Post-Estimation Commands for MLogit
Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/
Last revised March 6, 2021

These notes borrow heavily (sometimes verbatim) from Long \& Freese, 2014 Regression Models for Categorical Dependent Variables Using Stata, 3rd Edition.

Many/most of the Stata \& spost13 post-estimation commands work pretty much the same way for mlogit as they do for logit and/or ologit. We'll therefore concentrate primarily on the commands that are somewhat unique.

Making comparisons across categories. By default, mlogit sets the base category to the outcome with the most observations. You can change this with the basecategory option. mlogit reports coefficients for the effect of each independent variable on each category relative to the base category. Hence, you can easily see whether, say, yr89 significantly affects the likelihood of your being in the SD versus the SA category; but you can't easily tell whether yr89 significantly affects the likelihood of your being in, say, SD versus D, when neither is the base. You could just keep rerunning models with different base categories; but listcoef makes things easier by presenting estimates for all combinations of outcome categories.

Based on the above, we see that yr89 has little effect on strongly agreeing versus agreeing. In every other contrast though, the difference is significant.

It is possible to get overwhelmed with output, at least if you do this for all variables. The pvalue option can limit the output to differences which are significant. Also, the positive option only shows the positive differences (if you flip the comparison the coefficient will go negative.)

listcoef , help pvalue(.01) positive

Variable: 1.male (sd=0.499)

Variable: 1.white (sd=0.329)

		b	Z	$\mathrm{P}>\|\mathrm{z}\|$	$e^{\wedge} \mathrm{b}$	$e^{\wedge} \mathrm{b}$ StdX
SD	vS SA	0.8342	3.158	0.002	2.303	1.316
Variable: age (sd=16.779)						
		b	Z	$\mathrm{P}>\|\mathrm{z}\|$	$e^{\wedge} \mathrm{b}$	$e^{\wedge} \mathrm{bSt}$ dX
SD	vS A	0.0250	5.578	0.000	1.025	1.521
SD	vs SA	0.0317	6.070	0.000	1.032	1.701
D	vs A	0.0226	6.789	0.000	1.023	1.460
D	vs SA	0.0292	6.865	0.000	1.030	1.633

Variable: ed (sd=3.161)

		b	z	$\mathrm{P}>\|\mathrm{z}\|$	$e^{\wedge} \mathrm{b}$	$e^{\wedge} \mathrm{b}$ StdX
D	VS SD	0.0923	3.374	0.001	1.097	1.339
A	VS SD	0.1106	3.945	0.000	1.117	1.418
SA	vS SD	0.1436	4.251	0.000	1.154	1.574

Variable: prst (sd=14.492)
$\mathrm{b}=$ raw coefficient
$z=z$-score for test of $b=0$
$\mathrm{P}>|\mathrm{z}|=\mathrm{p}$-value for z -test $e^{\wedge} b=\exp (b)=$ factor change in odds for unit increase in X
$e^{\wedge} b S t d X=\exp (b * S D$ of $X)=$ change in odds for $S D$ increase in X
Using the .01 level of significance (which may be wise given the many comparisons that are being done) we see that white only clearly distinguished between those who strongly agree and those who strongly disagree. prst does not have any significant effects.

Using mlogtest for tests of the Multinomial Logistic Model.

The mlogtest command provides a convenient means for testing various hypotheses of interest. Incidentally, keep in mind that mlogit can also estimate a logistic regression model; ergo you might sometimes want to use mlogit instead of logit so you can take advantage of the mlogtest command.

Tests of independent variables. mlogtest can provide likelihood-ratio tests for each variable in the model. To do this yourself, you would have to estimate a series of models, store the results, and then use the lrtest command. mlogtest can automate this process.

```
. mlogtest, lr
LR tests for independent variables (N=2293)
    Ho: All coefficients associated with given variable(s) are 0
\begin{tabular}{|c|c|c|c|}
\hline 1. yr 89 & 58.853 & 3 & 0.000 \\
\hline \(1 . \mathrm{male}\) & 106.199 & 3 & 0.000 \\
\hline 1.white & 11.152 & 3 & 0.011 \\
\hline age & 83.119 & 3 & 0.000 \\
\hline ed & 21.087 & 3 & 0.000 \\
\hline prst & 8.412 & 3 & 0.038 \\
\hline
\end{tabular}
```

From the above, we can see that each variable's effects are significant at the .05 level.
If you happen to have a very large data set or a very complicated model, LR tests can take a long time. It may be sufficient to simply use Wald tests in such cases. Remember, a Wald test only requires the estimation of the constrained model. In Stata, we could just do this with a series of test commands. Again, mlogtest, using the wald parameter, can automate the process and also present results more succinctly:

```
. mlogtest, wald
Wald tests for independent variables (N=2293)
    Ho: All coefficients associated with given variable(s) are 0
\begin{tabular}{r|ccc} 
& chi2 & df & P>chi2 \\
1.yr89 & 53.812 & 3 & 0.000 \\
\(1 . m a l e\) & 97.773 & 3 & 0.000 \\
\(1 . w h i t e\) & 10.783 & 3 & 0.013 \\
age & 79.925 & 3 & 0.000 \\
ed & 20.903 & 3 & 0.000 \\
prst & 8.369 & 3 & 0.039
\end{tabular}
```

We see that both tests lead to very similar conclusions in this case. That is fairly common; it seems they are most likely to differ in borderline cases.

You can also use mlogtest to test sets of variables, e.g.

```
mlogtest, lr set(1.white prst \ 1.white ed \ 1.yr89 1.male )
LR tests for independent variables (N=2293)
    Ho: All coefficients associated with given variable(s) are 0
\begin{tabular}{|c|c|c|c|}
\hline & chi2 & df & P>chi2 \\
\hline 1.yr89 & 58.853 & 3 & 0.000 \\
\hline 1.male & 106.199 & 3 & 0.000 \\
\hline 1.white & 11.152 & 3 & 0.011 \\
\hline age & 83.119 & 3 & 0.000 \\
\hline ed & 21.087 & 3 & 0.000 \\
\hline prst & 8.412 & 3 & 0.038 \\
\hline set_1 & 19.282 & 6 & 0.004 \\
\hline set 2 & 30.334 & 6 & 0.000 \\
\hline set_3 & 167.621 & 6 & 0.000 \\
\hline
\end{tabular}
    set_1 contains: 1.white prst
    set 2 contains: 1.white ed
    set_3 contains: 1.yr89 1.male
```

Tests for combining dependent categories. If none of the IVs significantly affects the odds of outcome m versus outcome n, we say that m and n are indistinguishable with respect to the variables in the model. If two outcomes are indistinguishable with respect to the variables in the model, you can obtain more efficient estimates by combining them. I often use this command to see if I can combine categories, even if, say, I am using a command like ologit. Again, you can use both Stata or spost13 commands, and you can do LR or Wald tests.

```
. mlogtest, lrcomb
LR tests for combining alternatives (N=2293)
    Ho: All coefficients except intercepts associated with a given pair
        of alternatives are 0 (i.e., alternatives can be collapsed)
\begin{tabular}{|c|c|c|c|}
\hline & chi2 & df & P>chi2 \\
\hline \(S D\) \& D & 43.864 & 6 & 0.000 \\
\hline \(S D\) \& A & 153.130 & 6 & 0.000 \\
\hline SD \& SA & 215.033 & 6 & 0.000 \\
\hline \(D\) \& A & 98.857 & 6 & 0.000 \\
\hline D \& SA & 191.730 & 6 & 0.000 \\
\hline \(A \& S A\) & 54.469 & 6 & 0.000 \\
\hline
\end{tabular}
```

Based on the above, we see that no categories should be combined. Doing the same thing with Wald tests,

```
mlogtest, combine
Wald tests for combining alternatives (N=2293)
    Ho: All coefficients except intercepts associated with a given pair
    of alternatives are 0 (i.e., alternatives can be combined)
\begin{tabular}{r|r|ccc} 
& chi2 & df & P>chi2 \\
SD \& D & 41.018 & 6 & 0.000 \\
SD \& A & 135.960 & 6 & 0.000 \\
SD \& SA & 183.910 & 6 & 0.000 \\
D \& A & 93.183 & 6 & 0.000 \\
D \& SA & 167.439 & 6 & 0.000 \\
A \& SA & 51.441 & 6 & 0.000
\end{tabular}
```

Independence of Irrelevant Alternatives (IIA) Tests. The Stata 12 Reference Manual (P. 710) explains the IIA assumption this way:

Abstract

A stringent assumption of multinomial and conditional logit models is that outcome categories for the model have the property of independence of irrelevant alternatives (IIA). Stated simply, this assumption requires that the inclusion or exclusion of categories does not affect the relative risks associated with the regressors in the remaining categories. One classic example of a situation in which this assumption would be violated involves the choice of transportation mode; see McFadden (1974). For simplicity, postulate a transportation model with the four possible outcomes: rides a train to work, takes a bus to work, drives the Ford to work, and drives the Chevrolet to work. Clearly, "drives the Ford" is a closer substitute to "drives the Chevrolet" than it is to "rides a train" (at least for most people). This means that excluding "drives the Ford" from the model could be expected to affect the relative risks of the remaining options and that the model would not obey the IIA assumption.

The $3^{\text {rd }}$ edition of Long \& Freese (section 8.4, pp. 407-411) explains the assumption further, and also explains ways of testing it. Long \& Freese include tests for IIA in their programs but do NOT encourage their use. They note that these tests often provide conflicting results (e.g. some tests reject the null while others do not) and that various simulation studies have shown that these tests are not useful for assessing violations of the IIA assumption. They further argue that the multinomial logit model works best when the alternatives are dissimilar and not just substitutes for one another (e.g. if your choices were take your car to work, take a blue bus, or take a red bus, the two bus alternatives would be very similar and the IIA assumption would likely be violated, whether the tests showed it or not).

Paul Allison has also raised concerns about the IIA tests; see his blog entry at http://www.statisticalhorizons.com/iia.

But, if some reviewer says you need to test the IIA assumption, here is how you can do it with mlogtest.

```
    mlogtest, iia
Hausman tests of IIA assumption (N=2293)
    Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives
\begin{tabular}{|c|c|c|c|}
\hline & chi2 & df & P>chi2 \\
\hline SD & -0.177 & 14 & \\
\hline D & -10.884 & 14 & \\
\hline A & -3.009 & 13 & \\
\hline SA & -1.606 & 14 & \\
\hline
\end{tabular}
    Note: A significant test is evidence against Ho.
    Note: If chi2<0, the estimated model does not meet asymptotic assumptions.
suest-based Hausman tests of IIA assumption (N=2293)
    Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives
\begin{tabular}{r|cccc} 
& \(\mid\) & chi2 & df & P>chi2 \\
SD & 18.651 & 14 & 0.179 \\
D | & 20.289 & 14 & 0.121 \\
A | & 23.480 & 14 & 0.053 \\
SA & 11.381 & 14 & 0.656
\end{tabular}
Note: A significant test is evidence against Ho.
Small-Hsiao tests of IIA assumption (N=2293)
    Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives
        | lnL(full) lnL(omit) chi2 df P>chi2
-----------------+---------------------------------------------------------
\begin{tabular}{llllll} 
SD | & -1025.061 & -1018.448 & 13.226 & 14 & 0.509
\end{tabular}
\begin{tabular}{l|lllll} 
D | & -718.007 & -711.796 & 12.422 & 14 & 0.572
\end{tabular}
\begin{tabular}{l|lllll} 
A & -678.789 & -673.072 & 11.433 & 14 & 0.652
\end{tabular}
    SA | -936.474 -928.840 15.268 14 0.360
    Note: A significant test is evidence against Ho.
```

In this example the tests say IIA has not been violated. Long \& Freese give examples of where different tests reach different conclusions with the same set of data.

Measures of Fit. The fitstat command can be used the same as before, e.g.

```
. quietly mlogit warm i.yr89 i.male i.white age ed prst, b(4) nolog
. quietly fitstat, save
. * Now drop prst, white & ed, the three least significant vars
. quietly mlogit warm i.yr89 i.male age , b(4) nolog
. fitstat, dif
\begin{tabular}{|c|c|c|c|}
\hline & Current & Saved & Difference \\
\hline Log-likelihood & & & \\
\hline Model & -2848.592 & -2820.998 & -27.594 \\
\hline Intercept-only & -2995.770 & -2995.770 & 0.000 \\
\hline \multicolumn{4}{|l|}{Chi-square} \\
\hline D (df=2281/2272/9) & 5697.184 & 5641.996 & 55.188 \\
\hline LR (df=9/18/-9) & 294.357 & 349.544 & -55.188 \\
\hline p-value & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{4}{|l|}{R2} \\
\hline McFadden & 0.049 & 0.058 & -0.009 \\
\hline McFadden (adjusted) & 0.045 & 0.051 & -0.006 \\
\hline Cox-Snell/ML & 0.120 & 0.141 & -0.021 \\
\hline Cragg-Uhler/Nagelkerke & 0.130 & 0.153 & -0.023 \\
\hline Count & 0.412 & 0.424 & -0.013 \\
\hline Count (adjusted) & 0.061 & 0.081 & -0.020 \\
\hline \multicolumn{4}{|l|}{IC} \\
\hline AIC & 5721.184 & 5683.996 & 37.188 \\
\hline AIC divided by N & 2.495 & 2.479 & 0.016 \\
\hline BIC (df=12/21/-9) & 5790.035 & 5804.486 & -14.451 \\
\hline
\end{tabular}
Note: Likelihood-ratio test assumes current model nested in saved model.
Difference of 14.451 in BIC provides very strong support for current model.
```

Incidentally, note that the chi-square and AIC tests favor the full model; however, the BIC test prefers the model that drops the least significant variables, prst, white \& ed. As we have seen before, the BIC test tends to lead to more parsimonious models, especially when the sample size is large.

Outliers. The leastlikely command can be used to identify the cases where the observed value was farthest from the predicted value. You might want to check such cases for coding errors or think if there are ways to modify the model so these cases are not so discrepant.

```
. quietly mlogit warm i.yr89 i.male i.white age ed prst, b(4) nolog
. leastlikely warm yr89 male white age ed prst
```

Outcome: 1 (SD)

	Prob	warm	yr89	male	white	age	ed	prst
112.	. 0389264	SD	1989	Women	White	46	16	57
167.	. 0355258	SD	1989	Women	White	37	15	61
212.	. 0423206	SD	1989	Women	White	50	16	62
271.	. 0352297	SD	1989	Women	White	20	12	31
286.	. 0407416	SD	1989	Women	NotWhite	54	12	34

	Prob	warm	yr89	male	white	age	ed	prst
414.	. 1286143	D	1989	Women	White	19	12	50
563.	. 1175782	D	1989	Women	NotWhite	41	18	69
675.	. 1322747	D	1989	Women	White	25	16	50
803.	. 107113	D	1989	Women	NotWhite	30	16	60
1001.	. 1288399	D	1989	Women	White	32	18	62

Outcome: 3 (A)

	Prob	warm	yr89	male	white	age	ed	prst
1305.	. 1621244	A	1977	Men	White	79	8	41
1344.	. 1575535	A	1977	Men	White	72	7	22
1404.	. 1625481	A	1977	Men	White	74	8	26
1449.	. 1398363	A	1977	Men	White	71	4	23
1729.	. 1303623	A	1977	Men	White	81	5	36

Outcome: 4 (SA)

	Prob	warm	yr89	male	white	age	ed	prst
1963.	. 0313339	SA	1977	Men	White	64	6	26
2093.	. 0372785	SA	1977	Men	White	48	4	17
2107.	. 034017	SA	1977	Men	White	69	8	33
2119.	. 0345335	SA	1977	Men	White	58	4	41
2138.	. 0316978	SA	1977	Men	White	57	3	37

Aids to Interpretation. These are much the same as we talked about before. Standardized coefficients, however, are a noteworthy exception:

```
. listcoef, std
option std not allowed after mlogit
```

This is because the y^{*} rationale does not hold in a multinomial logit model, i.e. there is no underlying latent variable. (As we saw earlier, however, the listcoef command will still do X-standardization.)

Other commands, however, behave identically or almost identically to what we have seen before. For example, we can use the predict command to come up with predicted probabilities:

```
. quietly mlogit warm i.yr89 i.male i.white age ed prst, b(4) nolog
. predict SDlogit Dlogit Alogit SAlogit
(option pr assumed; predicted probabilities)
```

	warm	yr89	male	white	age	ed	prst	SDlogit	Dlogit	Alogit	SAlogit
1.	SD	1977	Women	White	33	10	31	.14696	.2569168	.375222	.2209013
2.	SD	1977	Men	White	74	16	50	.1931719	.4962518	.2510405	.0595358
3.	SD	1989	Men	White	36	12	41	.074012	.3257731	.4686748	
4.	SD	1977	Women	White	73	9	36	.277139	.383207	.2358743	.1037797
5.	SD	1977	Women	White	59	11	62	.2066857	.2824558	.3317693	.1790893
6.	SD	1989	Men	White	33	4	17	.1461631	.383301	.3885765	.0819594
7.	SD	1977	Women	White	43	7	40	.2276894	.2719278	.3321202	.1682626
8.	SD	1977	Women	White	48	12	48	.1571982	.2740046	.358632	.2101651
9.	SD	1977	Men	White	27	17	69	.0970773	.259278	.477971	.1656736
10.	SD	1977	Men	White	46	12	50	.1997817	.3800453	.3360028	.0841702

The extremes (use findit extremes) command helps you to see who is most likely and least likely to be predicted to strongly disagree:
extremes SDlogit warm yr89 male white age ed prst

obs:	SDlogit	warm	yr89	male	white	age	ed	prst
1214.	. 0078837	A	1989	Women	NotWhite	27	20	68
2048.	. 011555	SA	1989	Women	NotWhite	26	17	52
2241.	. 0127511	SA	1989	Women	NotWhite	21	15	61
1855.	. 0131329	A	1989	Women	NotWhite	25	16	36
803.	. 0142298	D	1989	Women	NotWhite	30	16	60

612.	. 4276913	D	1977	Men	White	80	5	45
171.	. 4289597	SD	1977	Men	White	67	3	32
282.	. 4378463	SD	1977	Men	White	68	3	37
87.	. 4426529	SD	1977	Men	White	83	5	51
863.	. 479314	D	1977	Men	White	54	0	40

Based on the results, we see that fairly young white women in 1989 with high levels of education and occupational prestige were predicted to be the least likely to strongly disagree. Conversely, nonwhite elderly males in 1977 with low levels of education and generally low levels of occupational prestige had almost a 50% predicted probability of strongly disagreeing.

Other comments. See Long and Freese for detailed explanations of how different commands are working, e.g. they often show you how the same things could be done in Stata without their commands (albeit in a much more tedious process). They also offer detailed advice on graphing results.

