Husband’s 
income), and the computed variable and the variables used to compute it are all included in the 
regression equation.  Improper use of dummy variables (which we will discuss later) can also 
lead to perfect collinearity.  These errors are all avoidable.  However, other times, it just happens 
to be the case that the X variables are naturally highly correlated with each other. 
 

4. Many computer programs for multiple regression help guard against 
multicollinearity by reporting a “tolerance” figure for each of the variables entering into a 
regression equation.  This tolerance is simply the proportion of the variance for the variable in 
question that is not due to other X variables; that is, Tolerance Xk = 1 - RXkGk

2.  A tolerance 
value close to 1 means you are very safe, whereas a value close to 0 shows that you run the risk 
of multicollinearity, and possibly no solution, by including this variable. 

Note, incidentally, that the tolerance appears in the denominator of the formulas for the 
standard errors.  As the tolerance gets smaller and smaller (i.e. as multicollinearity increases) 
standard errors get bigger and bigger. 

Also useful is the Variance Inflation Factor (VIF), which is the reciprocal of the 
tolerance.  This shows us how much the variances are inflated by multicollinearity, e.g. if the 
VIF is 1.44, multicollinearity is causing the variance of the estimate to be 1.44 times larger than 
it would be if the independent variables were uncorrelated (meaning that the standard error is 
1.44 = 1.2 times larger). 
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5. There is no simple means for dealing with multicollinearity (other than to avoid 

the sorts of common mistakes mentioned above.)  Some possibilities: 
 

a. Exclude one of the X variables - although this might lead to specification error 
 

b. Find another indicator of the concept you are interested in, which is not collinear 
with the other X’s. 
 

c. Put constraints on the effects of variables, e.g. require that 2 or more variables 
have equal effects (or effects of equal magnitude but opposite direction.)  For example, if years 
of education and years of job experience were highly correlated, you might compute a new 
variable which was equal to EDUC + JOBEXP, and use it instead. 
 

d. Collect a larger sample, since larger sample sizes reduce the problem of 
multicollinearity by reducing standard errors. 
 

e. In general, be aware of the possible occurrence of multicollinearity, and know 
how it might distort your parameter estimates and significance tests. 
 
Here again is an expanded printout from SPSS that shows the tolerances and VIFs: 
 

Coefficientsa

-7.097 3.626 -1.957 .067 -14.748 .554
1.933 .210 .884 .096 9.209 .000 1.490 2.376 .846 .913 .879 .989 1.012

.649 .172 .362 .096 3.772 .002 .286 1.013 .268 .675 .360 .989 1.012

(Constant)
EDUC
JOBEXP

Model
1

B Std. Error

Unstandardized
Coefficients

Beta Std. Error

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Zero-order Partial Part
Correlations

Tolerance VIF
Collinearity Statistics

Dependent Variable: INCOMEa.  
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Another example.  Let’s take another look at one of your homework problems.  We will 
examine the tolerances and show how they are related to the standard errors. 
 
            Mean  Std Dev  Variance  Label 
 
XHWORK    3.968    2.913     8.484  TIME ON HOMEWORK PER WEEK 
XBBSESRW  -.071     .686      .470  SES COMPOSITE SCALE SCORE 
ZHWORK    3.975    2.930     8.588  TIME ON HOMEWORK PER WEEK 
XTRKACAD   .321     .467      .218  X IN ACADEMIC TRACK 
 
N of Cases =  9303 
 
Equation Number 1    Dependent Variable..   XHWORK   TIME ON HOMEWORK PER WEEK 
 
Multiple R           .40928 
R Square             .16751 
Standard Error      2.65806 
 
Analysis of Variance 
                    DF      Sum of Squares      Mean Square 
Regression           3         13219.80246       4406.60082 
Residual          9299         65699.89382          7.06526 
 
F =     623.69935       Signif F =  .0000 
 
------------------------------------- Variables in the Equation ------------------------------------- 
 
Variable              B        SE B     95% Confdnce Intrvl B       Beta    SE Beta   Correl Part Cor 
 
XBBSESRW        .320998     .042126      .238422      .403575    .075555    .009915  .179292  .072098 
ZHWORK          .263356     .009690      .244363      .282350    .264956    .009748  .325969  .257166 
XTRKACAD       1.390122     .062694     1.267227     1.513017    .222876    .010052  .303288  .209795 
(Constant)     2.496854     .049167     2.400475     2.593233 
 
---------- Variables in the Equation ---------- 
Variable    Partial  Tolerance         VIF         T  Sig T 
 
XBBSESRW    .078774    .910596       1.098     7.620  .0000 
ZHWORK      .271284    .942060       1.062    27.180  .0000 
XTRKACAD    .224088    .886058       1.129    22.173  .0000 
(Constant)                                    50.783  .0000 
 

To simplify the notation, let Y = XHWORK, X1 = XBBSESRW, X2 = ZHWORK, X3 = 
XTRKACAD.  The printout tells us 
 
N = 9303, SSE = 65699.89382, se = 2.65806, RY1235 = .16751, 
sy = 2.913, s1 = .686, s2 = 2.930, s3 = .467, 
 
Tolerance X1 = .910596 ==> RX1G15 = 1 - .910596 = .089404 
Tolerance X2 = .942060 ==> RX2G25 = 1 - .942060 = .057940 
Tolerance X3 = .886058 ==> RX3G35 = 1 - .886058 = .113942 
 
The high tolerances and the big sample size strongly suggest that we need not be worried about 
multicollinearity in this problem. 
 
 
We will now compute the standard errors, using the information about the tolerances. 
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As you can see, our computed standard errors are consistent with SPSS. 
 
We will have a more extensive discussion of multicollinearity in Stats II. 
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