Math 60710, Introduction to Algebraic Geometry, Problem Set 3, Fall 2017

INSTRUCTIONS: Do at least 6 of these problems. Due Wednesday, Dec. 6. Note that I have assigned many but not all problems from Hartshorne. If you want to do a problem from sections four through seven of Hartshorne that I have not assigned, you can substitute that problem for one of the problems I have assigned. In these problems, k denotes an algebraically closed field. As usual, we let $A = k[x_1, \ldots, x_n]$, and we let $k^{\times} = k - \{0\}$. We denote by \mathbf{A}^n affine space k^n . For an ideal $I, \mathcal{Z}(I)$ is the vanishing set in \mathbf{A}^n of the ideal I, and for $S \subset \mathbf{A}^n, I(S)$ is the ideal of functions vanishing on S.

(1) (i) Let S = k[x, y] and let $M = k[x, y]/(x^2, xy)$. Find a filtration of M by graded S-submodules, $M^0 = 0 \subset M^1 \subset M^2 \subset M^3 = M$ such that for $i = 1, 2, 3, M^i/M^{i-1} \cong$ $(S/\mathfrak{p}_i)(l_i)$ for a prime ideal \mathfrak{p}_i and an integer l_i (hint: the prime ideals that appear as above are the prime ideals that appear when we write (x^2, xy) as an intersection of powers of prime ideals).

(ii) Let S = k[x, y] and let $M = k[x, y]/(x^3y^2)$. Find a filtration of M as in (i) (you will need more M^i).

- (2) Let S = k[x, y, z]. For each of the following graded S-modules M, find a filtration of M by graded S-submodules, $M^0 = 0 \subset M^1 \subset M^2 \cdots \subset M^r = M$ such that for i = 1, 2, r, $M^i/M^{i-1} \cong (S/\mathfrak{p}_i)(l_i)$ for a prime ideal \mathfrak{p}_i and an integer l_i (hint: a good source for \mathfrak{p}_i) comes from looking at $\mathcal{Z}(\operatorname{Ann}(M))$).
 - (i) $M = S/(y^2z x^3, x)$ (hint: write the ideal $(y^2z x^3, x)$ in a different form). (ii) $M = S/(y^2z - x^3, y)$.
 - (iii) $M = S/(y^2z x^3, y x).$
- (3) Compute the vector fields on $\mathcal{Z}(y^2 x^3)$. Show that they are all of the form $\xi_{a,b} =$ $a\partial_x + b\partial_y$ where $a, b \in k[x, y]/(y^2 - x^3)$. What conditions must a and b satisfy for $\xi_{a,b}$ to be a vector field. Compute the vector fields on $\mathcal{Z}(y-x^3)$. Show that they are the same as vector fields on \mathbf{A}^1 .
- (4) Let $\phi : \mathbf{A}^n \to \mathbf{A}^m$ be a morphism, and let $\phi = (\phi_1, \dots, \phi_m)$, where $\phi_1, \dots, \phi_m \in A(\mathbf{A}^m)$. Let x_1, \ldots, x_n be coordinates on \mathbf{A}^n and let y_1, \ldots, y_m be coordinates on \mathbf{A}^m . (i) Show that for each $p \in \mathbf{A}^n$, $d\phi_p^*(dy_j) = \sum_{i=1,\dots,n}^{m} \partial_{x_i}(\phi_j)(p) dx_i$. (ii) Show that for each $p \in \mathbf{A}^n$, $d\phi_p(\partial_{x_i}) = \sum_{j=1}^{m} \partial_{x_i}(\phi_j)(p) \partial_{y_j}$.

(iii) Consider the determinant map $\phi: M(n,k) \to \mathbf{A}^1$ given by taking $\phi(C) = \text{Det}(C)$. We identify $\mathbf{A}^{n^2} \cong M(n,k)$ by taking the matrix entries as coordinates, and thus for $C \in M(n,k)$, we identify $T_C(M(n,k)) \cong M(n,k)$. Show that for a matrix T, $d\phi_C(T) =$ $\operatorname{trace}(T).$

- (5) Assume that the characteristic of k is not 2.
- (i) Let Q = x₁² + ··· + x_r² ∈ A(Aⁿ), where r ≤ n. Determine the singular locus of Z(Q).
 (ii) Let Q = ∑_{i=0}ⁿ x_i² ∈ S = k[x₀,...,x_n]. Find the singular locus of Z(Q) in ¶ⁿ.
 (6) (i) Let Y = Z(y² x³) ⊂ A². Determine the singular locus of V / X, the closure of Y in ¶².
 (ii) Let Y = Z(y³ x⁵) ⊂ A². Determine the singular locus of the closure of Y in ¶².
- (7) Let k be a field of characteristic p, where p is prime. Let $F : \mathbf{A}^1 \to \mathbf{A}^1$ be given by $F(a) = a^p$. For each $a \in \mathbf{A}^1$, compute $dF_a : T_a(\mathbf{A}^1) \to T_{F(a)}(\mathbf{A}^1)$.
- (8) Hartshorne, Exercise 4.1.
- (9) Hartshorne, Exercise 4.3.
- (10) Hartshorne, Exercise 4.4.
- (11) Hartshorne, Exercise 4.5.
- (12) Hartshorne, Exercise 4.6.

- (13) Hartshorne, Exercise 4.7.
- (14) Hartshorne, Exercise 4.10 (try this also for a few more curves with a singularity at (0,0)).
- (15) Hartshorne, Exercise 5.1.
- (16) Hartshorne, Exercise 5.2.
- (17) Hartshorne, Exercise 5.3.
- (18) Hartshorne, Exercise 5.4.
- (19) Hartshorne, Exercise 5.6.