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COMPUTING R2. Here are some of the many formulas for R2: Our knowledge of path analysis now 
makes it possible to prove many of these formulas. See the optional appendix if you are 
interested. NOTE: I use the notation b’k for the standardized coefficients and bk for the non-
standardized, aka metric coefficients. pk is another notation often used for the standardized (aka 
path) coefficients. 

R2 = SSR/SST Explained sum of squares over total sum of 
squares, i.e. the ratio of the explained 
variability to the total variability. 
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This can be useful if F, N, and K are known 
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These formulas uses the standardized 
coefficients.and the zero-order correlations 
between y and the x’s. These (esoteric) 
formulas can be useful when doing path 
analysis. 

Two IV case only: 
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This is a special case of the last formula. 

One IV case only: 
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Remember that, in standardized form, 
correlations and covariances are the same. 

One IV case only: 
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We’ll use this formula in the rest of this 
handout. Technically I should use rho2 (ρ2) 
here or else put hats over the other parameters 
(to distinguish between population parameters 
and sample estimates) but since that seems to 
confuse some people I won’t! 
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EVILS OF R2 (In General) While R2 has its uses, it is far more important to have a correctly 
specified model than it is to have a large R2. For example, consider the following model: 

    u 
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X1       X4  w 

 

    X3 

 

 

    v 

• You can increase R2 by regressing a variable on variables that are causally subsequent to it, 
e.g. regress X1 on X2 and X3. This would be foolish, since X2 and X3 are consequence of 
X1, not causes of it. Remember, the data can’t tell you what the proper causal ordering is, 
you have to decide that for yourself. 

• You should regress X3 on X1. If you instead regress X3 on X2, you’ll get an R2, but it will 
be meaningless (unless, perhaps, you are intentionally using X2 as a proxy for the 
unmeasured X1.) Such questionable modeling occurs when, say, one attitude is regressed on 
another, when in reality both attitudes are functions of something else. 

• Another way to increase R2 is to regress a variable on a slightly different operationalization 
of itself. This might occur if different attitudinal items really measure pretty much the same 
thing. 

• In short, merely increasing R2 by lengthening the list of regressors is no great achievement 
unless the role of these variables in an extended model is properly understood and correctly 
represented. 

EVILS OF R2 (In Cross-population comparisons)  

Bivariate R2 is a function of three quantities: 

1. The structural effect of X on Y (β) 

2. The variance of the exogenous variable (X) 

3. The variance of the disturbance term (u) 
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More generally, R2 is a function of the β structural coefficients, the variances of the exogenous 
variables, and the variances of the disturbance terms. The following examples illustrate this: 

EXAMPLES. 

1. Exogenous variance differs across populations 

Population 1 Population 2 

β = 3 β = 3 

V(X) = 4 V(X) = 9 

V(u) = 27 V(u) = 27 
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The population with the larger exogenous variance will have the larger R2 

 

2. Structural effect differs across populations 

Population 1 Population 2 

β = 3 β = 6 

V(X) = 4 V(X) = 4 

V(u) = 27 V(u) = 27 
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The population with the larger structural effect will have the larger R2 
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3. Variance of disturbance differs across populations 

Population 1 Population 2 

β = 3 β = 3 

V(X) = 4 V(X) = 4 

V(u) = 27 V(u) = 9 
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The population with the smaller DV residual variance will have the larger R2 

4a. Structural effect is smaller in one population but the exogenous variance is greater 

Population 1 Population 2 

β = 3 β = 2 

V(X) = 4 V(X) = 16 

V(u) = 27 V(u) = 27 
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In this particular example, even though the effect of X on Y is only 2/3 as large in population 2 
as it is in population 1, R2 winds up being greater in population 2 because population 2 is more 
variable on X. 
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4b. Structural effect is smaller in one population but the exogenous variance is greater 

Population 1 Population 2 

β = 3 β = 2 

V(X) = 4 V(X) = 9 

V(u) = 27 V(u) = 27 
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In this case, if you just looked at R2, you would conclude that the two populations are very 
similar, when in reality they are quite different. Just because R2 values are similar does not 
necessarily mean that populations are similar. 

 

SUMMARY AND IMPLICATIONS. 

• A change in any of the three components (β, the exogenous variable variance, or the variance 
of the disturbance) can change R2 

• When R2 differs across populations, the difference could be due to differences in any of the 
three components. For example, the structural effect and the variances of the disturbance 
could be the same in all populations, but the variance of the exogenous variable could differ 
(example 1). And, of course, the effect of X on Y (β) could be greater in one population than 
the other (example 2). Or, the exogenous variance and the structural effects might be the 
same in both populations, but the random influences that affect Y (i.e. the disturbance) may 
be more variable in one population than the other (example 3)  

• Therefore, to simply note that R2 differs across populations is of limited usefulness. It is far 
more useful to explain why R2 differs. Is it because the structural effects are greater in one 
population, e.g. education has a larger effect on the income of men than it does women? Or is 
it because of differing variabilities in the exogenous variables, e.g. men are more variable in 
their education than women are? Or is it just because the random influences that affect 
outcomes are more variable in one population than the other?  

• Note further that the structural effects might actually be smaller in one population, yet the R2 
in that population could be larger (example 4a). For example, education might have a smaller 
effect on the income of men than it does women; but if men are more variable in their 
education the R2 for men could be larger. In such a case, it might be tempting to say that, 
because the male R2 is higher, education has a greater effect on the income of men than it 
does women. This is highly misleading though, because in reality the structural effect of 
education on income is smaller for men than women. That is, R2 is larger for men, not 
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because the effect of education is larger for them, but because they are more variable in their 
levels of education. 

• Conversely, two very different populations could have similar R2 values, obscuring the 
differences between them (example 4b). 

• Similar comments apply for other sorts of R2 comparisons you might be tempted to make, 
e.g. changes in R2 across time, differences in R2 for different dependent variables. 

None of this is to say that R2 is a meaningless or useless statistic. A low R2 might well indicate 
that variables are poorly measured, that important variables have been excluded, or that the 
model has been mis-specified in other ways (e.g. effects are non-linear or non-additive). 

But, this does suggest that R2 should generally be of only secondary interest to us. If a correctly 
specified model with well-measured variables produces a small R2, then so be it. We should be 
much more interested in the determinants of R2 than in R2 itself. And, if we are going to make 
comparisons of R2, we should make sure we are doing so correctly. Rather than just saying R2 
differs across groups, times, or variables, we should try to explain why it differs (and we should 
definitely avoid misleading statements, such as those which erroneously imply that a larger R2 is 
the result of larger structural effects.) 
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Appendix: Formula Proofs (Optional). Some of the formulas for R2 can now be easily proven 
using the techniques we have recently developed. Take the equation 

Y X X v= + +β β1 1 2 2  

If we multiply both sides of the equation by Y and take expectations, we get 
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where K = the number of IVs in the equation. Of course, in a sample, when variables are 
standardized, R2 = explained variance. Hence, for a sample we get the formula  
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As an alternative, we can square each side and take expectations. This gives us 
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Explained variance +  unexplained variance

 

In a sample, with standardized variables, for the 2 IV case this gives us 
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and, more generally, we get 
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(Remember that the correlation of any variable with itself is 1). 
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