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Logistic Regression, Part II: 
The Logistic Regression Model (LRM) – Interpreting Parameters 

Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ 
Last revised January 26, 2022 

 
This handout steals heavily from Linear probability, logit, and probit models, by John Aldrich and Forrest Nelson, 
paper # 45 in the Sage series on Quantitative Applications in the Social Sciences. 

PROBABILITIES, ODDS AND LOG ODDS. The linear probability model (LPM) is 

P(Yi = 1) = Pi = α + ΣβXik 

Among other things, a problem with this model is that the left hand side can only range from 0 to 
1, but the right hand side can vary from negative infinity to positive infinity. One way of 
approaching this problem is to transform Pi to eliminate the 0 to 1 constraint. We can eliminate 
the upper bound (Pi = 1) by looking at the ratio Pi/(1 - Pi). Pi/(1 - Pi) is referred to as the odds of 
an event occurring. That is, 
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For example, if Pi = .90, the odds are 9 to 1 (or 9) that the event will happen. If Pi = .30, the odds 
are 3 to 7 (or .429 to 1, or simply .429) against the event occurring. If Pi = .50, the odds are 1 to 
1 (even). The following table helps to illustrate how odds and probabilities are related to each 
other. It starts with odds of 10,000 to 1 against. Then, the odds are multiplied by 10 each row, 
until the odds become 10,000 to 1 in favor. 

Odds Probability 

Change in 

Probability 

0.0001 0.0100%  

0.001 0.0999% 0.0899% 

0.01 0.9901% 0.8902% 

0.1 9.0909% 8.1008% 

1 50.0000% 40.9091% 

10 90.9091% 40.9091% 

100 99.0099% 8.1008% 

1000 99.9001% 0.8902% 

10000 99.9900% 0.0899% 

 

Note the nonlinear relationship between odds and probability. At the low end, you’d prefer to 
have 100 to 1 odds against you rather than 10,000 to 1 odds against; but either way, you’ve still 
got less than a 1% chance of success. Conversely, it is better to have 10,000 to 1 odds in your 
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favor rather than 100 to 1, but either way you’ve got better than a 99% chance of success. Hence, 
at the extremes, changes in the odds have little effect on the probability of success. 

In the middle ranges, however, it is a very different story. As you go from 10 to 1 odds against to 
even odds of 1 to 1, the probability of success jumps from 9.9% to 50%, almost a 41% increase. 
And, as you go from even odds to 10 to 1 odds in your favor, the probability of success jumps 
from 50% to almost 91%. 

The odds must be zero or positive, but there is no upper bound; as Pi approaches 1, Pi/(1 - Pi) 
goes toward infinity. But, there is still a lower bound of 0. We can eliminate the lower bound of 
0 by taking the natural logarithm, ln[Pi/(1 - Pi)] the result of which can be any real number from 
negative to positive infinity. ln[Pi/(1 - Pi)] is referred to as the log odds of the event occurring. 
That is, the log odds are 
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To show how the log odds, odds, and probability are related, we add the log odds to the previous 
table: 

Log odds Odds Probability 

Change in 

Probability 

-9.2103 0.0001 0.0100%  

-6.9078 0.001 0.0999% 0.0899% 

-4.6052 0.01 0.9901% 0.8902% 

-2.3026 0.1 9.0909% 8.1008% 

0.0000 1 50.0000% 40.9091% 

2.3026 10 90.9091% 40.9091% 

4.6052 100 99.0099% 8.1008% 

6.9078 1000 99.9001% 0.8902% 

9.2103 10000 99.9900% 0.0899% 

 

Note that each 10-fold increase in the odds results in the log odds going up by 2.3026. This is 
because e2.3026 = 10. That is, what was a multiplicative relationship with the odds is now an 
additive relationship in the log odds. Similar to before, we see that, at the extremes, changes in 
the log odds of success have very little effect on the probability of success; but as you get away 
from the extremes, changes in log odds are associated with big changes in the probability of 
success. 

This next table also shows the relationships. We start with very low log odds, and increase them 
by 1 with each row: 
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Log odds Odds Probability 

Change in 

Probability 

-9.0000 0.0001234 0.0123%  

-8.0000 0.0003355 0.0335% 0.0212% 

-7.0000 0.0009119 0.0911% 0.0576% 

-6.0000 0.0024788 0.2473% 0.1562% 

-5.0000 0.0067379 0.6693% 0.4220% 

-4.0000 0.0183156 1.7986% 1.1293% 

-3.0000 0.0497871 4.7426% 2.9440% 

-2.0000 0.1353353 11.9203% 7.1777% 

-1.0000 0.3678794 26.8941% 14.9738% 

0.0000 1.0000000 50.0000% 23.1059% 

1.0000 2.7182818 73.1059% 23.1059% 

2.0000 7.3890561 88.0797% 14.9738% 

3.0000 20.0855369 95.2574% 7.1777% 

4.0000 54.5981500 98.2014% 2.9440% 

5.0000 148.4131591 99.3307% 1.1293% 

6.0000 403.4287935 99.7527% 0.4220% 

7.0000 1096.6331584 99.9089% 0.1562% 

8.0000 2980.9579870 99.9665% 0.0576% 

9.0000 8103.0839276 99.9877% 0.0212% 

 

Note that the odds get multiplied by 2.7182818 with each row. This is the value of e. At the 
extremes, each 1 unit increase in the log odds has little effect on the probability of success, but in 
the middle ranges each 1 unit increase has fairly large effects. 

Note also that:  

• if the probability of success is less than 50%, the log odds are negative and the odds are less 
than 1;  

• if the probability of success = 50%, the log odds are 0 and the odds = 1;  

• if the probability of success is greater than 50%, the log odds are positive and the odds are 
greater than 1.  

 

The following graph further helps to show how probabilities are related to the corresponding log 
odds: 
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Note that 

• Although probabilities can range from 0 to 1, log odds can range from -∞ to +∞. 

• Log odds follow an S-shaped curve. At the extremes, changes in the log odds produce 
very little change in the probabilities. In the middle of the S curve, changes in the log 
odds produce much larger changes in the probabilities. 

• To put it another way, linear, additive increases in the log odds produce nonlinear 
changes in the probabilities. 

• The relationship makes intuitive sense.  

o If things are very bad, they can’t get that much worse, i.e. whether the odds are 
1,000 to 1 against you or only 100 to 1, you still probably won’t win, e.g. neither 
the F nor the D student will likely get an A.  

o Likewise, if things are very good, they can’t get that much better. Regardless of 
whether the odds are 1,000 to 1 in your favor or only 100 to 1, you probably 
won’t fail, e.g., the high A student and the very high A student both have great 
shots at an A.  

o It is in the middle ranges that changes are likely to make the most difference, e.g. 
both a B and a C student may have a shot at an A, but the B student’s probability 
of success may be much higher. 

• In short, in a regression analysis, log odds have many advantages over probabilities.  

o They have no upper or lower bounds.  

o Linear, additive increases in the log odds produce theoretically plausible 
nonlinear increases in probability.  
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o Hence, a method which predicts log odds has a great deal of appeal. 

THE LOGISTIC REGRESSION MODEL (LRM). The logistic regression model (LRM) (also known 
as the logit model) can then be written as 
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The above is referred to as the log odds and also as the logit. Zi is used as a convenient shorthand 
for α + ΣβkXik.  

As Aldrich and Nelson and others note, there are several alternatives to the LRM which might be 
just as plausible or more plausible in a particular case. However,  

• the LRM is comparatively easy from a computational standpoint 

• there are many programs available which can estimate logistic regression models 

• The LRM tends to work fairly well in practice 

Note that, if we know either the odds or the log odds, it is easy to figure out the corresponding 
probability: 
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So, for example (Confirm these calculations on your own) 

if Odds = 1, P = .5; Odds = 3, P = .75; Odds = .5, P = .333.  

If Z = 0, P = .5; Z = 1, P = .731; Z = -3, P = .0474.  

 

ESTIMATION OF THE LRM. In linear regression we estimate the parameters of the model using 
the method of least squares. That is, we select regression coefficients that result in the smallest 
sums of squared distances between the observed and predicted values of the dependent variable. 

In logistic regression, the parameters of the model are estimated using the method of maximum 
likelihood. That is, the coefficients that make our observed results most “likely” are selected. 
Since the logistic regression model is nonlinear, an iterative algorithm is necessary for parameter 
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estimation. Because the data must be read multiple times, iterative procedures tend to be more 
time consuming. 

The estimation procedure is too difficult to explain here; but fortunately, several programs, 
including R, SPSS, & Stata, include logistic regression routines. 

LOGISTIC REGRESSION EXAMPLE. It will be easier to understand the LRM if we have an 
example in front of us. Here is how our earlier PSI example could be estimated using the Stata 
logit command. 

. use https://www3.nd.edu/~rwilliam/statafiles/logist.dta, clear 

. logit grade gpa tuce i.psi, nolog 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(3)      =      15.40 
                                                  Prob > chi2     =     0.0015 
Log likelihood = -12.889633                       Pseudo R2       =     0.3740 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   2.826113   1.262941     2.24   0.025     .3507938    5.301432 
        tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988 
       1.psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195 
       _cons |  -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613 
------------------------------------------------------------------------------ 
 
. * Replay the results, this time getting the exponentiated coefficients 
. logit, or 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(3)      =      15.40 
                                                  Prob > chi2     =     0.0015 
Log likelihood = -12.889633                       Pseudo R2       =     0.3740 
 
------------------------------------------------------------------------------ 
       grade | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   16.87972   21.31809     2.24   0.025     1.420194    200.6239 
        tuce |   1.099832   .1556859     0.67   0.501     .8333651    1.451502 
       1.psi |   10.79073   11.48743     2.23   0.025     1.339344    86.93802 
       _cons |   2.21e-06   .0000109    -2.64   0.008     1.40e-10      .03487 
------------------------------------------------------------------------------ 
 

INTERPRETATION OF PARAMETERS. Because the effect of the X’s is nonlinear, interpretation of 
parameters is more difficult than in OLS regression. Recall the LRM can be written as 
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Recall that the left hand side stands for the log odds. Hence, a 1 unit increase in X1 will result in 
a β1 increase in the log odds. In the current example, if you had 2 people with identical GPA and 
TUCE scores, the log odds for the one who was in PSI would be 2.378 greater than the log odds 
for the person who wasn’t. 
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Alas, most of us are not used to thinking in terms of log odds. Ergo, we may do slightly better if 
we express the model in terms of odds: 
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Hence, if X1 increases by 1, the odds will increase by exp(β1). So, for 2 otherwise identical 
students, the odds for the one in PSI would be exp(2.3783) = 10.79 times greater. This is shown 
in the Odds Ratio column of the printout. 

Note that this does not mean that the one in PSI is 10.79 times more likely to get an A. This is 
best illustrated by plugging in some hypothetical numbers. Suppose, based on their GPA and 
TUCE scores, 5 students in a conventional class had a 1%, 10%, 50%, 90% and 99% chance of 
getting an A. The following table shows what their odds would be in the conventional class, what 
their odds would be in a PSI class, and their probability of getting an A in a PSI class: 

Pi 

(Conventional) 

Odds (Conv) = 

Pi/(1 - Pi) 

Odds (PSI) = 

Odds (Conv) * 

10.79 

Pi (PSI) = 

Odds/(1 + Odds) 

Change in 

Probability 

1.00% 0.0101 0.109 9.83% 8.83% 

10.00% 0.1111 1.199 54.51% 44.51% 

50.00% 1.0000 10.787 91.52% 41.52% 

90.00% 9.0000 97.079 98.98% 8.98% 

99.00% 99.0000 1067.868 99.91% 0.91% 

 

Note, for example, that a person with a 10% chance of an A in a regular class sees a huge 
increase in their chances of an A by getting into PSI. A person who already had a good chance of 
an A sees the same increase in their odds of getting an A, but a much smaller percentage 
increase. 

By way of contrast, recall that these were the model parameters using OLS: 

 

According to the OLS estimates, the person with a 1% chance in a conventional class would 
have a 39% chance in PSI, which is much greater than the 9.83% chance predicted in the logistic 

Coefficientsa

-1.498 .524 -2.859 .008
.464 .162 .449 2.864 .008
.379 .139 .395 2.720 .011
.010 .019 .085 .539 .594

(Constant)
GPA
PSI
TUCE

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GRADEa. 
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regression model. OLS overestimates the benefits of PSI for those with initially low and high 
probabilities of success, and underestimates the benefits of PSI for those in the middle. 

In the above, we used hypothetical values for the Pi. An alternative, and perhaps more common, 
approach is to “plug in” reasonable values for the X’s, and then see what effect changing one of 
the X’s would have. For example: 

Consider again the case of a student who has a GPA of 3.0, is taught by traditional methods, and 
has a score of 20 on TUCE. According to this model, 

ln ( )
( )
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NOTE: We can confirm this and subsequent calculations in Stata by using the margins 
command. The predict(xb) option gives the predicted log odds while the predict(pr) 
option (which is the default for logit and hence can be omitted) gives the predicted probability. 

. use https://www3.nd.edu/~rwilliam/statafiles/logist.dta, clear 

. quietly logit grade gpa tuce i.psi 

. margins, at(gpa = 3 psi = 0 tuce = 20) predict(xb) 
 
Adjusted predictions                              Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Linear prediction (log odds), predict(xb) 
at           : gpa             =           3 
               tuce            =          20 
               psi             =           0 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |  -2.639856   .9831621    -2.69   0.007    -4.566818   -.7128936 
------------------------------------------------------------------------------ 

So, the log odds for this person is -2.6399, and the odds are exp(-2.6399) = .0714, i.e. about 1 to 
14. Let’s convert this into the corresponding probability: 

P
Zi
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15 012
0666

exp( ) exp( . ) .
.  

. margins, at(gpa = 3 psi = 0 tuce = 20) 
 
Adjusted predictions                              Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Pr(grade), predict() 
at           : gpa             =           3 
               tuce            =          20 
               psi             =           0 
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------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |    .066617   .0611322     1.09   0.276    -.0531999    .1864339 
------------------------------------------------------------------------------ 
 

So, according to the model, this person has less than a 7% chance of getting an A. Suppose, 
however, that this same person got placed in the PSI class. You would then get a logit of 
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. margins, at(gpa = 3 psi = 1 tuce = 20) predict(xb) 
 
Adjusted predictions                              Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Linear prediction (log odds), predict(xb) 
at           : gpa             =           3 
               tuce            =          20 
               psi             =           1 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |  -.2611683   .7374162    -0.35   0.723    -1.706477    1.184141 
------------------------------------------------------------------------------ 
 

So, the log odds are -.2616, and the odds are exp(-.2616) = .7698, i.e. about 1 to 1.3. Again, note 
that the odds increased by exp(2.3783) = 10.79 times. The probability of getting an A would be 

P
Zi

i

=
+ −
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= =
1

1
1

1 2616
1

2 299
43497

exp( ) exp(. ) .
.  

. margins, at(gpa = 3 psi = 1 tuce = 20) 
 
Adjusted predictions                              Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Pr(grade), predict() 
at           : gpa             =           3 
               tuce            =          20 
               psi             =           1 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   .4350765   .1812458     2.40   0.016     .0798413    .7903118 
------------------------------------------------------------------------------ 
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Hence, getting into the PSI class would substantially increase the chances of getting an A — the 
person would have about a 37% better chance. (Which, incidentally, is about the same increase 
OLS regression predicted – but note that this person has about “average” GPAand TUCE scores. 
The means for GPA is 3.12, the mean for TUCE is 21.94) 

Suppose, instead, that a student with a 4.0 average and a TUCE of 25 was in a traditional class. 
(You can confirm the calculations on your own if you want.) The log odds are .6612, and the 
odds are exp(.6612) = 1.937, i.e. the person is almost twice as likely to get an A as to not get an 
A. Pi is 

. margins, at(gpa = 4 psi = 0 tuce = 25) 
 
Adjusted predictions                              Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Pr(grade), predict() 
at           : gpa             =           4 
               tuce            =          25 
               psi             =           0 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   .6597197   .2329773     2.83   0.005     .2030926    1.116347 
------------------------------------------------------------------------------ 
 

So, in a regular classroom, that student has about a 66% chance of an A. Put them in PSI, and the 
log odds are 3.0395, odds are 20.89 (again an increase of 10.79 times), and Pi is 

. margins, at(gpa = 4 psi = 1 tuce = 25) 
 
Adjusted predictions                              Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Pr(grade), predict() 
at           : gpa             =           4 
               tuce            =          25 
               psi             =           1 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   .9543808   .0560709    17.02   0.000     .8444837    1.064278 
------------------------------------------------------------------------------ 
 

So, this person sees about a 29% improvement. Note that it would be impossible for this person 
to improve by 37%, like the first person did, because his or her probability of getting an A would 
then be greater than 1. 
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[OPTIONAL: USING THE MARGINS COMMAND EFFECTIVELY] Incidentally, the margins and 
marginsplot commands provide a nice way of generating several interesting comparisons at 
once. For example, the following shows the predicted scores for people who have average scores 
on TUCE and identical GPAs but who differ on their PSI status. 

. quietly logit grade gpa tuce i.psi, nolog 

. quietly margins psi, at(gpa = (2(.1)4) ) atmeans 

. marginsplot, noci scheme(sj) 
 
  Variables that uniquely identify margins: gpa psi 
 

 
 

If we just want to see the predicted differences between those in psi and those not in psi, 
 
. quietly margins, dydx(psi) at(gpa = (2(.1)4) ) atmeans 
. marginsplot, noci scheme(sj) 
 
  Variables that uniquely identify margins: gpa 
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With all the graphics, we see that the predicted differences in the probability  of getting an A 
between those in psi and those not in psi is very small at low gpas, less than 10%. As GPA rises 
the gap gets much larger (more than 50%), up until around gpa = 3.4, and then the gap gets 
smaller as gpa continues to get bigger. In the last graph, when the confidence interval includes 0, 
the difference between those in psi and not in psi is not statistically significant, suggest that those 
with low B to low A GPAs are most likely to see a boost from being in psi. 

 

Here are the actual data. In the last 3 columns, we compute what the probability of an A would 
have been in the student were not in PSI, then what the probability would be if the student were 
in Psi, and the gain in probability produced by being in psi. The data are sorted from lowest 
probability of success if not in Psi to the highest probability of success if not in Psi. 

Gpa Tuce Psi Grade Logit if Not in Psi Logit if in Psi P if not in Psi P if in PSI Psi Gain 
2.06 22 1 0 -5.10744 -2.72944 0.60% 6.13% 5.52% 
2.39 19 1 1 -4.45986 -2.08186 1.14% 11.09% 9.94% 
2.63 20 0 0 -3.68662 -1.30862 2.44% 21.27% 18.83% 
2.92 12 0 0 -3.62708 -1.24908 2.59% 22.29% 19.70% 
2.76 17 0 0 -3.60424 -1.22624 2.65% 22.68% 20.04% 
2.66 20 0 0 -3.60184 -1.22384 2.65% 22.73% 20.07% 
2.89 14 1 0 -3.52186 -1.14386 2.87% 24.16% 21.29% 
2.74 19 0 0 -3.47076 -1.09276 3.02% 25.11% 22.09% 
2.86 17 0 0 -3.32164 -0.94364 3.48% 28.02% 24.53% 
2.83 19 0 0 -3.21642 -0.83842 3.86% 30.19% 26.33% 
2.67 24 1 0 -3.19358 -0.81558 3.94% 30.67% 26.73% 
2.87 21 0 0 -2.91338 -0.53538 5.15% 36.93% 31.78% 
2.75 25 0 0 -2.8725 -0.4945 5.35% 37.88% 32.53% 
2.89 22 0 0 -2.76186 -0.38386 5.94% 40.52% 34.58% 
2.83 27 1 1 -2.45642 -0.07842 7.90% 48.04% 40.14% 

3.1 21 1 0 -2.2634 0.1146 9.42% 52.86% 43.44% 
3.03 25 0 0 -2.08122 0.29678 11.09% 57.37% 46.27% 
3.12 23 1 0 -2.01688 0.36112 11.74% 58.93% 47.19% 
3.39 17 1 1 -1.82386 0.55414 13.90% 63.51% 49.61% 
3.16 25 1 1 -1.71384 0.66416 15.27% 66.02% 50.75% 
3.28 24 0 0 -1.46972 0.90828 18.70% 71.26% 52.57% 
3.32 23 0 0 -1.45168 0.92632 18.97% 71.63% 52.66% 
3.26 25 0 1 -1.43124 0.94676 19.29% 72.05% 52.76% 
3.57 23 0 0 -0.74518 1.63282 32.19% 83.66% 51.47% 
3.54 24 1 1 -0.73496 1.64304 32.41% 83.79% 51.38% 
3.65 21 1 1 -0.7091 1.6689 32.98% 84.14% 51.16% 
3.51 26 1 0 -0.62974 1.74826 34.76% 85.17% 50.42% 
3.53 26 0 0 -0.57322 1.80478 36.05% 85.87% 49.82% 
3.62 28 1 1 -0.12888 2.24912 46.78% 90.46% 43.68% 

4 21 0 1 0.28 2.658 56.95% 93.45% 36.50% 
4 23 1 1 0.47 2.848 61.54% 94.52% 32.98% 

3.92 29 0 1 0.81392 3.19192 69.29% 96.05% 26.76% 
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As you see, the gains from being in psi are initially small, then gradually get much bigger, and 
then start to drop again. Again, this is far different from OLS’s across the board prediction of a 
38% gain from being in Psi. 

Of course, the above table focuses on predicted success. The actual benefits of Psi are made clear 
in the following table, which lists only the 11 students who got A’s. 

Gpa Tuce Psi Grade Logit if Not in Psi Logit if in Psi P if not in Psi P if in PSI Psi Gain 
3.26 25 0 1 -1.43124 0.94676 19.29% 72.05% 52.76% 

4 21 0 1 0.28 2.658 56.95% 93.45% 36.50% 
3.92 29 0 1 0.81392 3.19192 69.29% 96.05% 26.76% 
2.39 19 1 1 -4.45986 -2.08186 1.14% 11.09% 9.94% 
2.83 27 1 1 -2.45642 -0.07842 7.90% 48.04% 40.14% 
3.39 17 1 1 -1.82386 0.55414 13.90% 63.51% 49.61% 
3.16 25 1 1 -1.71384 0.66416 15.27% 66.02% 50.75% 
3.54 24 1 1 -0.73496 1.64304 32.41% 83.79% 51.38% 
3.65 21 1 1 -0.7091 1.6689 32.98% 84.14% 51.16% 
3.62 28 1 1 -0.12888 2.24912 46.78% 90.46% 43.68% 

4 23 1 1 0.47 2.848 61.54% 94.52% 32.98% 
 

Of the 14 students who were in Psi, 8 got A’s, even though only 1 would have had better than a 
50% chance at an A had they been in a conventional class. Conversely, only 3 of the 18 students 
in conventional classes got A’s, and two of those had near-perfect GPAs coming into the class. 
Thus, it is reasonable to conclude that most of the students in Psi who got A’s would not have 
done so had they been in a conventional class. 

Assuming you don’t want to present all the data, what sorts of values should you “plug in?”  

• You might want to plug in the mean value for each continuous variable, to see how the 
“average” person does. Then, vary the value of one of the variables. For example, in this 
case you could plug in the means for GPA and TUCE, and then compute Pi when PSI = 0 
and when PSI = 1. This would tell you how much better the “average” student would do 
in PSI.  

• Better still, you might plug in values for a below-average student (someone with low 
GPA and low TUCE), an average student, and a very above-average student (with high 
GPA and high TUCE). This would indicate how much different types of students could 
be expected to benefit by PSI. 

Another possible way of interpreting parameters is by looking at the relative effects of variables 
that are measured on the same scale.  

• For example, suppose the model includes dummy variables for race and gender. If the 
effect of gender is larger than the effect of race, we could conclude that gender had the 
stronger effect.  

• Or, suppose both years of education and years of job experience are DVs. You could look 
at the relative effects to see which was stronger. (Of course, you can also do these sorts of 
comparisons in a regular OLS regression.)  
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SUMMARY. The assumptions of the logistic regression model are far more plausible than the 
assumptions of OLS. Unfortunately, because relationships are nonlinear rather than linear, 
parameters in logistic regression are not as easily interpretable as parameters in OLS regression. 
Some things you can do are  

• Look at the T value (or Wald statistic) to see whether the effect is statistically significant. 
(We’ll discuss hypothesis testing more in a later handout) 

• Look at the sign of the effect, to see whether increases in the variable increase or decrease the 
probability of success 

• Look at exp(βk), to see how much a 1 unit increase in Xk changes the odds of success 
(keeping in mind that odds of success is not the same as probability of success) 

• Plug in different values for the X variables, and see how changes in the value of an X 
variable affect the probability of success. Or, plug in different values for Pi, and see how 
changes in X change Pi. Values chosen should be reasonable ones. 

• Look at the relative magnitudes of similarly measured variables, to determine which seem to 
have the greater impact 

Coming up, we’ll talk about significance tests, hypothesis testing, and diagnostics. We’ll see that 
there are many parallels with OLS, although we do some things a little different. 
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Appendix: Some things to remember about logarithms [optional review if you need it] 

e = 2.71828 e is an irrational number 

e0 = 1 indeed, anything to the 0 power (except 0) = 1 

ln(e) = 1 Ln = the natural log 

e ln(a + b + c) = a + b + c e.g. eln(2 + 3 + 4) = e2.1972 = 9 

ln (Xa )= a ln(X) e.g. ln(72) = 2 ln(7) = 3.8918 

ln (ea )= a ln(e) = a e.g. ln(e2) = ln(7.389) = 2 

ln (ab) = ln(a) + ln(b) e.g ln(2 * 8) = ln(2) + ln(8) = 2.7726 

ln(Xa Yb) = a*ln(X) + b*ln(Y) e.g. ln(22 * 32) = 2*ln(2) + 2*ln(3) = 3.5835 

ea+b+c = eaebec e.g. e2+3+4 = e2e3e4 = 8103.08 

 

Note also that  

• eX is often written as exp (X) for convenience. Exp(X) is called the antilog of X. 

You can only take logarithms of positive, nonzero numbers (above rules involving logarithms 
assume positive numbers). Since we’ll be working with probabilities, this won’t be a problem for 
us. 
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Appendix: Constant Only Model 

Here are the parameter estimates when only the constant is in the model: 

. logit grade, nolog 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(0)      =       0.00 
                                                  Prob > chi2     =          . 
Log likelihood =  -20.59173                       Pseudo R2       =     0.0000 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |  -.6466272   .3721937    -1.74   0.082    -1.376113    .0828591 
------------------------------------------------------------------------------ 

Since only the constant is entered, the log odds for every case are -.647. Hence, the predicted 
probability of success for every case is 

3437.
9098.11
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1

)exp(1
1

=
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=
+

=
−+

=
i

i Z
P  

margins whines when there are no independent variables, so to confirm we can do 

. display 1 / (1 + exp(--.6466272)) 

.34374999 
 

If you prefer, you can also work with the odds ratios directly: 

. logit, or 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(0)      =       0.00 
                                                  Prob > chi2     =          . 
Log likelihood =  -20.59173                       Pseudo R2       =     0.0000 
 
------------------------------------------------------------------------------ 
       grade | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   .5238095   .1949586    -1.74   0.082     .2525582    1.086389 
------------------------------------------------------------------------------ 
 
. display .5238095/(1 + .5238095) 
.34374999 
 

In the sample, 11 of 32 cases, or 34.37%, got A’s. So, in a model with only the intercept, the 
intercept gives you the same information that a frequency distribution of the DV would give you 
(albeit in a rather convoluted way). 
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