
Math 60710, Introduction to Algebraic Geometry, Problem Set 3, Fall 2017

INSTRUCTIONS: Do at least 6 of these problems. Due Wednesday, Dec. 6. Note that I have
assigned many but not all problems from Hartshorne. If you want to do a problem from sections
four through seven of Hartshorne that I have not assigned, you can substitute that problem for
one of the problems I have assigned. In these problems, k denotes an algebraically closed field.
As usual, we let A = k[x1, . . . , xn], and we let k× = k − {0}. We denote by An affine space kn.
For an ideal I, Z(I) is the vanishing set in An of the ideal I, and for S ⊂ An, I(S) is the ideal
of functions vanishing on S.

(1) (i) Let S = k[x, y] and let M = k[x, y]/(x2, xy). Find a filtration of M by graded S-
submodules, M0 = 0 ⊂ M1 ⊂ M2 ⊂ M3 = M such that for i = 1, 2, 3, M i/M i−1 ∼=
(S/pi)(li) for a prime ideal pi and an integer li (hint: the prime ideals that appear as
above are the prime ideals that appear when we write (x2, xy) as an intersection of
powers of prime ideals).
(ii) Let S = k[x, y] and let M = k[x, y]/(x3y2). Find a filtration of M as in (i) (you will
need more M i).

(2) Let S = k[x, y, z]. For each of the following graded S-modules M , find a filtration of M
by graded S-submodules, M0 = 0 ⊂ M1 ⊂ M2 · · · ⊂ M r = M such that for i = 1, 2, r,
M i/M i−1 ∼= (S/pi)(li) for a prime ideal pi and an integer li (hint: a good source for pi
comes from looking at Z(Ann(M))).
(i) M = S/(y2z − x3, x) (hint: write the ideal (y2z − x3, x) in a different form).
(ii) M = S/(y2z − x3, y).
(iii) M = S/(y2z − x3, y − x).

(3) Compute the vector fields on Z(y2 − x3). Show that they are all of the form ξa,b =
a∂x + b∂y where a, b ∈ k[x, y]/(y2−x3). What conditions must a and b satisfy for ξa,b to
be a vector field. Compute the vector fields on Z(y − x3). Show that they are the same
as vector fields on A1.

(4) Let φ : An → Am be a morphism, and let φ = (φ1, . . . , φm), where φ1, . . . , φm ∈ A(Am).
Let x1, . . . , xn be coordinates on An and let y1, . . . , ym be coordinates on Am.
(i) Show that for each p ∈ An, dφ∗p(dyj) =

∑
i=1,...,n ∂xi(φj)(p)dxi.

(ii) Show that for each p ∈ An, dφp(∂xi) =
∑m

j=1 ∂xi(φj)(p)∂yj .

(iii) Consider the determinant map φ : M(n, k) → A1 given by taking φ(C) = Det(C).

We identify An2 ∼= M(n, k) by taking the matrix entries as coordinates, and thus for
C ∈M(n, k), we identify TC(M(n, k)) ∼= M(n, k). Show that for a matrix T , dφC(T ) =
trace(T ).

(5) Assume that the characteristic of k is not 2.
(i) Let Q = x21 + · · ·+ x2r ∈ A(An), where r ≤ n. Determine the singular locus of Z(Q).
(ii) Let Q =

∑n
i=0 x

2
i ∈ S = k[x0, . . . , xn]. Find the singular locus of Z(Q) in ¶n.

(6) (i) Let Y = Z(y2−x3) ⊂ A2. Determine the singular locus of Y , the closure of Y in ¶2.
(ii) Let Y = Z(y3 − x5) ⊂ A2. Determine the singular locus of the closure of Y in ¶2.

(7) Let k be a field of characteristic p, where p is prime. Let F : A1 → A1 be given by
F (a) = ap. For each a ∈ A1, compute dFa : Ta(A1)→ TF (a)(A

1).
(8) Hartshorne, Exercise 4.1.
(9) Hartshorne, Exercise 4.3.

(10) Hartshorne, Exercise 4.4.
(11) Hartshorne, Exercise 4.5.
(12) Hartshorne, Exercise 4.6.
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(13) Hartshorne, Exercise 4.7.
(14) Hartshorne, Exercise 4.10 (try this also for a few more curves with a singularity at (0, 0)).
(15) Hartshorne, Exercise 5.1.
(16) Hartshorne, Exercise 5.2.
(17) Hartshorne, Exercise 5.3.
(18) Hartshorne, Exercise 5.4.
(19) Hartshorne, Exercise 5.6.


