# Logistic Regression, Part II: <br> The Logistic Regression Model (LRM) - Interpreting Parameters 

Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/
Last revised January 22, 2021

This handout steals heavily from Linear probability, logit, and probit models, by John Aldrich and Forrest Nelson, paper \# 45 in the Sage series on Quantitative Applications in the Social Sciences.

Probabilities, Odds and Log Odds. The linear probability model (LPM) is

$$
\mathrm{P}(\mathrm{Yi}=1)=\mathrm{Pi}=\alpha+\Sigma \beta \mathrm{X}_{\mathrm{ik}}
$$

Among other things, a problem with this model is that the left hand side can only range from 0 to 1 , but the right hand side can vary from negative infinity to positive infinity. One way of approaching this problem is to transform Pi to eliminate the 0 to 1 constraint. We can eliminate the upper bound $(\mathrm{Pi}=1)$ by looking at the ratio $\mathrm{Pi} /(1-\mathrm{Pi}) . \mathrm{Pi} /(1-\mathrm{Pi})$ is referred to as the odds of an event occurring. That is,

$$
\text { Odds }_{i}=\frac{P_{i}}{1-P_{i}}
$$

For example, if $\mathrm{Pi}=.90$, the odds are 9 to 1 (or 9 ) that the event will happen. If $\mathrm{Pi}=.30$, the odds are 3 to 7 (or .429 to 1 , or simply .429 ) against the event occurring. If $\mathrm{Pi}=.50$, the odds are 1 to 1 (even). The following table helps to illustrate how odds and probabilities are related to each other. It starts with odds of 10,000 to 1 against. Then, the odds are multiplied by 10 each row, until the odds become 10,000 to 1 in favor.

| Odds | Probability | Change in <br> Probability |
| ---: | ---: | ---: |
| 0.0001 | $0.0100 \%$ |  |
| 0.001 | $0.0999 \%$ | $0.0899 \%$ |
| 0.01 | $0.9901 \%$ | $0.8902 \%$ |
| 0.1 | $9.0909 \%$ | $8.1008 \%$ |
| 1 | $50.0000 \%$ | $40.9091 \%$ |
| 10 | $90.9091 \%$ | $40.9091 \%$ |
| 100 | $99.0099 \%$ | $8.1008 \%$ |
| 1000 | $99.9001 \%$ | $0.8902 \%$ |
| 10000 | $99.9900 \%$ | $0.0899 \%$ |

Note the nonlinear relationship between odds and probability. At the low end, you'd prefer to have 100 to 1 odds against you rather than 10,000 to 1 odds against; but either way, you've still got less than a $1 \%$ chance of success. Conversely, it is better to have 10,000 to 1 odds in your
favor rather than 100 to 1, but either way you've got better than a $99 \%$ chance of success. Hence, at the extremes, changes in the odds have little effect on the probability of success.

In the middle ranges, however, it is a very different story. As you go from 10 to 1 odds against to even odds of 1 to 1 , the probability of success jumps from $9.9 \%$ to $50 \%$, almost a $41 \%$ increase. And, as you go from even odds to 10 to 1 odds in your favor, the probability of success jumps from $50 \%$ to almost $91 \%$.

The odds must be zero or positive, but there is no upper bound; as Pi approaches $1, \mathrm{Pi} /(1-\mathrm{Pi})$ goes toward infinity. But, there is still a lower bound of 0 . We can eliminate the lower bound of 0 by taking the natural logarithm, $\ln [\mathrm{Pi} /(1-\mathrm{Pi})]$ the result of which can be any real number from negative to positive infinity. $\ln [\mathrm{Pi} /(1-\mathrm{Pi})]$ is referred to as the $\log$ odds of the event occurring. That is, the log odds are

$$
\log O d d s_{i}=\ln \left(\frac{P_{i}}{1-P_{i}}\right)
$$

To show how the log odds, odds, and probability are related, we add the $\log$ odds to the previous table:

| Log odds | Odds | Probability | Change in <br> Probability |
| :---: | ---: | ---: | ---: |
| -9.2103 | 0.0001 | $0.0100 \%$ |  |
| -6.9078 | 0.001 | $0.0999 \%$ | $0.0899 \%$ |
| -4.6052 | 0.01 | $0.9901 \%$ | $0.8902 \%$ |
| -2.3026 | 0.1 | $9.0909 \%$ | $8.1008 \%$ |
| 0.0000 | 1 | $50.0000 \%$ | $40.9091 \%$ |
| 2.3026 | 10 | $90.9091 \%$ | $40.9091 \%$ |
| 4.6052 | 100 | $99.0099 \%$ | $8.1008 \%$ |
| 6.9078 | 1000 | $99.9001 \%$ | $0.8902 \%$ |
| 9.2103 | 10000 | $99.9900 \%$ | $0.0899 \%$ |

Note that each 10 -fold increase in the odds results in the log odds going up by 2.3026 . This is because $\mathrm{e}^{2.3026}=10$. That is, what was a multiplicative relationship with the odds is now an additive relationship in the log odds. Similar to before, we see that, at the extremes, changes in the log odds of success have very little effect on the probability of success; but as you get away from the extremes, changes in log odds are associated with big changes in the probability of success.

This next table also shows the relationships. We start with very low log odds, and increase them by 1 with each row:

|  |  |  | Change in |
| :---: | :---: | :---: | :---: |
| Log odds | Odds | Probability | Probability |
| -9.0000 | 0.0001234 | 0.0123\% |  |
| -8.0000 | 0.0003355 | 0.0335\% | 0.0212\% |
| -7.0000 | 0.0009119 | 0.0911\% | 0.0576\% |
| -6.0000 | 0.0024788 | 0.2473\% | 0.1562\% |
| -5.0000 | 0.0067379 | 0.6693\% | 0.4220\% |
| -4.0000 | 0.0183156 | 1.7986\% | 1.1293\% |
| -3.0000 | 0.0497871 | 4.7426\% | 2.9440\% |
| -2.0000 | 0.1353353 | 11.9203\% | 7.1777\% |
| -1.0000 | 0.3678794 | 26.8941\% | 14.9738\% |
| 0.0000 | 1.0000000 | 50.0000\% | 23.1059\% |
| 1.0000 | 2.7182818 | 73.1059\% | 23.1059\% |
| 2.0000 | 7.3890561 | 88.0797\% | 14.9738\% |
| 3.0000 | 20.0855369 | 95.2574\% | 7.1777\% |
| 4.0000 | 54.5981500 | 98.2014\% | 2.9440\% |
| 5.0000 | 148.4131591 | 99.3307\% | 1.1293\% |
| 6.0000 | 403.4287935 | 99.7527\% | 0.4220\% |
| 7.0000 | 1096.6331584 | 99.9089\% | 0.1562\% |
| 8.0000 | 2980.9579870 | 99.9665\% | 0.0576\% |
| 9.0000 | 8103.0839276 | 99.9877\% | 0.0212\% |

Note that the odds get multiplied by 2.7182818 with each row. This is the value of e. At the extremes, each 1 unit increase in the log odds has little effect on the probability of success, but in the middle ranges each 1 unit increase has fairly large effects.

Note also that:

- if the probability of success is less than $50 \%$, the log odds are negative and the odds are less than 1 ;
- if the probability of success $=50 \%$, the log odds are 0 and the odds $=1$;
- if the probability of success is greater than $50 \%$, the log odds are positive and the odds are greater than 1 .

The following graph further helps to show how probabilities are related to the corresponding log odds:


Note that

- Although probabilities can range from 0 to $1, \log$ odds can range from $-\infty$ to $+\infty$.
- Log odds follow an S-shaped curve. At the extremes, changes in the log odds produce very little change in the probabilities. In the middle of the $S$ curve, changes in the log odds produce much larger changes in the probabilities.
- To put it another way, linear, additive increases in the log odds produce nonlinear changes in the probabilities.
- The relationship makes intuitive sense. If things are bad, they can't get that much worse, i.e. whether the odds are 1,000 to 1 against you or only 100 to 1 , you still probably won't win, e.g. neither the F nor the D student will likely get an A . Likewise, regardless of whether the odds are 1,000 to 1 in your favor or only 100 to 1 , you probably won't fail, e.g., the high A student and the very high A student both have great shots at an A. It is in the middle ranges that changes are likely to make the most difference, e.g. both a $B$ and a $C$ student may have a shot at an $A$, but the $B$ student's probability of success may be much higher.
- In short, in a regression analysis, log odds have many advantages over probabilities. They have no upper or lower bounds. Linear, additive increases in the log odds produce theoretically plausible nonlinear increases in probability. Hence, a method which predicts log odds has a great deal of appeal.

The Logistic Regression Model (LRM). The logistic regression model (LRM) (also known as the logit model) can then be written as

$$
\ln \frac{P(Y i=1)}{1-P(Y i=1)}=\ln \left(O d d s_{i}\right)=\alpha+\sum_{k=1}^{K} \beta_{k} X_{i k}=Z i
$$

The above is referred to as the $\log$ odds and also as the logit. Zi is used as a convenient shorthand for $\alpha+\Sigma \beta_{\mathrm{k}} \mathrm{X}_{\mathrm{ik}}$.

As Aldrich and Nelson and others note, there are several alternatives to the LRM which might be just as plausible or more plausible in a particular case. However,

- the LRM is comparatively easy from a computational standpoint
- there are many programs available which can estimate logistic regression models
- The LRM tends to work fairly well in practice

Note that, if we know either the odds or the log odds, it is easy to figure out the corresponding probability:

$$
P_{i}=\frac{\text { Odds }_{i}}{1+O d d s_{i}}=\frac{\exp \left(Z_{i}\right)}{1+\exp \left(Z_{i}\right)}=\frac{1}{1+\exp \left(-Z_{i}\right)}
$$

So, for example (Confirm these calculations on your own)
if Odds $=1, \mathrm{P}=.5 ;$ Odds $=3, \mathrm{P}=.75 ;$ Odds $=.5, \mathrm{P}=.333$.
If $\mathrm{Z}=0, \mathrm{P}=.5 ; \mathrm{Z}=1, \mathrm{P}=.731 ; \mathrm{Z}=-3, \mathrm{P}=.0474$.

Estimation of the LRM. In linear regression we estimate the parameters of the model using the method of least squares. That is, we select regression coefficients that result in the smallest sums of squared distances between the observed and predicted values of the dependent variable.

In logistic regression, the parameters of the model are estimated using the method of maximum likelihood. That is, the coefficients that make our observed results most "likely" are selected. Since the logistic regression model is nonlinear, an iterative algorithm is necessary for parameter estimation. Because the data must be read multiple times, iterative procedures tend to be more time consuming.

The estimation procedure is too difficult to explain here; but fortunately, several programs, including SPSS \& Stata, include logistic regression routines.

Logistic regression Example. It will be easier to understand the LRM if we have an example in front of us. Here is how our earlier PSI example could be estimated using the Stata logit command.

```
. use https://www3.nd.edu/~rwilliam/statafiles/logist.dta, clear
. logit grade gpa tuce i.psi, nolog
```

| Logistic regression | Number of obs | $=$ |
| :--- | :--- | :--- |
|  | LR chi2 (3) | $=$ |
| Log likelihood $=-12.889633$ | Prob $>$ chi2 | $=$ |
|  | Pseudo R2 | $=0.0015$ |
|  |  | 0.3740 |


| grade \| | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| gpa \| | 2.826113 | 1.262941 | 2.24 | 0.025 | .3507938 | 5.301432 |
| tuce \| | .0951577 | .1415542 | 0.67 | 0.501 | -.1822835 | .3725988 |
| 1.psi | 2.378688 | 1.064564 | 2.23 | 0.025 | .29218 | 4.465195 |
| _cons \| | -13.02135 | 4.931325 | -2.64 | 0.008 | -22.68657 | -3.35613 |


| •Replay the results, this time getting the exponentiated coefficients <br> - logit, or |  |  |
| :--- | :--- | :--- |
|  |  |  |
| Logistic regression | Number of obs | $=$ |
|  |  |  |
| Log likelihood $=-12.889633$ | LR chi2 (3) | $=$ |


| grade \| Odds Ratio |  | Std. Err. | z | $P>\|z\|$ | [95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gpa | 16.87972 | 21.31809 | 2.24 | 0.025 | 1.420194 | 200.6239 |
| tuce | 1.099832 | . 1556859 | 0.67 | 0.501 | . 8333651 | 1.451502 |
| 1.psi | 10.79073 | 11.48743 | 2.23 | 0.025 | 1.339344 | 86.93802 |
| _cons | $2.21 e-06$ | . 0000109 | -2.64 | 0.008 | $1.40 \mathrm{e}-10$ | . 03487 |

INTERPRETATION OF PARAMETERS. Because the effect of the X's is nonlinear, interpretation of parameters is more difficult than in OLS regression. Recall the LRM can be written as

$$
\ln \frac{P(Y i=1)}{1-P(Y i=1)}=\alpha+\sum_{k=1}^{K} \beta_{k} X_{i k}=Z i
$$

Recall that the left hand side stands for the log odds. Hence, a 1 unit increase in $\mathrm{X}_{1}$ will result in a $\beta_{1}$ increase in the log odds. In the current example, if you had 2 people with identical GPA and TUCE scores, the $\log$ odds for the one who was in PSI would be 2.378 greater than the log odds for the person who wasn't.

Alas, most of us are not used to thinking in terms of log odds. Ergo, we may do slightly better if we express the model in terms of odds:

$$
\frac{P(Y i=1)}{1-P(Y i=1)}=e^{\alpha+\sum_{k=1}^{K} \beta_{k} X_{i k}}=e^{a} e^{\beta_{1} X_{i 1}} e^{\beta_{2} X_{i 2}} \ldots e^{\beta_{K} X_{i K}}
$$

Hence, if $\mathrm{X}_{1}$ increases by 1 , the odds will increase by $\exp \left(\beta_{1}\right)$. So, for 2 otherwise identical students, the odds for the one in PSI would be $\exp (2.3783)=10.79$ times greater. This is shown in the Odds Ratio column of the printout.

Note that this does not mean that the one in PSI is 10.79 times more likely to get an A. This is best illustrated by plugging in some hypothetical numbers. Suppose, based on their GPA and TUCE scores, 5 students in a conventional class had a $1 \%, 10 \%, 50 \%, 90 \%$ and $99 \%$ chance of getting an A . The following table shows what their odds would be in the conventional class, what their odds would be in a PSI class, and their probability of getting an A in a PSI class:

|  | Odds (PSI) $=$ |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
| Pi | Odds (Conv) $=$ | Odds (Conv) | Pi (PSI) $=$ | Change in |
| (Conventional) | $\mathrm{Pi} /(1-\mathrm{Pi})$ | 10.79 | Odds/(1 + Odds) | Probability |
| $1.00 \%$ | 0.0101 | 0.109 | $9.83 \%$ | $8.83 \%$ |
| $10.00 \%$ | 0.1111 | 1.199 | $54.51 \%$ | $44.51 \%$ |
| $50.00 \%$ | 1.0000 | 10.787 | $91.52 \%$ | $41.52 \%$ |
| $90.00 \%$ | 9.0000 | 97.079 | $98.98 \%$ | $8.98 \%$ |
| $99.00 \%$ | 99.0000 | 1067.868 | $99.91 \%$ | $0.91 \%$ |

Note, for example, that a person with a $10 \%$ chance of an A in a regular class sees a huge increase in their chances of an A by getting into PSI. A person who already had a good chance of an A sees the same increase in their odds of getting an A, but a much smaller percentage increase.

By way of contrast, recall that these were the model parameters using OLS:

Coefficients ${ }^{\text {a }}$

| Model |  | Unstandardized Coefficients |  | Standardized Coefficients Beta | t | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | B | Std. Error |  |  |  |
| 1 | (Constant) | -1.498 | . 524 |  | -2.859 | . 008 |
|  | GPA | . 464 | . 162 | . 449 | 2.864 | . 008 |
|  | PSI | . 379 | . 139 | . 395 | 2.720 | . 011 |
|  | TUCE | . 010 | . 019 | . 085 | . 539 | . 594 |

a. Dependent Variable: GRADE

According to the OLS estimates, the person with a $1 \%$ chance in a conventional class would have a $39 \%$ chance in PSI, which is much greater than the $9.83 \%$ chance predicted in the logistic regression model. OLS overestimates the benefits of PSI for those with initially low and high probabilities of success, and underestimates the benefits of PSI for those in the middle.

In the above, we used hypothetical values for the Pi. An alternative, and perhaps more common, approach is to "plug in" reasonable values for the X's, and then see what effect changing one of the X's would have. For example:

Consider again the case of a student who has a GPA of 3.0, is taught by traditional methods, and has a score of 20 on TUCE. According to this model,

$$
\begin{aligned}
\ln \frac{P\left(Y_{i}=1\right)}{1-P\left(Y_{i}=1\right)} & =\alpha+\sum_{k=1}^{K} \beta_{k} X_{i k}=Z_{i} \\
& =-13.0187+3 * 2.8256+0 * 2.3783+20 * .0951 \\
& =-2.6399
\end{aligned}
$$

NOTE: We can confirm this and subsequent calculations in Stata by using the margins command. The predict (xb) option gives the predicted log odds while the predict (pr) option (which is the default for logit and hence can be omitted) gives the predicted probability.

```
. use https://www3.nd.edu/~rwilliam/statafiles/logist.dta, clear
. quietly logit grade gpa tuce i.psi
. margins, at(gpa = 3 psi = 0 tuce = 20) predict(xb)
Adjusted predictions Number of obs = N2
Model VCE : OIM
Expression : Linear prediction (log odds), predict(xb)
at : gpa = 3
        tuce 
```



So, the log odds for this person is -2.6399 , and the odds are $\exp (-2.6399)=.0714$, i.e. about 1 to 14. Let's convert this into the corresponding probability:

$$
P_{i}=\frac{1}{1+\exp \left(-Z_{i}\right)}=\frac{1}{1+\exp (2.6399)}=\frac{1}{15.012}=.0666
$$




So, according to the model, this person has less than a $7 \%$ chance of getting an A. Suppose, however, that this same person got placed in the PSI class. You would then get a logit of

$$
\begin{aligned}
\ln \frac{P\left(Y_{i}=1\right)}{1-P\left(Y_{i}=1\right)} & =\alpha+\sum_{k=1}^{K} \beta_{k} X_{i k}=Z_{i} \\
& =-13.0187+3 * 2.8256+1 * 2.3783+20^{*} .0951 \\
& =-.2616
\end{aligned}
$$



So, the $\log$ odds are -.2616 , and the odds are $\exp (-.2616)=.7698$, i.e. about 1 to 1.3 . Again, note that the odds increased by $\exp (2.3783)=10.79$ times. The probability of getting an A would be

$$
P_{i}=\frac{1}{1+\exp \left(-Z_{i}\right)}=\frac{1}{1+\exp (.2616)}=\frac{1}{2.299}=.43497
$$

```
. margins, at(gpa = 3 psi = 1 tuce = 20)
```

Adjusted predictions $\quad$ Number of obs $=\quad 32$

Model VCE : OIM
Expression : Pr(grade), predict()
at $\left.\begin{array}{lll}\text { gpa } & = & 3 \\ \text { tuce } & = & 20 \\ & \text { psi } & \end{array}\right)$.


Hence, getting into the PSI class would substantially increase the chances of getting an A - the person would have about a $37 \%$ better chance. (Which, incidentally, is about the same increase OLS regression predicted - but note that this person has about "average" GPAand TUCE scores. The means for GPA is 3.12 , the mean for TUCE is 21.94)

Suppose, instead, that a student with a 4.0 average and a TUCE of 25 was in a traditional class. (You can confirm the calculations on your own if you want.) The log odds are .6612, and the odds are $\exp (.6612)=1.937$, i.e. the person is almost twice as likely to get an A as to not get an A. Pi is

```
. margins, at(gpa = 4 psi = 0 tuce = 25)
```

| Adjusted predictions | Number of obs | $=$ |
| :--- | :--- | :--- |
| Model VCE $: ~ O I M$ |  | 32 |


| Expression | $:$ | Pr(grade), | predict() |
| :--- | :--- | :--- | ---: |
| at | gpa | $=$ | 4 |
|  | tuce | $=$ | 25 |
|  | psi | $=$ | 0 |



So, in a regular classroom, that student has about a $66 \%$ chance of an A. Put them in PSI, and the $\log$ odds are 3.0395 , odds are 20.89 (again an increase of 10.79 times), and Pi is

```
. margins, at(gpa = 4 psi = 1 tuce = 25)
\begin{tabular}{lll} 
Adjusted predictions & Number of obs & \(=\) \\
Model VCE & &
\end{tabular}
\begin{tabular}{lllr} 
Expression & \(: \operatorname{Pr}(\) grade \(), ~ p r e d i c t() ~\) \\
at & gpa & \(=\) & 4 \\
& tuce & \(=\) & 25 \\
& psi & \(=\) & 1
\end{tabular}
```



So, this person sees about a $29 \%$ improvement. Note that it would be impossible for this person to improve by $37 \%$, like the first person did, because his or her probability of getting an A would then be greater than 1 .
[Sidelight: Using the margins command effectively] Incidentally, the margins and marginsplot commands provide a nice way of generating several interesting comparisons at once. For example, the following shows the predicted scores for people who have average scores on TUCE and identical GPAs but who differ on their PSI status.

```
. quietly logit grade gpa tuce i.psi, nolog
. quietly margins psi, at(gpa = (2(.1)4) ) atmeans
. marginsplot, noci scheme(sj)
Variables that uniquely identify margins: gpa psi
```



If we just want to see the predicted differences between those in psi and those not in psi ,

```
quietly margins, dydx(psi) at(gpa = (2(.1)4) ) atmeans
marginsplot, noci scheme(sj)
Variables that uniquely identify margins: gpa
```



With all the graphics, we see that the predicted differences in the probability of getting an A between those in psi and those not in psi is very small at low gpas, less than $10 \%$. As GPA rises the gap gets much larger (more than $50 \%$ ), up until around gpa $=3.4$, and then the gap gets smaller as gpa continues to get bigger. In the last graph, when the confidence interval includes 0 , the difference between those in psi and not in psi is not statistically significant, suggest that those with low B to low A GPAs are most likely to see a boost from being in psi.

Here are the actual data. In the last 3 columns, we compute what the probability of an A would have been in the student were not in PSI, then what the probability would be if the student were
in Psi, and the gain in probability produced by being in psi. The data are sorted from lowest probability of success if not in Psi to the highest probability of success if not in Psi.

| Gpa | Tuce | Psi | Grade | Logit if Not in Psi | Logit if in Psi | P if not in Psi | P if in PSI | Psi Gain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.06 | 22 | 1 | 0 | -5.10744 | -2.72944 | 0.60\% | 6.13\% | 5.52\% |
| 2.39 | 19 | 1 | 1 | -4.45986 | -2.08186 | 1.14\% | 11.09\% | 9.94\% |
| 2.63 | 20 | 0 | 0 | -3.68662 | -1.30862 | 2.44\% | 21.27\% | 18.83\% |
| 2.92 | 12 | 0 | 0 | -3.62708 | -1.24908 | 2.59\% | 22.29\% | 19.70\% |
| 2.76 | 17 | 0 | 0 | -3.60424 | -1.22624 | 2.65\% | 22.68\% | 20.04\% |
| 2.66 | 20 | 0 | 0 | -3.60184 | -1.22384 | 2.65\% | 22.73\% | 20.07\% |
| 2.89 | 14 | 1 | 0 | -3.52186 | -1.14386 | 2.87\% | 24.16\% | 21.29\% |
| 2.74 | 19 | 0 | 0 | -3.47076 | -1.09276 | 3.02\% | 25.11\% | 22.09\% |
| 2.86 | 17 | 0 | 0 | -3.32164 | -0.94364 | 3.48\% | 28.02\% | 24.53\% |
| 2.83 | 19 | 0 | 0 | -3.21642 | -0.83842 | 3.86\% | 30.19\% | 26.33\% |
| 2.67 | 24 | 1 | 0 | -3.19358 | -0.81558 | 3.94\% | 30.67\% | 26.73\% |
| 2.87 | 21 | 0 | 0 | -2.91338 | -0.53538 | 5.15\% | 36.93\% | 31.78\% |
| 2.75 | 25 | 0 | 0 | -2.8725 | -0.4945 | 5.35\% | 37.88\% | 32.53\% |
| 2.89 | 22 | 0 | 0 | -2.76186 | -0.38386 | 5.94\% | 40.52\% | 34.58\% |
| 2.83 | 27 | 1 | 1 | -2.45642 | -0.07842 | 7.90\% | 48.04\% | 40.14\% |
| 3.1 | 21 | 1 | 0 | -2.2634 | 0.1146 | 9.42\% | 52.86\% | 43.44\% |
| 3.03 | 25 | 0 | 0 | -2.08122 | 0.29678 | 11.09\% | 57.37\% | 46.27\% |
| 3.12 | 23 | 1 | 0 | -2.01688 | 0.36112 | 11.74\% | 58.93\% | 47.19\% |
| 3.39 | 17 | 1 | 1 | -1.82386 | 0.55414 | 13.90\% | 63.51\% | 49.61\% |
| 3.16 | 25 | 1 | 1 | -1.71384 | 0.66416 | 15.27\% | 66.02\% | 50.75\% |
| 3.28 | 24 | 0 | 0 | -1.46972 | 0.90828 | 18.70\% | 71.26\% | 52.57\% |
| 3.32 | 23 | 0 | 0 | -1.45168 | 0.92632 | 18.97\% | 71.63\% | 52.66\% |
| 3.26 | 25 | 0 | 1 | -1.43124 | 0.94676 | 19.29\% | 72.05\% | 52.76\% |
| 3.57 | 23 | 0 | 0 | -0.74518 | 1.63282 | 32.19\% | 83.66\% | 51.47\% |
| 3.54 | 24 | 1 | 1 | -0.73496 | 1.64304 | 32.41\% | 83.79\% | 51.38\% |
| 3.65 | 21 | 1 | 1 | -0.7091 | 1.6689 | 32.98\% | 84.14\% | 51.16\% |
| 3.51 | 26 | 1 | 0 | -0.62974 | 1.74826 | 34.76\% | 85.17\% | 50.42\% |
| 3.53 | 26 | 0 | 0 | -0.57322 | 1.80478 | 36.05\% | 85.87\% | 49.82\% |
| 3.62 | 28 | 1 | 1 | -0.12888 | 2.24912 | 46.78\% | 90.46\% | 43.68\% |
| 4 | 21 | 0 | 1 | 0.28 | 2.658 | 56.95\% | 93.45\% | 36.50\% |
| 4 | 23 | 1 | 1 | 0.47 | 2.848 | 61.54\% | 94.52\% | 32.98\% |
| 3.92 | 29 | 0 | 1 | 0.81392 | 3.19192 | 69.29\% | 96.05\% | 26.76\% |

As you see, the gains from being in psi are initially small, then gradually get much bigger, and then start to drop again. Again, this is far different from OLS's across the board prediction of a 38\% gain from being in Psi.

Of course, the above table focuses on predicted success. The actual benefits of Psi are made clear in the following table, which lists only the 11 students who got A's.

| Gpa |  | Tuce |  | Psi | Grade |  | Logit if Not in Psi | Logit if in Psi | P if not in Psi |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3.26 | 25 | 0 | 1 | -1.43124 | 0.94676 | $19.29 \%$ | $72.05 \%$ | $52.76 \%$ |  |
| 4 | 21 | 0 | 1 | 0.28 | 2.658 | $56.95 \%$ | $93.45 \%$ | $36.50 \%$ |  |
| 3.92 | 29 | 0 | 1 | 0.81392 | 3.19192 | $69.29 \%$ | $96.05 \%$ | $26.76 \%$ |  |
| 2.39 | 19 | 1 | 1 | -4.45986 | -2.08186 | $1.14 \%$ | $11.09 \%$ | $9.94 \%$ |  |
| 2.83 | 27 | 1 | 1 | -2.45642 | -0.07842 | $7.90 \%$ | $48.04 \%$ | $40.14 \%$ |  |
| 3.39 | 17 | 1 | 1 | -1.82386 | 0.55414 | $13.90 \%$ | $63.51 \%$ | $49.61 \%$ |  |
| 3.16 | 25 | 1 | 1 | -1.71384 | 0.66416 | $15.27 \%$ | $66.02 \%$ | $50.75 \%$ |  |
| 3.54 | 24 | 1 | 1 | -0.73496 | 1.64304 | $32.41 \%$ | $83.79 \%$ | $51.38 \%$ |  |
| 3.65 | 21 | 1 | 1 | -0.7091 | 1.6689 | $32.98 \%$ | $84.14 \%$ | $51.16 \%$ |  |
| 3.62 | 28 | 1 | 1 | -0.12888 | 2.24912 | $46.78 \%$ | $90.46 \%$ | $43.68 \%$ |  |
| 4 | 23 | 1 | 1 | 0.47 | 2.848 | $61.54 \%$ | $94.52 \%$ | $32.98 \%$ |  |

Of the 14 students who were in Psi, 8 got A's, even though only 1 would have had better than a $50 \%$ chance at an A had they been in a conventional class. Conversely, only 3 of the 18 students in conventional classes got A's, and two of those had near-perfect GPAs coming into the class. Thus, it is reasonable to conclude that most of the students in Psi who got A's would not have done so had they been in a conventional class.

Assuming you don't want to present all the data, what sorts of values should you "plug in?" You might want to plug in the mean value for each continuous variable, to see how the "average" person does. Then, vary the value of one of the variables. For example, in this case you could plug in the means for GPA and TUCE, and then compute Pi when $\mathrm{PSI}=0$ and when $\mathrm{PSI}=1$. This would tell you how much better the "average" student would do in PSI. Better still, you might plug in values for a really dumb student (someone with low GPA and low TUCE), an average student, and a really smart student (with high GPA and high TUCE). This would indicate how much different types of students could be expected to benefit by PSI.

Another possible way of interpreting parameters is by looking at the relative effects of variables that are measured on the same scale. For example, suppose the model includes dummy variables for race and gender. If the effect of gender is larger than the effect of race, we could conclude that gender had the stronger effect. Or, suppose both years of education and years of job experience are DVs. You could look at the relative effects to see which was stronger. (Of course, you can also do these sorts of comparisons in a regular OLS regression.)

SUMmARY. The assumptions of the logistic regression model are far more plausible than the assumptions of OLS. Unfortunately, because relationships are nonlinear rather than linear, parameters in logistic regression are not as easily interpretable as parameters in OLS regression. Some things you can do are

- Look at the T value (or Wald statistic) to see whether the effect is statistically significant. (We'll discuss hypothesis testing more in a later handout)
- Look at the sign of the effect, to see whether increases in the variable increase or decrease the probability of success
- Look at $\exp \left(\beta_{\mathrm{k}}\right)$, to see how much a 1 unit increase in $X_{\mathrm{k}}$ changes the odds of success (keeping in mind that odds of success is not the same as probability of success)
- Plug in different values for the $X$ variables, and see how changes in the value of an $X$ variable affect the probability of success. Or, plug in different values for Pi , and see how changes in X change Pi. Values chosen should be reasonable ones.
- Look at the relative magnitudes of similarly measured variables, to determine which seem to have the greater impact

Coming up, we'll talk about significance tests, hypothesis testing, and diagnostics. We'll see that there are many parallels with OLS, although we do some things a little different.

$$
\begin{array}{ll}
\mathrm{e}=2.71828 & \text { e is an irrational number } \\
\mathrm{e}^{0}=1 & \text { indeed, anything to the } 0 \text { power }(\text { except } 0)=1 \\
\ln (\mathrm{e})=1 & \text { Ln }=\text { the natural } \log \\
\mathrm{e}^{\ln (a+b+c)}=\mathrm{a}+\mathrm{b}+\mathrm{c} & \text { e.g. } \mathrm{e}^{\ln (2+3+4)}=\mathrm{e}^{2.1972}=9 \\
\ln \left(\mathrm{X}^{a}\right)=\mathrm{a} \ln (\mathrm{X}) & \text { e.g. } \ln \left(7^{2}\right)=2 \ln (7)=3.8918 \\
\ln \left(e^{a}\right)=a \ln (e)=a & \text { e.g. } \ln \left(e^{2}\right)=\ln (7.389)=2 \\
\ln (a b)=\ln (a)+\ln (b) & \text { e.g } \ln (2 * 8)=\ln (2)+\ln (8)=2.7726 \\
\ln \left(X^{a} Y^{b}\right)=a^{*} \ln (X)+b^{*} \ln (Y) & \text { e.g. } \ln \left(2^{2} * 3^{2}\right)=2 * \ln (2)+2 * \ln (3)=3.5835 \\
e^{a+b+c}=e^{a} e^{b} e^{c} & \text { e.g. } e^{2+3+4}=e^{2} e^{3} e^{4}=8103.08
\end{array}
$$

Note also that

- $\mathrm{e}^{\mathrm{X}}$ is often written as $\exp (\mathrm{X})$ for convenience. $\operatorname{Exp}(\mathrm{X})$ is called the antilog of X .

You can only take logarithms of positive, nonzero numbers (above rules involving logarithms assume positive numbers). Since we'll be working with probabilities, this won't be a problem for us.

## Appendix: Constant Only Model

Here are the parameter estimates when only the constant is in the model:

```
. logit grade, nolog
Logistic regression }\quad\begin{array}{lll}{\mathrm{ Number of obs }}&{=}&{32}\\{\mathrm{ LR chi2(0) }}&{=}&{0.00}
--------------------------------------------------------------------------------------------
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline grade & Coef. & Std. Err & z & \(\mathrm{P}>|\mathrm{z}|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline _cons & 66272 & . 3721937 & -1.74 & 0.082 & -1.376113 & . 0828591 \\
\hline
\end{tabular}
```

Since only the constant is entered, the log odds for every case are -.647 . Hence, the predicted probability of success for every case is

$$
P_{i}=\frac{1}{1+\exp \left(-Z_{i}\right)}=\frac{1}{1+\exp (.647)}=\frac{1}{1+1.9098}=.3437
$$

margins whines when there are no independent variables, so to confirm we can do

```
. display 1 / (1 + exp(--.6466272))
.34374999
```

If you prefer, you can also work with the odds ratios directly:

```
. logit, or
\begin{tabular}{llll} 
Logistic regression & Number of obs & \(=\) & 32 \\
& LR chi2 \((0)\) & \(=\) & 0.00 \\
Log likelihood \(=-20.59173\) & Prob \(>\) chi2 & \(=\) & \\
& Pseudo R2 & \(=\) & 0.0000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{grade | Odds Ratio} & Std. Err. & z & P>|z| & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline _cons & . 5238095 & . 1949586 & -1.74 & 0.082 & . 2525582 & 1.086389 \\
\hline
\end{tabular}
```

```
. display .5238095/(1 + .5238095)
.34374999
```

In the sample, 11 of 32 cases, or $34.37 \%$, got A's. So, in a model with only the intercept, the intercept gives you the same information that a frequency distribution of the DV would give you (albeit in a rather convoluted way).

