Math 60710, Introduction to Algebraic Geometry, Problem Set 1, Fall 2017

INSTRUCTIONS: Do at least 6 of these problems. Due Friday, September 15. In these problems, k denotes an algebraically closed field (in many problems, it would be sufficient to require only that k is a field, or an infinite field). As usual, we let $A = k[x_1, \ldots, x_n]$, and we let $k^{\times} = k - \{0\}$. We denote by \mathbf{A}^n affine space k^n . For an ideal I, $\mathcal{Z}(I)$ is the vanishing set in \mathbf{A}^n of the ideal I, and for $S \subset \mathbf{A}^n$, I(S) is the ideal of functions vanishing on S.

- (1) Let $a = (a_1, \ldots, a_n) \in \mathbf{A}^n$, and consider the ideal $\mathfrak{m}_a := (x_1 a_1, \ldots, x_n a_n)$. Prove that \mathfrak{m}_a is a maximal ideal of A.
- (2) Let f be an element of A. If f(a) = 0 for all a in \mathbf{A}^n , then prove that f = 0.
- (3) (i) Let I be an ideal of a ring A. Prove that its radical √I is an ideal of A.
 (ii) Prove that the radical of an ideal I of A is a radical ideal.
 - (iii) Prove that a prime ideal of A is radical.
- (4) Let k[t] be a polynomial ring in one variable, and consider the unique k-algebra homomorphism φ : k[x, y] → k[t] such that φ(x) = t² and φ(y) = t³. Prove that ker(φ) = (x³-y²).
 (5) (i) Show that xy 1 and y² x³ are irreducible in k[x, y].
- (5) (1) Show that xy 1 and $y^2 x^3$ are irreducible in $\kappa[x, y]$. (ii) Show that the maps $\phi : k \to \mathcal{Z}(y^2 - x^3)$ given by $\phi(a) = (a^2, a^3)$ and $\psi : k^{\times} \to \mathcal{Z}(xy - 1)$ given by $\psi(a) = (a, a^{-1})$ are bijective.
- (6) Suppose the characteristic of k is not 2. Show that $x_1^2 + \cdots + x_m^2$ is irreducible in $k[x_1, \ldots, x_n]$ if and only if m > 2 (assume $n \ge m$).
- (7) D+F, # 3, 15.3: Let i, j be relatively prime positive integers. Let $R = k[x, y]/(x^i y^j)$, and let K be the fraction field of the integral domain R. Prove that $K \cong k(t)$ and k[t] is the integral closure of R in K.
- (8) Consider the ideal $I = (x^2, xy)$ of k[x, y]. Prove that $I = (x, y)^2 \cap (x)$ and $\mathcal{Z}(I) = \mathcal{Z}(x)$ (recall from class that if I and J are ideals of a ring R, then $I \cdot J = \{\sum x_r y_r : x_r \in I, y_r \in J\}$ and $I^2 = I \cdot I$).
- (9) (Hartshorne, 1.2): Let $Y \in \mathbf{A}^3$ be the set $Y := \{(t, t^2, t^3) : t \in k\}$. Show that Y is an affine variety of dimension 1, and find generators for the ideal I(Y) of functions vanishing on Y. Show that $A(Y) \cong k[t]$, the polynomial ring in one variable.
- (10) (Hartshorne, 1.3): Let $Y = \hat{Z}(x^2 yz, xz z)$ in \mathbf{A}^3 . Find the decomposition of Y into irreducible components, and find the vanishing ideal for each component.
- (11) (Hartshorne, 1.4): If we identify $\mathbf{A}^2 = \mathbf{A}^1 \times \mathbf{A}^1$ in the natural way, show that the Zariski topology on \mathbf{A}^2 is not the product topology on $\mathbf{A}^1 \times \mathbf{A}^1$.
- (12) Let Y be a subset of a topological space X and assume Y is irreducible in the subspace topology. Show that \overline{Y} is irreducible in the subspace topology.
- (13) Show that a Noetherian topological space is quasi-compact, i.e., every open cover has a finite subcover.

1