INTEGAL EXTENSIONS

SAM EVENS

1. INTRODUCTION
2. PRELIMINARY RESULTS

Discussion of integral extensions. We follow closely Samuel, Algebraic Theory of
Numbers, section 2.1.

Let R be a subring of a ring S.

Definition 2.1. An element o € S is called integral over R if there exists a monic
polynomial p(x) € R[z] such that p(a) = 0.

For aq, ...,y as above, R[aq, ..., ay] is by definition the subring of S generated by

R and {a1,...,a,}. It is not difficult to check that R[a] = {>_ria': r; € R}.

Lemma 2.2. Let R C S be as above and let N be a S-module. If S is a finitely generated
R-module, and N is a finitely generated S-module, then N is a finitely generated R-
module.

The proof of this last assertion is quite easy.

Theorem 2.3. Let a € S with R C S as above. The following are equivalent:
(1) « is integral over R.
(ii) Rla] is a finitely generated R-module.

(iii) There exists a subring T of S such that Rla] C T and T is a finitely generated
R-module.

We proved this in class. It is Prop 23 in 15.3 of Dummit and Foote.

Proposition 2.4. Let R C S be as above. Let ay,...,a, be elements of S such that
if we let R; := Rlon,...,q;], then a1 is integral over R;. Then Raq,...,qy] is a
finitely generated R-module and is integral over R.

Proof. We prove the assertion by induction on k, and note the assertion is trivial for
Ry := R. Since aj41 is integral over Ry, then by Theorem 2.3, Ryy1 = Ri[ag+1] is a
finitely generated Ri-module. By induction, Ry is a finitely generated R-module, so

by Lemma 2.2, Ry is a finitely generated R-module. This proves that Rlay, ..., ay,)
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is a finitely generated R-module. For the last assertion, let v € R|ay, ..., ay,]. Then v
is integral over R by (iii) implies (i) of Theorem 2.3. O

Corollary 2.5. For ay,...,a, € S which are each integral over R, then R[a, ..., ay)]
is integral over R, and is a finitely generated R-module.

Proof. The assertion is an easy special case of the previous proposition. ]

Corollary 2.6. Let R C S be as above, and let R be the set of elements of S which
are integral over R. Then R is a subring of S.

Proof. For a, 3 € R, then by Proposition 2.4, R[«, (] is integral over R. Hence, o — 3
and af are integral over R. O

Proposition 2.7. Let R, S, and T be rings, with R a subring of S, and S a subring of
T. If S is integral over R and T is integral over S, then T is integral over R.

Proof. Let a € T. Since T is integral over S, there exists p(z) = so+s12+. .. 5,127 '+
™ € S[x] such that p(a) = 0. It follows that « is integral over R’ := R][sg,. .., Sp—1].
By Corollary 2.5, the ring R’ is finitely generated as a R-module. By Proposition
2.4, R'[a] is finitely generated over R'. Hence by lemma 2.2, it follows that R'[a] is a
finitely generated R-module. Hence by (iii) implies (i) of Theorem 2.3, it follows that
« is integral over R. This proves the assertion. O
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