Math 60710, Introduction to Algebraic Geometry, Problem Set 3, Fall 2017

INSTRUCTIONS: Do at least 6 of these problems. Due Wednesday, Dec. 6. Note that I have assigned many but not all problems from Hartshorne. If you want to do a problem from sections four through seven of Hartshorne that I have not assigned, you can substitute that problem for one of the problems I have assigned. In these problems, k denotes an algebraically closed field. As usual, we let $A=k\left[x_{1}, \ldots, x_{n}\right]$, and we let $k^{\times}=k-\{0\}$. We denote by \mathbf{A}^{n} affine space k^{n}. For an ideal $I, \mathcal{Z}(I)$ is the vanishing set in \mathbf{A}^{n} of the ideal I, and for $S \subset \mathbf{A}^{n}, I(S)$ is the ideal of functions vanishing on S.
(1) (i) Let $S=k[x, y]$ and let $M=k[x, y] /\left(x^{2}, x y\right)$. Find a filtration of M by graded S submodules, $M^{0}=0 \subset M^{1} \subset M^{2} \subset M^{3}=M$ such that for $i=1,2,3, M^{i} / M^{i-1} \cong$ $\left(S / \mathfrak{p}_{i}\right)\left(l_{i}\right)$ for a prime ideal \mathfrak{p}_{i} and an integer l_{i} (hint: the prime ideals that appear as above are the prime ideals that appear when we write $\left(x^{2}, x y\right)$ as an intersection of powers of prime ideals).
(ii) Let $S=k[x, y]$ and let $M=k[x, y] /\left(x^{3} y^{2}\right)$. Find a filtration of M as in (i) (you will need more M^{i}).
(2) Let $S=k[x, y, z]$. For each of the following graded S-modules M, find a filtration of M by graded S-submodules, $M^{0}=0 \subset M^{1} \subset M^{2} \cdots \subset M^{r}=M$ such that for $i=1,2, r$, $M^{i} / M^{i-1} \cong\left(S / \mathfrak{p}_{i}\right)\left(l_{i}\right)$ for a prime ideal \mathfrak{p}_{i} and an integer l_{i} (hint: a good source for \mathfrak{p}_{i} comes from looking at $\mathcal{Z}(\operatorname{Ann}(M)))$.
(i) $M=S /\left(y^{2} z-x^{3}, x\right)$ (hint: write the ideal $\left(y^{2} z-x^{3}, x\right)$ in a different form).
(ii) $M=S /\left(y^{2} z-x^{3}, y\right)$.
(iii) $M=S /\left(y^{2} z-x^{3}, y-x\right)$.
(3) Compute the vector fields on $\mathcal{Z}\left(y^{2}-x^{3}\right)$. Show that they are all of the form $\xi_{a, b}=$ $a \partial_{x}+b \partial_{y}$ where $a, b \in k[x, y] /\left(y^{2}-x^{3}\right)$. What conditions must a and b satisfy for $\xi_{a, b}$ to be a vector field. Compute the vector fields on $\mathcal{Z}\left(y-x^{3}\right)$. Show that they are the same as vector fields on \mathbf{A}^{1}.
(4) Let $\phi: \mathbf{A}^{n} \rightarrow \mathbf{A}^{m}$ be a morphism, and let $\phi=\left(\phi_{1}, \ldots, \phi_{m}\right)$, where $\phi_{1}, \ldots, \phi_{m} \in A\left(\mathbf{A}^{m}\right)$. Let x_{1}, \ldots, x_{n} be coordinates on \mathbf{A}^{n} and let y_{1}, \ldots, y_{m} be coordinates on \mathbf{A}^{m}.
(i) Show that for each $p \in \mathbf{A}^{n}, d \phi_{p}^{*}\left(d y_{j}\right)=\sum_{i=1, \ldots, n} \partial_{x_{i}}\left(\phi_{j}\right)(p) d x_{i}$.
(ii) Show that for each $p \in \mathbf{A}^{n}$, $d \phi_{p}\left(\partial_{x_{i}}\right)=\sum_{j=1}^{m} \partial_{x_{i}}\left(\phi_{j}\right)(p) \partial_{y_{j}}$.
(iii) Consider the determinant map $\phi: M(n, k) \rightarrow \mathbf{A}^{1}$ given by taking $\phi(C)=\operatorname{Det}(C)$. We identify $\mathbf{A}^{n^{2}} \cong M(n, k)$ by taking the matrix entries as coordinates, and thus for $C \in M(n, k)$, we identify $T_{C}(M(n, k)) \cong M(n, k)$. Show that for a matrix $T, d \phi_{C}(T)=$ trace (T).
(5) Assume that the characteristic of k is not 2 .
(i) Let $Q=x_{1}^{2}+\cdots+x_{r}^{2} \in A\left(\mathbf{A}^{n}\right)$, where $r \leq n$. Determine the singular locus of $\mathcal{Z}(Q)$.
(ii) Let $Q=\sum_{i=0}^{n} x_{i}^{2} \in S=k\left[x_{0}, \ldots, x_{n}\right]$. Find the singular locus of $\mathcal{Z}(Q)$ in \mathbf{T}^{n}.
(6) (i) Let $Y=\mathcal{Z}\left(y^{2}-x^{3}\right) \subset \mathbf{A}^{2}$. Determine the singular locus of \bar{Y}, the closure of Y in $\mathbf{\Phi}^{2}$. (ii) Let $Y=\mathcal{Z}\left(y^{3}-x^{5}\right) \subset \mathbf{A}^{2}$. Determine the singular locus of the closure of Y in $\mathbf{\Phi}^{2}$.
(7) Let k be a field of characteristic p, where p is prime. Let $F: \mathbf{A}^{1} \rightarrow \mathbf{A}^{1}$ be given by $F(a)=a^{p}$. For each $a \in \mathbf{A}^{1}$, compute $d F_{a}: T_{a}\left(\mathbf{A}^{1}\right) \rightarrow T_{F(a)}\left(\mathbf{A}^{1}\right)$.
(8) Hartshorne, Exercise 4.1.
(9) Hartshorne, Exercise 4.3.
(10) Hartshorne, Exercise 4.4.
(11) Hartshorne, Exercise 4.5.
(12) Hartshorne, Exercise 4.6.
(13) Hartshorne, Exercise 4.7.
(14) Hartshorne, Exercise 4.10 (try this also for a few more curves with a singularity at (0,0)).
(15) Hartshorne, Exercise 5.1.
(16) Hartshorne, Exercise 5.2.
(17) Hartshorne, Exercise 5.3.
(18) Hartshorne, Exercise 5.4.
(19) Hartshorne, Exercise 5.6.

