
 Semipartial (Part) and Partial Correlation 
 

This discussion borrows heavily from Applied Multiple Regression/Correlation Analysis 
for the Behavioral Sciences, by Jacob and Patricia Cohen (1975 edition; there is also an updated 
2003 edition now).   
 
Overview.  Partial and semipartial correlations provide another means of assessing the relative 
“importance” of independent variables in determining Y.  Basically, they show how much each 
variable uniquely contributes to R2 over and above that which can be accounted for by the other 
IVs.  We will use two approaches for explaining partial and semipartial correlations.  The first 
relies primarily on formulas, while the second uses diagrams and graphics.  To save paper 
shuffling, we will repeat the SPSS printout for our income example: 
 
Regression 
 

Descriptive Statistics

24.4150 9.78835 20
12.0500 4.47772 20
12.6500 5.46062 20

INCOME
EDUC
JOBEXP

Mean Std. Deviation N

 
Correlations

1.000 .846 .268
.846 1.000 -.107
.268 -.107 1.000

INCOME
EDUC
JOBEXP

Pearson Correlation
INCOME EDUC JOBEXP

 
 

Model Summary

.919a .845 .827 4.07431
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), JOBEXP, EDUCa. 
 

ANOVAb

1538.225 2 769.113 46.332 .000a

282.200 17 16.600
1820.425 19

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), JOBEXP, EDUCa. 

Dependent Variable: INCOMEb. 
 

Coefficientsa

-7.097 3.626 -1.957 .067 -14.748 .554
1.933 .210 .884 9.209 .000 1.490 2.376 .846 .913 .879 .989 1.012
.649 .172 .362 3.772 .002 .286 1.013 .268 .675 .360 .989 1.012

(Constant)
EDUC
JOBEXP

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Zero-order Partial Part
Correlations

Tolerance VIF
Collinearity Statistics

Dependent Variable: INCOMEa. 
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Approach 1: Formulas.  One of the problems that arises in multiple regression is that of 
defining the contribution of each IV to the multiple correlation.  One answer is provided by the 
semipartial correlation sr and its square, sr2.  (NOTE: Hayes and SPSS refer to this as the part 
correlation.)  Partial correlations and the partial correlation squared (pr and pr2) are also 
sometimes used. 

 
Semipartial correlations.  Semipartial correlations (also called part correlations) indicate the 
“unique” contribution of an independent variable.  Specifically, the squared semipartial 
correlation for a variable tells us how much R2 will decrease if that variable is removed from the 
regression equation.  Let 

H = the set of all the X (independent) variables, 
Gk = the set of all the X variables except Xk

 

Some relevant formulas for the semipartial and squared semipartial correlations are then 

 

kkGXkYGYHk

kkGXkk

TolbRbRRsr
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That is, to get Xk’s unique contribution to R2, first regress Y on all the X’s.  Then regress Y on 
all the X’s except Xk.  The difference between the R2 values is the squared semipartial 
correlation.  Or alternatively, the standardized coefficients and the Tolerances can be used to 
compute the semipartials and squared semipartials. Note that 

• The more “tolerant” a variable is (i.e. the less highly correlated it is with the other IVs), the 
greater its unique contribution to R2 will be. 

• Once one variable is added or removed from an equation, all the other semipartial 
correlations can change.  The semipartial correlations only tell you about changes to R2 for 
one variable at a time. 

• Semipartial correlations are used in Stepwise Regression Procedures, where the computer 
(rather than the analyst) decides which variables should go into the final equation. We will 
discuss Stepwise regression in more detail shortly.  For now, we will note that, in a forward 
stepwise regression, the variable which would add the largest increment to R2 (i.e. the 
variable which would have the largest semipartial correlation) is added next (provided it is 
statistically significant).  In a backwards stepwise regression, the variable which would 
produce the smallest decrease in R2 (i.e. the variable with the smallest semipartial 
correlation) is dropped next (provided it is not statistically significant.) 
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For computational purposes, here are some other formulas for the two IV case only: 
 

Tolb = r  1b = 
Tol

rr  r = 
r  1

r r  r = sr

 

Tolb = r - 1b = 
Tol

rr - r = 
r - 1

r r - r = sr
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For our income example, 
 

.1293 = 846. - .845 = r - R = .1297 = 360186. = sr

 

.360186 = .988578*  .362261 = Tolb = .3606 = 
)(-.107 - 1
.107-*  .846 - .268 = 

r  1
r r  r = sr

 
.7732, = 268. - .845 = r - R = .7733 = 879373. = sr

 

.879373, = .988578*  .884438 = Tol b = .8797 = 
)(-.107 - 1
.107-*  .268 - .846 = 

r - 1
r r - r = sr
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Compare these results with the column SPSS labels “part corr.”  Another notational form of sr1 
used is ry(1•2) . 
 
Also, referring back to our general formula, it may be useful to note that 

 

sr - R = R

 
,sr + R = R

2
k

2
YH

2
YG

2
k

2
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That is, when Y is regressed on all the Xs, R2 is equal to the squared correlation of Y regressed 
on all the Xs except Xk plus the squared semipartial correlation for Xk; and, if we would like to 
know what r2 would be if a particular variable were excluded from the equation, just subtract srk

2 
from RYH

2.  For example, if we want to know what R2 would be if X1 were eliminated from the 
equation, just compute RYH

2 - sr1
2 = .845 - .772 = .072 = RY2

2; and, if we want to know what R2 
would be if X2 were eliminated from the equation, compute RYH

2 - sr2
2 = .845 - .130 = .715 = 

RY1
2. 
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Partial Correlation Coefficients.  Another kind of solution to the problem of describing each 
IV’s participation in determining r is given by the partial correlation coefficient pr, and its 
square, pr2.  The squared partial r answers the question “How much of the Y variance which is 
not estimated by the other IVs in the equation is estimated by this variable?”  The formulas are 

 

sr + R  1
sr = 

R  1
sr = pr    ,

sr + R - 1
sr = 

R - 1
sr = pr 2
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Note that, since the denominator cannot be greater than 1, partial correlations will be larger than 
semipartial correlations, except in the limiting case when other IVs are correlated 0 with Y in 
which case sr = pr. 

 
In the two IV case, pr may be found via 

 

sr + R 1
sr = 

r  1
sr = pr    ,

sr + R - 1
sr = 

r - 1
sr = pr
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In the case of our income example, 

 

.45635 = 67554. = pr   ,.67554 = 
846.  1

.360186 = 
r  1

sr = pr

 

 ,.83314 = 91276. = pr   ,.91276 = 
268. - 1

.879373 = 
r - 1

sr = pr

22
222

Y1

2
2

22
122

Y2

1
1

−−

 

 
(To confirm these results, look at the column SPSS labels “partial”.)  These results imply that 
46% of the variation in Y (income) that was left unexplained by the simple regression of Y on 
X1 (education) has been explained by the addition here of X2 (job experience) as an explanatory 
variable.  Similarly, 83% of the variation in income that is left unexplained by the simple 
regression of Y on X2 is explained by the addition of X1 as an explanatory variable.   
 
A frequently employed form of notation  to express the partial r is rY1•2  prk

2 is also sometimes 
called the partial coefficient of determination for Xk. 

 
 
WARNING.  In a multiple regression, the metric coefficients are sometimes referred to as the 
partial regression coefficients.  These should not be confused with the partial correlation 
coefficients we are discussing here. 
 

 
 Semipartial (Part) and Partial Correlation - Page 4 



Alternative formulas for semipartial and partial correlations: 
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Note that the only part of the calculations that will change across X variables is the T value; 
therefore the X variable with the largest partial and semipartial correlations will also have the 
largest T value (in magnitude). 
 
 
Examples: 
 

675.
5882.5
772.3

17772.3
772.3

)1(

913.
0899.10
209.9

17209.9
209.9

)1(

360.
1231.4
4850.1

17
845.1*772.3

1
1*

879.
1231.4
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17
845.1*209.9
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Besides making obvious how the partials and semipartials are related to T, these formulas may 
be useful if you want the partials and semipartials and they have not been reported, but the other 
information required by the formulas has been.  Once I figured it out (which wasn’t easy!) I used 
the formula for the semipartial in the pcorr2 routine I wrote for Stata. 
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Approach 2: Diagrams and Graphics.  Here is an alternative, more visually oriented 
discussion of what semipartial and partial correlations are and what they mean. 
 
Following are graphic representations of semipartial and partial correlations.  Assume we have 
independent variables X1, X2, X3, and X4, and dependent variable Y.  (Assume that all variables 
are in standardized form, i.e. have mean 0 and variance 1.) To get the semipartial correlation of 
X1 with Y, regress X1 on X2, X3, and X4.  The residual from this regression (i.e. the difference 
between the predicted value of X1 and the actual value) is e1.  The semipartial correlation, then, 
is the correlation between e1 and Y.  It is called a semipartial correlation because the effects of 
X2, X3, and X4 have been removed (i.e. “partialled out”) from X1 but not from Y.  
 

 
 

Semipartial (Part) Correlation 
 
To get the partial correlation of X1 with Y, regress X1 on X2, X3, and X4.  The residual from this 
regression is again e1.  Then, regress Y on X2, X3, and X4 (but NOT X1).  The residual from this 
regression is ey.  The partial correlation is the correlation between e1 and ey.  It is called a partial 
correlation because the effects of X2, X3, and X4 have been “partialled out” from both X1 and Y. 
 

 
 

Partial Correlation 
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Semipartial (Part) Correlations.  To better understand the meaning of semipartial and squared 
semipartial correlations, it will be helpful to consider the following diagram (called a 
“ballantine”).  [NOTE: This ballantine describes our current problem pretty well.  Section 3.4 of 
the 1975 edition of Cohen and Cohen gives several other examples of how the Xs and Y can be 
interrelated, e.g. X1 and X2 might be uncorrelated with each other, or they might be negatively 
correlated with each other but positively correlated with Y.] 
 

 
 
In this diagram, the variance of each variable is represented by a circle of unit area (i.e. each 
variable is standardized to have a variance of 1).  Hence, 
 

A + B + C + D = sy
2 = ryy = 1, 

(B + C)/ (A + B + C + D) = B + C = rY1
2, 

(C + D)/ (A + B + C + D) = C + D = rY2
2, 

(C + F)/ (B + C + E + F) = (C + F)/ (C + D + F + G) = C + F = r12
2, 

(B + C + D) / (A + B + C + D) = B + C + D = rY12
2

 
That is, the overlapping of 2 circles represents their squared correlation, e.g. r12

2.  The total area 
of Y covered by the X1 and X2 areas represents the proportion of Y’s variance accounted for by 
the two IVs, rY12

2.  The figure shows that this area is equal to the sum of the areas designated B, 
C, and D.  (NOTE:  Don’t confuse the A and B used in the diagram with the a and b we use for 
regression coefficients!)  The areas B and D represent those portions of Y overlapped uniquely 
by X1 and X2, respectively, whereas area C represents their simultaneous overlap with Y.  The 
“unique” areas, expressed as proportions of Y variance, are squared semipartial correlation 
coefficients, and each equals the increase in the squared multiple correlation which occurs when 
the variable is added to the other IV.  Thus, 
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R - R = C) + (B - D) + C + (B = D = sr

 
 ,R - R = D) + (C - D) + C + (B = B = sr

2
Y1

2
Y12

2
2

2
Y2

2
Y12

2
1

 

 
The semipartial correlation sr1 is the correlation between all of Y and X1 from which X2 has been 
partialled.  It is a semipartial correlation since the effects of X2 have been removed from X1 but 
not from Y.  “Removing the effect” is equivalent to subtracting from X1 the X1 values estimated 
from X2, that is, to working with x1 - x̂1 (where x̂1 is estimated by regressing X1 on X2).  That is, 
x1 - x̂1 is the residual obtained by regressing X1 on X2.  We will denote this as e1.  Hence, sr1 = 
rye1.  srk

2 is the amount that r2 is increased by including Xk in the multiple regression equation (or 
alternatively, it is the amount that r2 would go down if Xk were eliminated from the equation.) 
 
In terms of our diagram,  
 

sy
2 = A + B + C + D = 1,  (because Y is standardized) 

ry1
2 = (B + C)/ (A + B + C + D) = B + C, 

sr1
2 = B / (A + B + C + D) = B. 

 
Thus, we remove the area C from X1 but not from Y. 

 
Another notational form of sr1 used is ry(1•2), the 1•2 being a shorthand way of expressing X1 
from which X2 has been partialled. 

 
Partial Correlation Coefficients.  Another kind of solution to the problem of describing each 
IV’s participation in determining r is given by the partial correlation coefficient pr, and its 
square, pr2.  The squared partial correlation pr1

2 may be understood best as the proportion of the 
variance of Y not associated with X2 which is associated with X1.  That is, 

 
 

r - 1
sr = 

r  1
r  R = 

C) + (B  D) + C + B + (A
C) + (B  D) + C + (B = 

D + A
D = pr

 
r - 1

sr = 
r - 1

r - R = 
D) + (C - D) + C + B + (A

D) + (C - D) + C + (B = 
B + A

B = pr

2
Y1

2
2

2
Y1

2
Y1

2
Y122

2

2
Y2

2
1

2
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2
Y2

2
Y122

1
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More generally, we can say that 

 

sr + R  1
sr = 

R  1
sr = pr    ,

sr + R - 1
sr = 

R - 1
sr = pr 2

k
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YH
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k
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The numerator for pr1
2 is the squared semipartial correlation coefficient; however, the base 

includes not all of the variance as in sr1
2, but only that portion of Y variance which is not 

associated with X2, that is, 1 - rY2
2.  Thus, the squared partial r answers the question “How much 

of the Y variance which is not estimated by the other IVs in the equation is estimated by this 
variable?”  Note that, since the denominator cannot be greater than 1, partial correlations will be 
larger than semipartial correlations, except in the limiting case when other IVs are correlated 0 
with Y in which case sr = pr. 
 
Another way of viewing the partial correlation is that pr1 is the correlation between X1 from 
which X2 has been partialled and Y from which X2 has also been partialled (i.e., the correlation 
between x̂1•2 and ŷ•2).  A frequently employed form of notation  to express the partial r is rY1•2, 
which conveys that X2 is being partialled from both Y and X1, in contrast to the semipartial r, 
which is represented as rY(1•2).  prk

2 is also sometimes called the partial coefficient of 
determination for Xk. 

 
In terms of our diagram, 
 

sy
2 = A + B + C + D = 1,  (because Y is standardized) 

ry1
2 = (B + C)/ (A + B + C + D) = B + C, 

sr1
2 = B / (A + B + C + D) = B 

pr1
2 = B / (A + B) 

 
Thus, in the squared semipartial correlation, areas which belong to X2 and which overlap either 
X1 or Y (C and D) are removed from X1 but not Y.  In the squared partial correlation, areas 
which belong to X2 are removed from both X1 and Y. 
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