Math 60710, Introduction to Algebraic Geometry, Problem Set 2, Fall 2017

INSTRUCTIONS: Do at least 6 of these problems. Due Monday, Oct. 9. Note that I have assigned many but not all problems from Hartshorne. If you want to do a problem from sections two and three of Hartshorne that I have not assigned, you can substitute that problem for one of the problems I have assigned. In these problems, k denotes an algebraically closed field (in many problems, it would be sufficient to require only that k is a field, or an infinite field). As usual, we let $A = k[x_1, \ldots, x_n]$, and we let $k^{\times} = k - \{0\}$. We denote by \mathbf{A}^n affine space k^n . For an ideal I, $\mathcal{Z}(I)$ is the vanishing set in \mathbf{A}^n of the ideal I, and for $S \subset \mathbf{A}^n$, I(S) is the ideal of functions vanishing on S.

- (1) Let $\phi: X \to Y$ be a morphism of varieties. Recall that we defined $\phi^*: O(Y) \to O(X)$ by $\phi^*(f) = f \circ \phi$.
 - (i) Assume that $\phi(X)$ is dense in Y. Show that ϕ^* is injective.
 - (ii) Let $P \in X$. Show that the map $\phi^* : O_{\phi(P)} \to O_P$ given by $\phi^*(\langle U, f \rangle) = \langle \phi^{-1}(U), \phi^*(f) \rangle$ is a well-defined ring homomorphism.
 - (iii) Assume that $\phi(X)$ is dense in Y. Define $\phi^*: K(Y) \to K(X)$ using the same formula as in part (i). Show that ϕ^* is a well-defined ring homomorphism.
- (2) Let X be a variety, let $W \subset X$ be a nonempty open set, and let $j: W \to X$ be the inclusion.
 - (i) Let $P \in W$. Show that $j^* : O_P(X) \to O_P(W)$ is an isomorphism, where j^* is defined in part (ii) of the previous problem.
 - (ii) Show that $j^*: K(X) \to K(W)$ is an isomorphism.
- (3) Let $\phi: X \to Y$ be a continuous map of topological spaces. If $V \subset X$ is irreducible, then prove that $\phi(V)$ is irreducible in Y.
- (4) Let X, Y be varieties and let $\phi: X \to Y$ be a map of sets. Suppose $X = \cup X_i$ is a union of open sets X_i and $Y = \cup Y_j$ is a union of open sets. Suppose that for each X_i there is $Y_{j(i)}$ such that $\phi(X_i) \subset Y_{j(i)}$, and denote by $\phi_i = \phi|_{X_i}: X_i \to Y_{j(i)}$. Show that if ϕ_i is a morphism for each i, then ϕ is a morphism.
- (5) Let $k^{\times} = \{x \in \mathbf{A}^1 : x \neq 0\}$. Define $\phi : k^{\times} \to \mathcal{Z}(xy-1) \subset \mathbf{A}^2$ by $\phi(a) = (a, a^{-1})$. Prove that ϕ is an isomorphism.
- (6) Let R be a ring with prime ideal \mathfrak{p} , and consider the local ring $R_{\mathfrak{p}}$. For an ideal I of R, we let $IR_{\mathfrak{p}} = \{\frac{x}{s} : x \in I, s \in R \mathfrak{p}\}$. Let $I_{\subset \mathfrak{p}}$ be the collection of prime ideals \mathfrak{q} of R such that $\mathfrak{q} \subset \mathfrak{p}$. Show that for $\mathfrak{q} \in I_{\subset \mathfrak{p}}$, the ideal $\mathfrak{q}R_{\mathfrak{p}}$ is a prime ideal of $R_{\mathfrak{p}}$, and that the resulting map from $I_{\subset \mathfrak{p}}$ to prime ideals of $R_{\mathfrak{p}}$ given by $\mathfrak{q} \mapsto \mathfrak{q}R_{\mathfrak{p}}$ is bijective.
- (7) Exercise 2.5 in Hartshorne (hint: show that if a topological space X is a finite union of Noetherian open subspaces, then X is Noetherian).
- (8) Exercise 2.6 in Hartshorne.
- (9) Exercise 2.9 in Hartshorne.
- (10) Exercise 2.12 in Hartshorne.
- (11) Exercise 2.14 in Hartshorne.
- (12) Exercise 2.16 in Hartshorne.
- (13) Exercise 3.1 in Hartshorne (a conic in \mathbf{A}^n or \mathbb{P}^n is an algebraic set defined by a single homogeneous quadratic polynomial).
- (14) Hartshorne, Exercise 3.2.
- (15) Hartshorne, Exercise 3.5.
- (16) Hartshorne, Exercise 3.6.
- (17) Hartshorne, Exercise 3.7.

- (18) Hartshorne, Exercise 3.9.
- (19) Hartshorne, Exercise 3.10.
- (20) Hartshorne, Exericse 3.13.
- (21) Hartshorne, Exercise 3.14.
- (22) Hartshorne, Exercise 3.17.
- (23) Hartshorne, Exercise 3.21.