Math 60710, Introduction to Algebraic Geometry, Problem Set 1, Fall 2017

INSTRUCTIONS: Do at least 6 of these problems. Due Friday, September 15. In these problems, k denotes an algebraically closed field (in many problems, it would be sufficient to require only that k is a field, or an infinite field). As usual, we let $A=k\left[x_{1}, \ldots, x_{n}\right]$, and we let $k^{\times}=k-\{0\}$. We denote by \mathbf{A}^{n} affine space k^{n}. For an ideal $I, \mathcal{Z}(I)$ is the vanishing set in \mathbf{A}^{n} of the ideal I, and for $S \subset \mathbf{A}^{n}, I(S)$ is the ideal of functions vanishing on S.
(1) Let $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$, and consider the ideal $\mathfrak{m}_{a}:=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$. Prove that \mathfrak{m}_{a} is a maximal ideal of A.
(2) Let f be an element of A. If $f(a)=0$ for all a in \mathbf{A}^{n}, then prove that $f=0$.
(3) (i) Let I be an ideal of a ring A. Prove that its radical \sqrt{I} is an ideal of A.
(ii) Prove that the radical of an ideal I of A is a radical ideal.
(iii) Prove that a prime ideal of A is radical.
(4) Let $k[t]$ be a polynomial ring in one variable, and consider the unique k -algebra homomorphism $\phi: k[x, y] \rightarrow k[t]$ such that $\phi(x)=t^{2}$ and $\phi(y)=t^{3}$. Prove that $\operatorname{ker}(\phi)=\left(x^{3}-y^{2}\right)$.
(5) (i) Show that $x y-1$ and $y^{2}-x^{3}$ are irreducible in $k[x, y]$.
(ii) Show that the maps $\phi: k \rightarrow \mathcal{Z}\left(y^{2}-x^{3}\right)$ given by $\phi(a)=\left(a^{2}, a^{3}\right)$ and $\psi: k^{\times} \rightarrow$ $\mathcal{Z}(x y-1)$ given by $\psi(a)=\left(a, a^{-1}\right)$ are bijective.
(6) Suppose the characteristic of k is not 2 . Show that $x_{1}^{2}+\cdots+x_{m}^{2}$ is irreducible in $k\left[x_{1}, \ldots, x_{n}\right]$ if and only if $m>2$ (assume $n \geq m$).
(7) $\mathrm{D}+\mathrm{F}, \# 3,15.3$: Let i, j be relatively prime positive integers. Let $R=k[x, y] /\left(x^{i}-y^{j}\right)$, and let K be the fraction field of the integral domain R. Prove that $K \cong k(t)$ and $k[t]$ is the integral closure of R in K.
(8) Consider the ideal $I=\left(x^{2}, x y\right)$ of $k[x, y]$. Prove that $I=(x, y)^{2} \cap(x)$ and $\mathcal{Z}(I)=\mathcal{Z}(x)$ (recall from class that if I and J are ideals of a ring R, then $I \cdot J=\left\{\sum x_{r} y_{r}: x_{r} \in\right.$ $\left.I, y_{r} \in J\right\}$ and $\left.I^{2}=I \cdot I\right)$.
(9) (Hartshorne, 1.2): Let $Y \in \mathbf{A}^{3}$ be the set $Y:=\left\{\left(t, t^{2}, t^{3}\right): t \in k\right\}$. Show that Y is an affine variety of dimension 1 , and find generators for the ideal $I(Y)$ of functions vanishing on Y. Show that $A(Y) \cong k[t]$, the polynomial ring in one variable.
(10) (Hartshorne, 1.3): Let $Y=\mathcal{Z}\left(x^{2}-y z, x z-z\right)$ in \mathbf{A}^{3}. Find the decomposition of Y into irreducible components, and find the vanishing ideal for each component.
(11) (Hartshorne, 1.4): If we identify $\mathbf{A}^{2}=\mathbf{A}^{1} \times \mathbf{A}^{1}$ in the natural way, show that the Zariski topology on \mathbf{A}^{2} is not the product topology on $\mathbf{A}^{1} \times \mathbf{A}^{1}$.
(12) Let Y be a subset of a topological space X and assume Y is irreducible in the subspace topology. Show that \bar{Y} is irreducible in the subspace topology.
(13) Show that a Noetherian topological space is quasi-compact, i.e., every open cover has a finite subcover.

