
NOTES ON FIBER DIMENSION

SAM EVENS

Let φ : X → Y be a morphism of affine algebraic sets, defined over an algebraically
closed field k. For y ∈ Y , the set φ−1(y) is called the fiber over y. In these notes, I explain
some basic results about the dimension of the fiber over y. These notes are largely taken
from Chapters 3 and 4 of Humphreys, “Linear Algebraic Groups”, chapter 6 of Bump,
“Algebraic Geometry”, and Tauvel and Yu, “Lie algebras and algebraic groups”. The
book by Bump has an incomplete proof of the main fact we are proving (which repeats
an incomplete proof from Mumford’s notes “The Red Book on varieties and Schemes”).
Tauvel and Yu use a step I was not able to verify. The important thing is that you
understand the statements and are able to use the Theorems 0.22 and 0.24.

Let A be a ring. If p0 ⊂ p1 ⊂ · · · ⊂ pk is a chain of distinct prime ideals of A, we say
the chain has length k and ends at p.

Definition 0.1. Let p be a prime ideal of A. We say ht(p) = k if there is a chain of
distinct prime ideals p0 ⊂ · · · ⊂ pk = p in A of length k, and there is no chain of prime
ideals in A of length k + 1 ending at p.

If B is a finitely generated integral k-algebra, we set dim(B) = dim(F ), where F is the
fraction field of B.

Theorem 0.2. (Serre, “Local Algebra”, Proposition 15, p. 45) Let A be a finitely gener-
ated integral k-algebra and let p ⊂ A be a prime ideal. Then ht(p) = dim(A)−dim(A/p).

Theorem 0.3. (see Matsumura, “Commutative Ring Theory”, Theorem 13.5, p. 100)
(i) Let A be a Noetherian ring and let f ∈ A be a nonzero nonunit. Then if p is minimal
among prime ideals of A containing f , ht(p) ≤ 1.

(ii) If A is also an integral domain and p is as in (i), then ht(p) = 1.

To prove (ii) using (i), note that (0) ⊂ p is chain of length 1, so ht(p) ≥ 1.

The above results in commutative algebra are not easy consequences of definitions.
You can find approaches to algebraic geometry which get around using them (notably
the treatment in Springer’s book on Algebraic Groups). My feeling is that it is better
to understand these results. For the purposes of this course, you may simply believe
them, but if you are going to do mathematics involving algebraic geometry, it is useful to
understand these results in commutative algebra.

Theorem 0.4. (“Going Down” theorem)(Matsumura, as above, Theorem 9.4, p. 68, or
Dummit and Foote, Theorem 21, p. 668) Let B be an integrally domain and suppose that
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B is integral over a subring A. Suppose that A is integrally closed. Let p2 ⊂ p1 be prime
ideals of A and suppose that q1 is a prime ideal of B such that q1 ∩ A = p1. Then there
exists a prime ideal q2 of B such that q2 ⊂ q1 and q2 ∩ A = p2.

Theorem 0.5. (see Eisenbud, “Commutative Algebras with a View Toward Algebraic
Geometry”, Corollary 13.13). Let A be a finitely generated integral k-algebra with fraction
field K. Let B be the integral closure of A. Then B is a finitely generated A-module. In
particular, B is a finitely generated integral k-algebra.

The first assertion of the Theorem is that there exist b1, . . . , bk ∈ B such that B =
Ab1 + · · · + Abk. It follows easily that B is generated as an algebra by {b1, . . . , bk} and
any set of generators of A.

Lemma 0.6. (Serre, “Local Algebra”, Lemma 1, p. 8) Let p1, . . . , pn be prime ideals of
a ring A. If I is an ideal of A and I ⊂ ∪n

i=1pi, then I ⊂ pi for some i.

Proposition 0.7. (Tauvel and Yu, Theorem 3.28) (i) Let A be an integrally closed do-
main. Then A[t] is an integrally closed domain.

(ii) If A is an integrally closed domain, then A[t1, . . . , tn] is an integrally closed domain.

Proof : Let K be the fraction field of A and let p(t), q(t) be monic polynomials such
that p(t)q(t) ∈ A[t]. Then p(t), q(t) ∈ A[t]. Indeed, let M be the algebraic closure of
K. Factor p(t) into linear factors in M [t] with roots α1, . . . , αk and factor q(t) into linear
factors with roots β1, . . . , βr. If γ is one of the αi or βj, then p · q(γ) = 0. Since p · q is
monic in A[t], it follows that γ is integral over A in M . The coefficients of p(t) and q(t)
are polynomials in the αi and βj and hence are integral over A, and in K. Thus, these
coefficients are in A, so p(t), q(t) ∈ A[t].

Let K and L be the fraction fields of A and A[t] respectively. Let α ∈ L be integral
over A[t]. Then α is also integral over K[t] ⊃ A[t], so since K[t] is a UFD and hence
integrally closed, α ∈ K[t].

Let Q(x) ∈ A[t][x] be a monic polynomial with Q(α) = 0 and write Q(x) = xm +
pm−1x

m−1 + · · · + p0, with pi ∈ A[t]. Choose s so s is larger than the degree of α = α(t)
and also so for all i = 0, . . . ,m − 1, s is larger than the degree of pi = pi(t). Let
β = α− ts ∈ K[t], so by the choice of s, −β is monic in K[t].

Let R(x) = Q(x + ts). Then R(β) = Q(β + ts) = Q(α) = 0. Expand R(x) =
xm + qm−1x

m−1 + · · · + q0 as a polynomial in x with coefficients in A[t]. The term q0 =
tsm + pm−1t

s(m−1) + · · ·+ p0 is monic in t by the choice of s. Since R(β) = 0,

q0 = −β(βm−1 + qm−1β
m−2 + · · ·+ q1) = −β · γ, γ = (βm−1 + qm−1β

m−2 + · · ·+ q1) ∈ K[t].

Since q0 and −β are monic in K[t], it follows that γ is monic in K[t]. Since q0 ∈ A[t],
it follows from the assertion of the first paragraph of this proof that −β ∈ A[t]. Hence,
α = β + ts ∈ A[t], which establishes the first assertion. The second assertion follows by
an easy induction.

Q.E.D.
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Let X be an affine variety and let f ∈ k[X] be a nonzero nonunit. Then the zero set
V (f) is called a hypersurface.

If X is an affine variety and Y ⊂ X is a closed subvariety, then co dimX(Y ) = dim(X)−
dim(Y ) is the codimension of Y in X. It is clear that if Z ⊂ Y is a closed subvariety,
then co dimX(Z) = co dimX(Y ) + co dimY (Z).

Theorem 0.8. Let X be an affine variety and let Z ⊂ X be a closed subvariety. Then
co dimX(Z) = 1 if and only if Z is an irreducible component of a hypersurface V (f) ⊂ X.

Proof: Suppose co dimX(Z) = 1. Since Z 6= X, I(Z) is a nonzero prime ideal of k[X],
so we can choose nonzero f ∈ I(Z). Clearly, f is not a unit. Thus, V (f) is a proper
subset of X and Z ⊂ V (f). Let V (f) = Y1∪· · ·∪Yk be the irreducible components of the
hypersurface V (f). Then Z ⊂ Yi for some i. But dim(Yi) < dim(X), so the hypothesis
implies that dim(Yi) ≤ dim(Z). It follows that Yi = Z.

Now suppose that Z is an irreducible component of a hypersurface V (f). Thus, f ∈
I(Z), and I(Z) is prime. If f ∈ J ⊂ I(Z), where J is prime, then Z ⊂ V (J) ⊂ V (f),
so since V (J) is irreducible, Z = V (J). Hence, J = I(Z). Thus, I(Z) is minimal
among all prime ideals of k[X] containing f . Hence by Theorem 0.3, ht(I(Z)) = 1, so
dim(Z) = dim(k[Z]) = dim(k[X]/I(Z)) = dim(k[X])− 1 = dim(X)− 1 by Thereom 0.2.

Q.E.D.

This last theorem can be proved without using 0.2 and 0.3 if X = kn since then we can
reduce to the case when V (f) is irreducible.

Corollary 0.9. Let X be an affine variety and let Y be a closed subvariety. If co dimX(Y ) =
r, then for each i = 1, . . . , r, there exists a closed subvariety Yi of X such that co dimX(Yi) =
i and Y = Yr ⊂ Yr−1 ⊂ · · · ⊂ Y1.

Proof: This is clear in case r = 1, and we argue by induction on r. Since Y 6= X,
there exists nonzero f ∈ I(Y ). Since f is a nonunit, by Theorem 0.8, all irreducible
components of V (f) have codimension 1 in X. Since Y is irreducible and Y ⊂ V (f),
it follows that Y ⊂ Z0 for some irreducible component Z0 of V (f). Take Y1 = Z0.
Then co dimY1

(Y ) = r − 1, so by induction, there exists a chain of closed subvarieties
Yr = Y ⊂ Yr−1 ⊂ · · · ⊂ Y2 in Y1 such that co dimY1

(Yi) = i − 1. Then Yr ⊂ · · · ⊂ Y1 is
the desired chain in X.

Q.E.D.

Corollary 0.10. Let X be an affine variety and let f1, . . . , fr ∈ k[X]. If Z is an irreducible
component of V (f1, . . . , fr), then co dimX(Z) ≤ r.

Proof: Proceed by induction on r, noting that the case r = 1 follows by Theorem
0.8. Let Z be an irreducible component of V (f1, . . . , fr). Since Z ⊂ V (f1), Z ⊂ Y for
some irreducible component Y of V (f1). Let f2, . . . , fr be the images of f2, . . . , fr in k[Y ].
Then Z ⊂ V (f2, . . . , fr) ⊂ V (f1, . . . , fr). Since Z is a maximal closed irreducible subset
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of V (f1, . . . , fr), it follows that Z is an irreducible component of V (f2, . . . , fr) contained
in Y . Apply the inductive assumption with Y in place of X to obtain co dimY (Z) ≤ r−1.
Since co dimX(Y ) ≤ 1 by Theorem 0.8, we get co dimX(Z) ≤ r.

Q.E.D.

Corollary 0.11. Let X be an affine variety and let Y ⊂ X be a closed subvariety.
Suppose co dimX(Y ) = r. Then Y is an irreducible component of V (f1, . . . , fr) for some
f1, . . . , fr ∈ k[X].

Proof: We prove the following stronger statement:

(*) if we are given a chain of closed subvarieties Yr ⊂ · · · ⊂ Y1 with co dimX(Yi) = i, then
there exists f1, . . . , fr ∈ k[X] such that for all 1 ≤ q ≤ r, every irreducible component of
V (f1, . . . , fq) has codimension q in X and Yq is an irreducible component of V (f1, . . . , fq).
If we assume (*) and take Yr = Y and use 0.9 to find a chain Yr ⊂ · · · ⊂ Y1 as above, we
complete the proof.

Prove (*) by induction on q. If q = 1, then by Theorem 0.8, Y1 is an irreducible
component of V (f) for some nonzero nonunit f ∈ k[X], and every irreducible component
of V (f) has codimension one in X. Now assume we have found f1, . . . , fq−1 as above. Let
Z1 = Yq−1, Z2, . . . , Zm be the irreducible components of V (f1, . . . , fq−1), so co dimX(Zj) =
q − 1 for all j. Hence, dim(Yq) < dim(Zj), so no Zj ⊂ Yq, so I(Yq) 6⊂ I(Zj) for all j.
Thus, I(Yq) 6⊂ I(Z1) ∪ · · · ∪ I(Zm) by Lemma 0.6. Hence, there exists fq ∈ I(Yq) such

that fq 6∈ I(Zj) for all j. Thus, fq is a nonzero nonunit in k[Zj] for all j, where fq is

the image of fq in k[Zj]. Hence, by Theorem 0.8 applied to fq ∈ k[Zj], every irreducible

component W of V (fq) = V (fq) ∩ Zj has co dimZj
(W ) = 1. Thus, co dimX(W ) = q. Let

V be an irreducible component of V (f1, . . . , fq). Then V ⊂ V (f1, . . . , fq−1), and it follows
that V is in some irreducible component Zj . Thus, V ⊂ V (fq) ∩ Zj. Hence V ⊂ W ,
where W is an irreducible component of V (fq) ∩ Zj. But co dimX(V ) ≤ q by Corollary
0.10, so dim(V ) ≥ dim(W ), and hence V = W . Finally, note that Yq ⊂ V (f1, . . . , fq), so
since Yq is irreducible, Yq is a subset of one of the above irreducible components V . Since
dim(Yq) = dim(V ), Yq = V .

Q.E.D.

Theorem 0.12. Let φ : X → Y be a dominant morphism of affine varieties. Let r =
dim(X)−dim(Y ). LetW ⊂ Y be a closed subvariety and let Z be an irreducible component

of φ−1(W ). If φ(Z) = W , then dim(Z) ≥ dim(W ) + r. In particular, if y ∈ φ(X), then
each irreducible component of the fiber φ−1(y) has dimension at least r.

Proof: Let s = co dimY (W ). By Corollary 0.11, W is an irreducible component of
V (f1, . . . , fs) for some f1, . . . , fs ∈ k[Y ]. Let gi = φ∗(fi) for i = 1, . . . , s. It follows
from definitions that Z ⊂ V (g1, . . . , gs). Since Z is irreducible, Z ⊂ Z0, where Z0 is
an irreducible component of V (g1, . . . , gs). Again from definitions, φ(V (g1, . . . , gs)) ⊂

V (f1, . . . , fs), so φ(Z) ⊂ φ(Z0) ⊂ V (f1, . . . , fs). Note that φ(Z0) is irreducible by Exercise
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8, problem set 1. SinceW = φ(Z) by assumption,W ⊂ φ(Z0), soW = φ(Z0) by definition
of irreducible component. Thus, φ(Z0) ⊂ W , so Z0 ⊂ φ−1(W ).

But Z is an irreducible component of φ−1(W ), so Z = Z0. Hence Z is an irreducible
component of V (g1, . . . , gs) so by Corollary 0.10, co dimX(Z) ≤ s. Thus,

dim(Z) ≥ dim(X)− s = r + dim(Y )− s = r + dim(W ).

Q.E.D.

Remark 0.13. An affine variety X is called normal if k[X] is integrally closed in k(X).
The affine variety kn is normal since a unique factorization domain is integrally closed.

Remark 0.14. Let X be a normal affine variety. Then X × kn is a normal variety.
Indeed, k[X × kn] = k[X][t1, . . . , tn] is integrally closed by Proposition 0.7.

Proposition 0.15. Let φ : X → Y be a finite dominant morphism of affine varieties.
Then

(i) φ is surjective.

(ii) If y ∈ Y , then the fiber φ−1(y) is finite.

(iii) Let Z ⊂ X be a closed subvariety. Then φ(Z) is closed, dim(Z) = dim(φ(Z)), and
φ : Z → φ(Z) is finite.

(iv) Suppose that Y is normal and let W ⊂ Y be a closed subvariety. For any irreducible
component Z of φ−1(W ), φ(Z) = W and dim(Z) = dim(W ).

Proof: We leave (i) as an exercise. For (iii), let ψ = φ|Z : Z → V := φ(Z) be the
restriction of φ to Z. We claim that ψ is finite. Given the claim, since ψ is clearly
dominant, ψ is surjective, so φ(Z) = ψ(Z) = V , so φ(Z) is closed. Thus, k[Z] is integral
over k[V ] so k(Z) is algebraic over k(V ), and it follows from properties of transcendence
bases that dim(Z) = dim(V ). Thus, we have reduced (iii) to the claim.

For the claim, let i : Z → X and let j : V → Y be the inclusions. Then since φ◦i = j◦ψ,
ψ∗j∗ = i∗φ∗. Thus, if f ∈ k[Y ],

(*)φ∗(f) + I(Z) = ψ∗(f + I(V )) in k[Z] = k[X]/I(Z) (this uses i∗ : k[X] → k[Z] takes
the quotient by I(Z) and corresponding result for j∗). Since φ is finite, k[X] is a finitely
generated φ∗k[Y ]-module. Thus, there exist a1, . . . , ak ∈ k[X] such that for each f ∈ k[X],
there exist f1, . . . , fq ∈ k[Y ] such that

(**) f =
∑k

i=1 φ
∗(fi)ai.

This identity is still true in k[X]/I(Z), so using (*) above,

f =
∑k

i=1 ψ
∗(fi + I(V )) · ai + I(Z) in k[Z]. Thus, k[Z] is a finitely generated ψ∗k[V ]

module, so ψ is finite. This completes the proof of (iii).

For (iv), let W ⊂ Y be a closed subvariety and let Z ⊂ φ−1(W ) be an irreducible
component. We claim that dim(Z) ≥ dim(W ). Thus, by (iii), dim(Z) = dim(φ(Z)) ≥
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dim(W ). Since φ(Z) is closed and φ(Z) ⊂ W , it follows that φ(Z) = W , and hence
dim(Z) = dim(W ). This reduces (iv) to the claim.

To verify the claim, recall that if V ⊂ X is a closed subvariety, then it follows from
definitions that

(*) φ∗−1I(V ) = I(φ(V )). In our situation, φ∗ is injective since φ is dominant, so I(V ) ∩
φ∗k[Y ] = φ∗(I(φ(V ))).

Let B = k[X] and let A = φ∗(k[Y ]). Let I = I(Z) and let J = φ∗(I(W )). Since
φ(Z) ⊂ W , I(W ) ⊂ I(φ(Z)), so by (*), I(Z) ∩ A = φ∗(I(φ(Z))) ⊃ J .

We apply the Going Down Theorem to the extension B ⊃ A. Let α ∈ X be a point of
φ−1(W ) contained in Z but in no other irreducible component of φ−1(W ) and let mα ⊂ B
and mφ(α) ⊂ k[Y ] be the corresponding maximal ideals. By (*), mα ∩ A = φ∗(mφ(α)).
Since φ(α) ∈ W , I(W ) ⊂ mφ(α), so J ⊂ φ∗(mφ(α)) in A. By the Going Down Theorem,
there exists a prime ideal p1 of B such that p1 ⊂ mα and p1 ∩ A = J . Then α ∈ V (p1),
so since V (p1) is irreducible, by the choice of α, V (p1) ⊂ Z. Thus, I(Z) ⊂ p1, so
I ∩ A ⊂ p1 ∩ A = J . Hence, I ∩ A = J . and the induced morphism A/J → B/I
is injective. Hence, φ∗ : k[W ] → k[Z] is injective, and it follows from properties of
transcendence degree that dim(W ) ≤ dim(Z), verifying the claim.

For (ii), let Z be an irreducible component of φ−1(y). By (iii), dim(Z) = dim(φ(Z)) =
dim(y) = 0. Therefore, Z is a point, which implies (ii).

Q.E.D.

To proceed, we need to establish some results about normal varieties (see Tauvel and
Yu, Chapter 17).

Let φ : X → Y be a dominant morphism of affine varieties. Then φ∗ : k[Y ] → k[X] is
injective, so there is an induced field homomorphism φ∗ : k(Y ) → k(X).

Remark 0.16. A dominant morphism φ : X → Y is called birational if φ∗ : k(Y ) → k(X)
is an isomorphism of fields.

For example, the morphism φ : k → V (y2 − x3) given by φ(a) = (a2, a3) is birational,
but is not an isomorphism.

Proposition 0.17. Let φ : X → Y be a birational morphism of affine varieties. Then
there exists nonzero s ∈ k[Y ] such that φ : Xφ∗(s) → Ys is an isomorphism of affine
varieties. In particular, a dominant morphism φ : X → Y of affine varieties is birational
if and only if there is a nonempty open set U ⊂ Y such that φ : φ−1(U) → U is an
isomorphism.

Proof : Let k[X] = k[α1, . . . , αm]. Since k[X] ⊂ k(X), by hypothesis, there exist
b1, . . . , bm ∈ k(Y ) such that φ∗(bi) = αi. Then each bi =

γi
si

for some γi, si 6= 0 ∈ k[Y ].

Write bi =
βi

s
with s = s1 · · · sm, and βi =

sγi
si

∈ k[Y ]. Then φ∗ : k[Y ]s → k[X]φ∗(s) is

easily seen to be onto. Since φ∗ : k(Y ) → k(X) is injective, φ∗ : k[Y ]s → k[X]φ∗(s) is
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injective. Hence φ : Xφ∗(s) → Ys is an isomorphism. This implies one direction of the last
assertion, taking U = Ys. The other direction is easy.

Q.E.D.

Lemma 0.18. Let X be a normal affine variety and let a ∈ k[X] be nonzero. Then Xa

is normal.

Proof : This follows from the following assertion: let A be an integral domain and let
B be the integral closure of A in the fraction field of A. Let S ⊂ A be a multiplicatively
closed set and assume 0 6∈ S. Then S−1B is the integral closure of S−1A in the fraction
field of A. This can be proved just as in the proof of (1) implies (2) in Proposition 39, p.
687, of Dummit and Foote.

Q.E.D.

Proposition 0.19. Let X be an affine variety. There exists nonzero a ∈ k[X] such that
Xa is normal.

EXERCISE: Prove this. The following steps are useful.

(i) Let B be the integral closure of k[X]. Show that B is a finitely generated integrally
closed k-algebra (use a commutative algebra result from these notes).

(ii) Let Y be the affine variety such that k[Y ] = B. Show that there exists a birational
morphism φ : Y → X such that φ∗ : k[X] → B is the inclusion.

(iii) Find a ∈ k[X] such that φ : Yφ∗(a) → Xa is an isomorphism. Conclude that Xa is
normal.

Remark 0.20. Let φ : X → Y be a dominant morphism of affine varieties and let
r = dim(X) − dim(Y ). By the proof of Proposition 3.26 in the book “An Introduction
to Invariants and Moduli” by Mukai, the author shows that there exists a ∈ k[Y ] and η :
Xφ∗(a) → kr such that the morphism ψ = (φ, η) : Xφ∗(a) → Ya× kr is finite and dominant,
where r = dim(X)−dim(Y ). By Proposition 0.15, it follows that dim(Xφ∗(a)) ≥ dim(Ya),
so r ≥ 0. By Proposition 0.19, there is nonzero f ∈ k[Y ] such that Yf is normal. Hence,
Yaf = (Yf )a is normal by Lemma 0.18, so Yaf × kr is normal by 0.7. Let b = af . Since
localization preserves finiteness, it follows that ψ : Xφ∗(b) → Yb × kr is a finite dominant
morphism to a normal variety.

Remark 0.21. (EXERCISE) Prove the following. Let Y be a closed subset of a variety
X, and let Y = Y1 ∪ · · · ∪ Yk be the decomposition of Y into irreducible components. If
V ⊂ Y is an nonempty open set, then the irreducible components of Y ∩ V are the Yi ∩ V
such that Yi∩V is nonempty. Further, if Yi∩V is nonempty, then dim(Yi) = dim(Yi∩V ).

Theorem 0.22. Let φ : X → Y be a dominant morphism of affine varieties. Let r =
dim(X) − dim(Y ). There exists a nonempty open set U of Y such that if W is a closed
subvariety of Y such that W ∩ U is nonempty, then for any irreducible component Z of
φ−1(W ∩ U), dim(Z) = dim(W ) + r.
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Proof : Take U = Yb as in Remark 0.20 and let V = φ−1(U), so U and V are
affine varieties. As in Remark 0.20, there exists a morphism η : V → kr such that
ψ = (φ, η) : V → U×kr is a finite dominant morphism to a normal variety. By hypothesis,
(W ∩ U) × kr is a closed subvariety of U × kr. Let Z be an irreducible component of
φ−1(W ) such that Z∩V is nonempty. By Remark 0.21, Z∩V is an irreducible component
of φ−1(W ) ∩ V = ψ−1((W ∩ U) × kr). Hence, by Proposition 0.15(iv), dim(Z ∩ V ) =
dim((W ∩U)× kr) = dim(W ∩U) + r. It follows that dim(Z) = dim(W ) + r by Remark
0.21.

Q.E.D.

Corollary 0.23. Let φ : X → Y be a dominant morphism of affine varieties. There exists
a nonempty open set U ⊂ φ(X) such that for all y ∈ U and any irreducible component Z
of φ−1(y), dim(Z) = r := dim(X)− dim(Y ).

Theorem 0.24. Let φ : X → Y be a morphism of affine varieties. For x ∈ X, let
φ−1φ(x) = Z1∪· · ·∪Zj be the irreducible components of φ−1φ(x). Let e(x) be the maximum
of the dimensions of the Zi. Let Sn(φ) := {x ∈ X : e(x) ≥ n}. Then Sn(φ) is a closed
subset of X.

Proof : By replacing Y with φ(X), we may assume that φ is dominant. Let r =
dim(X) − dim(Y ) ≥ 0 by Remark 0.20. Argue by induction on p := dim(Y ). If p = 0,
then φ−1(φ(x)) = φ−1(Y ) = X is clearly closed. Assume the assertion is true for j < p.

If n ≤ r, then Sn(φ) = X by Theorem 0.12, so we may suppose n > r. By Corollary
0.23, there exists a nonempty open subset U of Y such that Sn(φ) ⊂ X − φ−1(U). Let
W1, . . . ,Ws be the irreducible components of Y − U . Then for all i, dim(Wi) < dim(Y )
since each Wi is proper and closed. Let {Zij}j∈Ji be the irreducible components of
φ−1(Wi), and let φij : Zij → Wi be the restriction of φ to Zij. By the inductive as-
sumption, Sn(φij) is closed in Zij. The reader can check easily that Sn(φ) = ∪i,jSn(φij),
and the result follows.

Q.E.D.


