
NOTES ON THE ZARISKI TANGENT SPACE

SAM EVENS

Let X be an affine algebraic set. We sketch definitions and basic properties of vector
fields and tangent spaces at points of X.

For perspective, recall how we define the tangent space of a differentiable manifold M .
We cover M by open neighborhoods Ui which are identified with R

n, and then we transfer
our understanding of the tangent space at a point of R

n to define the tangent space at a
point in Ui. This can be shown to be independent of choices. This approach is not a good
idea for an affine algebraic set X because X does not have an open cover by Zariski open
sets that are identified with an open set in some C

n. First of all, if this were the case,
then X would be smooth, so we would miss information about singularities, but secondly
even smooth affine varieties are not necessarily locally isomorphic to some C

n.

We first discuss vector fields.

Remark 0.1. Let R be a finitely generated C-algebra and let M be a R-module. A
M-valued derivation of R is a C-linear map D : R → M such that the Leibniz rule,
D(fg) = fD(g) + gD(f) for all f, g ∈ R, is satisfied.

Note that it follows from definitions that D(a) = 0 if a ∈ C is a constant.

Remark 0.2. Let X be an affine set. By definition, a vector field on X is a C[X]-valued
derivation of C[X].

We compute vector fields on X = C
n. Let R = C[X] = C[x1, . . . , xn]. Let D : R → R

be a R-valued derivation. Then it follows from the Leibniz rule that D is determined by
D(xi). Consider the operator ξD : R → R given by ξD =

∑n

i=1D(xi)∂i, where ∂i is partial
differentiation with respect to xi. It is easy to check that ξD = D. In particular, every
derivation is an expression of the form

∑
ai∂i with ai ∈ R, so vector fields on X are just

ordinary vector fields with polynomial coefficients.

Note that a vector field on X is determined by its values on the generators of C[X].

Remark 0.3. EXERCISE 1 Compute the vector fields on V (y2−x3). Show that they are
all of the form ξa,b = a∂x + b∂y where a, b ∈ C[x, y]/(y2 − x3). What conditions must a
and b satisfy for ξa,b to be a vector field. Compute the vector fields on V (y − x3). Show
that they are the same as vector fields on C.

In ordinary calculus, we can obtain tangent vectors at a point in R
n by specializing

vector fields at that point. For example, the vector field ex∂x + sin(y)∂y specializes to the
1
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tangent vector ∂x by evaluating at (0, 0). We can do the same thing with our definition
of vector fields as follows.

Let R = C[X] and let D : R → R be a R-valued derivation and let α ∈ X be a
point. Identify R/mα

∼= C via f + mα 7→ f(α). Then we obtain a C-valued derivation
Dα : R → C by the formula Dα(f) = (D(f))(α). Then it is easy to check that Dα is a
C-valued derivation and if f, g ∈ R, then Dα(fg) = f(α)Dα(g) + g(α)Dα(f). Since in
ordinary calculus, all tangent vectors arise by specialization of vector fields, it is somewhat
natural to define the Zariski tangent space as follows.

Remark 0.4. If α ∈ X, then the Zariski tangent space Tα(X) to X at α is the set of all
C-valued derivations D of R such that D(fg) = f(α)D(g) + g(α)D(f) for all f, g ∈ R.
A C-valued derivation of R as above is then called a tangent vector at α.

It is easy to see that Tα(X) is a complex vector space under addition of derivations. It is
also not difficult to show that a tangent vector D is determined by its value on generators
of C[X]. Given this, the reader can easily show that Tα(Cn) is the C-span of ∂j,α, where
∂j,α(f) = (∂j(f))(α).

We use this to identify Tα(Cn) ∼= C
n, by letting (b1, . . . , bn) ∈ C

n correspond to b1∂1,α +
· · · + bn∂n, α.

There is an alternative definition of the Zariski tangent space at a point α which em-
phasizes more the role of maximal ideals. Let m = mα be the maximal ideal of α. Then
m/m2 is naturally a R-module with trivial m-action and hence is a C ∼= R/m vector space.
Since R is Noetherian, m is a finitely generated R-module, and hence its quotient m/m2

is a finitely generated R-module with trivial m-action. Thus, m/m2 is a finitely generated
R/m = C-module, so m/m2 is a finite dimensional complex vector space.

Remark 0.5. The Zariski cotangent space T ∗

α(X) is the finite dimensional C-vector space
m/m2.

For f ∈ R, let df := df(α) := f − f(α) + (m2) ∈ m/m2. It follows from an easy
calculation that d(fg)(α) = f(α)dg(α) + g(α)df(α). Further, if X = C

n, then df =∑n

i=1 ∂i(f)(α)dxi. This is the usual formula for the de Rham differential in calculus, and
it can be checked easily for monomials and follows in general by linearity.

Further, note that dxi(∂j) = ∂j(xi + m
2)(α) = δij.

We would like the cotangent space to be the linear dual of the tangent space. This
follows from the following result.

Proposition 0.6. The linear dual (m/m2)∗ ∼= Tα(X). In particular, Tα(X) is a finite
dimensional vector space.

Proof : To prove this, identify C with constant functions onX. Then R = C[X] = C⊕m

as vector spaces. Define a map χ : Tα(X) → (m/m2)∗ by χ(D)(f) = D(f). To check χ(D)
is well-defined, note that if f, g ∈ m, then χD(f · g) = f(α)D(g) + g(α)D(f) = 0 since
f, g ∈ m = mα. It follows from definitions that χD(m2) = 0. Conversely, if η ∈ (m/m2)∗,
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we may regard η as a linear map η : m → C such that η(m2) = 0. Define Dη : R → C

by setting Dη(c) = 0 if c ∈ C and Dη(f) = η(f) for f ∈ m. This defines Dη uniquely,
and the reader can check that Dη is a derivation. It is not difficult to check that χ and
η 7→ Dη are inverses, which completes the proof of the Proposition.

Q.E.D.

Using this result, we can show that the tangent space can be computed using a neigh-
borhood of a point.

Lemma 0.7. Let X be an affine algebraic set and let U ⊂ X be a principal open set and
consider a point α ∈ U . Then Tα(U) ∼= Tα(X).

Proof : Let m = mα ∈ C[X] be the maximal ideal of functions on X vanishing at α.
Let U = Xf and let S = (fk). Then n := S−1

m is the maximal ideal of functions in C[U ]
vanishing at α. By Proposition 0.6, it suffices to prove that m/m2 ∼= n/n2. For this, verify
the following easy fact: let R be a ring and let M be a R-module, and let S ⊂ R be a
multiplicative set such that for all s ∈ S, the map ls : M → M,x 7→ s · x is a R-module
isomorphism. Then it follows from definitions that the canonical map M → S−1M given
by x 7→ x

1
is an isomorphism of R-modules. Since α ∈ Xf , f(α) 6= 0, so f 6∈ m. It

follows that f + m is nonzero in the field A/m, and lf acts as an isomorphism on the
A-module m/m2, since A acts on m/m2 through its quotient A/m. Thus the above easy
fact applies to give m/m2 ∼= S−1(m/m2). But S−1(m/m2) ∼= (S−1

m)/(S−1
m)2 by exactness

of localization. Hence m/m2 ∼= n/n2, which completes the proof.

Q.E.D.

It is useful to define the tangent space for an affine algebraic set X = V (I) ⊂ C
n. As

a set,

TX = {(α,D) : α ∈ X,D ∈ Tα(X)}, and we would like to give TX the structure of an
affine algebraic set. For this, it is convenient to introduce an auxiliary ring.

Remark 0.8. The ring of dual numbers is the ring C[t]/(t2). We let δ = t+ (t2), so the
ring of dual numbers is

C[δ] = {a+ bδ : a, b ∈ C, δ2 = 0}.

Define p : C[δ] → C by p(a + bδ) = a. It is routine to check that p is an algebra
homomorphism.

Lemma 0.9. Let R = C[X] be the ring of functions on an affine algebraic set X ⊂ C
n

and let I = I(X). There is a bijection η : Homalg(R,C[δ]) → T (X) between the collection
of algebra homomorphisms from R to the ring of dual numbers and the tangent space.

Proof : If φ : R → C[δ] is an algebra homomorphism, let φ(f) = a(f) + b(f)δ. Then
f 7→ p1 ◦ φ(f) = a(f) is an algebra homomorphism, so there is a maximal ideal mα with
α ∈ X such that mα is the kernel of f 7→ a(f). The reader can check that f 7→ D(f) :=



4 S. EVENS

b(f) is a derivation and we define η by the formula η(φ) := (α,D) ∈ T (X). Conversely,
if (α,D) ∈ T (X), define φα,D : R → C[δ] by the formula φα,D(f) = f(α) + D(f)δ.
It is routine to check that φ is an algebra homomorphism, and that φ 7→ η(φ) and
(α,D) 7→ φα,D are inverse equivalences. This completes the proof of the Lemma.

Q.E.D.

Let A = C[x1, . . . , xn] = C[Cn]. Let φ : A→ C[δ] be an algebra homomorphism. Then
φ(xi) = ai(φ) + bi(φ)δ for some ai(φ), bi(φ) ∈ C. Since φ is determined by its value on
generators, it is routine to check that the map

ψ : Homalg(A,C[δ]) → T (Cn) = C
n × C

n, ψ(φ) = (a1(φ), . . . , an(φ); b1(φ), . . . , bn(φ)) is
bijective. We treat this bijection as an identification, and use it to regard Homalg(A,C[δ])
as the algebraic variety C

2n = C
n × C

n.

Proposition 0.10. Let X be an affine algebraic set and let R = C[X] = A/I as above.
Use Lemma 0.9 to identify T (X) = Homalg(R,C[δ]). Identify Homalg(R,C[δ]) = {φ ∈
T (Cn) : φ(I) = 0}. Then under these identifications, T (X) is a closed algebraic set in
T (Cn) = C

n × C
n. Further, the map p : T (X) → X given by p((α,D)) = α and the map

i : X → T (X) given by i(α) = (α, 0) are both morphisms.

Proof : To prove this, note that Homalg(R,C[δ]) = {φ ∈ Homalg(A,C[δ]) : φ(I) = 0},
by the universal property of quotient rings. Further, note that if φ ∈ Homalg(A,C[δ]),
and I = (f1, . . . , fr), then φ(I) = 0 if and only if φ(f1) = · · · = φ(fr) = 0. Thus, if
φ ∈ Homalg(A,C[δ]), φ ∈ T (X) if and only if φ(fj) = 0 for all j = 1, . . . , r.

We have identified φ ∈ Homalg(A,C[δ]) as a point of C
n × C

n via the map

φ 7→ (a1, . . . , an; b1, . . . , bn), where φ(xi) = ai + biδ. Let fj =
∑
cEx1

e1 . . . xn
en , where

E = (e1, . . . , en) runs through collections of nonnegative integers. Then

φ(fj) =
∑
cE(a1 + b1δ)

e1 . . . (an + bnδ)
en = rj + sjδ for some rj, sj ∈ C. We compute rj

and sj by using the formula (a + bδ)k = ak + kak−1bδ. It follows that φ(fj) = 0 if and
only if rj = sj = 0.

The constant coefficient rj is:

A(j):
∑

E cEa1
e1 . . . an

en = 0, and rj = 0 if and only if the point (a1, . . . , an) ∈ V (fj).

The δ coefficient sj is:

B(j):
∑

E cE
∑n

i=1 a1
e1 . . . η(ai

ei)an
en , where η(ai

ei) := eiai
ei−1.

Since a point (a1, . . . , an; b1, . . . , bn) attached to a homomorphism φ : A → C[δ] corre-
sponds to a tangent vector in T (X) if and only if φ(fj) = 0 for all j = 1, . . . , r, it follows
that we may identify

T (X) with the set of points (a1, . . . , an; b1, . . . , bn) ∈ C
n × C

n where the polynomial
identities A(j) and B(j) are satisfied for j = 1, . . . , r. In particular, T (X) may be
identified with an affine algebraic subset of C

n × C
n, which establishes the first part of

the proposition.
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For the remainder, note that the map p̃ : T (Cn) = C
n×C

n → C
n given by p̃(α,D) = α

is a morphism, and p is the restriction of p̃ to T (X), so p is a morphism. A similar
argument shows that i is a morphism.

Q.E.D.

Corollary 0.11. (OF LAST PROOF) Let X = V (I) ⊂ C
n where I = (f1, . . . , fr). Then

Tα(X) = {D =
n∑

j=1

bj∂j ∈ Tα(Cn) : dfk(D) =
n∑

j=1

∂j(fk)(α) · bj = 0, k = 1, . . . , r}.

Proof : Indeed, D ∈ Tα(X) if and only if (α,D) ∈ T (X), which is true if and only if
D satisfies the equations B(k) for k = 1, . . . , r with α = (a1, . . . , an). It is easy to check
that the equation B(k) is equivalent to the condition that dfk(D) = 0.

Q.E.D.

It is useful to think about these result in a simple example. Let X = V (y2 −x3), where
x = x1 and y = x2 as usual. The Proposition identifies T (X) with the set of points
{(a1, a2; b1, b2)} satisfying the identities

a2
2 = a1

3, and 2a2b2 = 3a1
2b1.

Remark 0.12. Even if X is an affine variety, T (X) need not be an affine variety.

Remark 0.13. EXERCISE T Let X = V (y2 − x3) ⊂ C
2. Show that T (X) is not an

irreducible affine algebraic subset of C
4. In particular, show T(0,0)(X) is an irreducible

component of T (X). Find another irreducible component of T (X).

Remark 0.14. (EXERCISE 2) Compute the tangent space to V (x2 − yz) at (0, 0, 0) in
C

3. What is its dimension? Compute the tangent space at any point α ∈ V (x2 − yz)
besides (0, 0, 0). What is its dimension?

Remark 0.15. Let X be an affine variety and let α ∈ X. We will show that dim(Tα(X)) ≥
dim(X). α is called a smooth point of X if dim(Tα(X)) = dim(X), and α is called a sin-
gular point of X if dim(Tα(X)) > dim(X). An affine variety X is called smooth or
nonsingular if all of its points are smooth, and otherwise is called singular. If X is an
affine algebraic set, we may say X is smooth if its irreducible components are its connected
components and each irreducible component is smooth. Otherwise, we say X is singular.
The intuition is that on the affine algebraic set V (xy) which is one-dimensional, the tan-
gent space at (0, 0) is two dimensional since ∂x and ∂y evaluate at (0, 0) to give linearly
independent derivations. Thus, the Zariski tangent space is bigger than we would expect
for a smooth variety of dimension 1, so V (xy) is singular at (0, 0). In general, if X1, X2

are two irreducible components of an affine algebraic set X which meet at a point α, then
X should be singular at α since there are tangent vectors tangent to X2 but not to X1 and
vice versa, so the Zariski tangent space is too big.
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Remark 0.16. Let U ⊂ X be an affine open subset of an affine variety X and let α ∈ U .
Then by Lemma 0.7, α is a smooth point of U if and only if α is a smooth point of X.

Remark 0.17. Let X be an affine variety and let S be the set of singular points of X,
and denote by Xr := X − S. We will prove that S is a closed subset of X and Xr is an
open, dense subset of X. To prove these assertions, we will proceed as follows:

(1) Prove the assertions for an irreducible hypersurface of affine space C
n.

(2) Use upper semi-continuity of dimension to prove that S is closed.

(3) Let dim(X) = d. We show there exists a birational morphism φ : X → V (f), where
V (f) ⊂ C

d+1 is the zero set of an irreducible polynomial.

(4) Show that a morphism of varieties induces a morphism of tangent spaces with good
properties.

(5) Use invariance properties of tangent space under an isomorphism and (3) to show that
the special case (1) implies the assertion in general.

We begin with step (1).

Proposition 0.18. Let f ∈ C[x1, . . . , xn] = C[Cn] be irreducible and let Y = V (f) be the
corresponding affine variety. Then the singular set S of Y is a proper closed subset.

Proof : Since f is irreducible, it follows easily that (f) is a prime ideal of C[x1, . . . , xn],
so Y is irreducible. Further, dim(Y ) = n − 1 by Theorem 0.8 of the notes on fiber
dimension. By Corollary 0.11 of these notes, if α ∈ Y , then

Tα(Y ) = {
∑

ai∂i ∈ Tα(Cn) :
∑

ai∂i(f)(α) = 0}.

Then either the vector df(α) := ∂1(f)(α)dx1 + . . . ∂n(f)(α))dxn = 0 or it is nonzero, and
the tangent space Tα(Y ) is the subspace annihilated by df(α). If it is zero, then Tα(Y ) is
n-dimensional so α is a singular point. If it is nonzero, then Tα(Y ) is n− 1-dimensional,
so α is a smooth point. It follows that S = ∩n

i=1V (∂i(f)) is closed.

If every α ∈ Y were a singular point, then ∂i(f)(α) = 0 for all α ∈ Y and i = 1, . . . , n,
so by the Nullstellensatz, ∂i(f) ∈ I(Y ) = (f). But the degree of ∂i(f) is less than the
degree of f (by convention, degree of zero polynomial is −1), so if f divides ∂i(f), it
follows that ∂i(f) = 0 for all i, so f is constant. This contradicts the assumption that f
is irreducible, and completes the proof.

Q.E.D.

We now establish a generalization of Step (2).

Proposition 0.19. Let X be an affine variety. Let Sk(X) := {α ∈ X : dim(Tα(X)) ≥ k}.
Then Sk(X) is closed in X.

Proof : Let TX = ∪i∈ITi be the decomposition of the affine algebraic set TX into
irreducible components. Let pi : Ti → X be the restriction of p : TX → X to Ti. For



7

α ∈ X, let Sk(pi) be the set of (α,D) ∈ Ti such that there is an irreducible component
of p−1

i (α) of dimension at least k. Sk(pi) is the subset of Ti associated to the morphism
pi : Ti → X in Theorem 0.24 of the notes on fiber dimension.

If α ∈ X, then Tα(X) = p−1(α) = ∪i∈Ip
−1
i (α) is a vector space. Thus, Tα(X) is

irreducible, so since each p−1
i (α) is closed, Tα(X) = p−1

i (α) for some i ∈ I. In particular,

(*) There is i ∈ I such that p−1
i (α) is irreducible, and dim(Tα(X)) is the maximum

dimension of the irreducible components of p−1
i (α) among i ∈ I.

Let Sk(p) = ∪i∈ISk(pi). By (*), Sk(p) = {(α,D) : dim(Tα(X)) ≥ k}.

Since Sk(pi) is closed for each i ∈ I by Theorem 0.24 of the notes on fiber dimension,
it follows that Sk(p) is closed. Since (α, 0) ∈ Tα(X) for all α ∈ X, it follows that
Sk(X) = i−1(Sk(p)), and hence Sk(X) is closed in X.

Q.E.D.

Proposition 0.20. Let Sing(X) be the set of singular points of an affine variety X.
Then Sing(X) is closed.

Proof : By definition, Sing(X) = Sd+1(X), where d = dim(X). Now apply Proposition
0.19.

Q.E.D.

For Step (3), we want to prove that every affine variety is birational to a hypersurface.

For this, we recall some results about unique factorization domains (UFD’s) (see Dum-
mit and Foote, 9.3, or Ash, section 2.9). This is standard material, but I didn’t find it
explained in the literature in the needed form.

Let R be a unique factorization domain and let F = Frac(R) be its fraction field. Let
m(x) ∈ F [x]. We can write m(x) = anx

n + · · · + a0 with ai = bi

ci

∈ F , where bi, ci ∈ R
and an 6= 0. Let d = cn · · · c0 be the product of the denominators of the coefficieents, so
d · m(x) = m1(x) ∈ R[x]. For a polynomial f(x) ∈ R[x], let c = c(f) be the greatest
common divisor of its coefficients. c is called the content of f . Then m1(x) = c ·m0(x)
with m0(x) ∈ R[x]. Then m0(x) is primitive, i.e., the greatest common divisor of its
coefficients is 1. Thus, m(x) = c

d
m0(x) with m0(x) ∈ R[x].

Proposition 0.21. (Dummit and Foote, Corollary 6 of 9.3) Let f(x) ∈ R[x] be irreducible
in F [x] and also primitive. Then f(x) is irreducible in R[x].

It follows from definitions that if the polynomial m(x) is irreducible in F [x], then m0(x)
is irreducible in F [x], so by the Proposition, m0(x) is irreducible in R[x].

Lemma 0.22. Let R be a UFD with fraction field F and let m(x) ∈ F [x] be irreducible.
Then there exists an irreducible polynomial m0(x) ∈ R[x] such that R[x]/(m0(x)) is an
integral domain with fraction field F [x]/(m(x)) = F [x]/(m0(x)).
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Proof : To prove this, construct m0(x) from m(x) as above, and note that m(x) and
m0(x) generate the same ideal in F [x]. Consider the ring homomorphism R[x]/(m0(x)) →
F [x]/F [x] · m0(x) induced by the obvious ring homomorphism R[x] → F [x]. Suppose
p ∈ R[x] and assume p ∈ F [x] · m0(x). Then p = h · m0(x) for some h ∈ F [x]. By
Gauss’s Lemma (see Proposition 5 of 9.3 in [DF]), it follows that m0(x) divides p in R[x].
Hence p + (m0(x)) = 0 in R[x]/(m0(x)), so the ring homomorphism R[x]/(m0(x)) →
F [x]/(m0(x)) is injective. It follows that R[x]/(m0(x)) is an integral domain, and it is
easy to show its fraction field is F [x]/(m0(x)).

Q.E.D.

Remark 0.23. Let η : R → S be an injective homomorphism of integral domains. There
is an induced field homomorphism η̃ : Frac(R) → Frac(S) with the property that η̃(a

b
) =

η(a)
η(b)

. We call η̃ the localization of η.

Lemma 0.24. Let X and Y be affine varieties and suppose there exists a C-algebra
isomorphism of the function fields χ : C(Y ) → C(X). Then there exists c ∈ C[X] and a
birational morphism φ : Xc → Y such that φ∗ : C[Y ] → C[Xc] extends under localization
to χ : C(Y ) → C(X) = Frac(C[Xc]).

Proof : Since C[Y ] and C[X] are integral domains, they are subrings of their fraction
fields. Let C[Y ] = C[α1, . . . , αn] be generated by α1, . . . , αn, so χ(C[Y ]) = C[χ(α1), . . . , χ(αn)].
Let χ(αi) = bi

ci

, with bi, ci ∈ C[X]. Let c = c1 · · · cn. Thus, χ(C[Y ]) ⊂ C[X]c, so χ re-

stricts to give an injective ring homomorphism χ : C[Y ] → C[Xc], and hence a morphism
of varieties φ : Xc → Y such that χ = φ∗. Then φ is dominant since χ is injective, and
the induced field homomorphism χ : C(Y ) → C(X) is an isomorphism by assumption, so
φ : Xc → Y is birational.

Q.E.D.

Remark 0.25. EXERCISE Let X = V (y2−x3) and let Y = C. Give a field isomorphism
χ : C(Y ) → C(X) and find c ∈ C[X] and the morphism φ : Xc → Y inducing χ.

Proposition 0.26. Let X be a d-dimensional affine variety. Then there exists nonzero
c ∈ C[X], an irreducible polynomial f ∈ C[Cd+1] and a birational morphism φ : Xc →
V (f).

Proof : By the Noether normalization Lemma, there exist β1, . . . , βd ∈ C[X] that are al-
gebraically independent over C such that C[X] is integral over C[β1, . . . , βd]. It follows that
C(X) is algebraic over C(β1, . . . , βd). Since these fields have characteristic zero, this field
extension is separable, so by the theorem of the primitive element (Dummit and Foote,
Theorem 25 of 14.4), C(X) = C(β1, . . . , βd)[α], where α ∈ C(X) is an element algebraic
over C(β1, . . . , βd). Let m(y) be the minimal polynomial of α over C(β1, . . . , βd), so that
C(β1, . . . , βd)[α] ∼= C(β1, . . . , βd)[y]/(m(y)). Note that C[β1, . . . , βd] ∼= C[x1, . . . , xd] is a
UFD since the collection β1, . . . , βd is algebraically independent. Since m(y) is irreducible
over C(β1, . . . , βd) by Lemma 0.22, there exists p(y) ∈ C[β1, . . . , βd][y] with p(α) = 0, p(y)
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irreducible and such that C[β1, . . . , βd][y]/(p(y)) injects into C(β1, . . . , βd)[y]/(p(y)) ∼=
C(β1, . . . , βd)[α] = C(X).

Consider the unique C-algebra isomorphism ψ : C[x1, . . . , xd] → C[β1, . . . , βd] such that
ψ(xi) = βi, which extends to a C-algebra isomorphism C[x1, . . . , xd][y] → C[β1, . . . , βd][y]
mapping y to y. Let ψ(q(y)) = p(y). This induces a C-algebra isomorphism ψ1 :
C[x1, . . . , xd][y]/(q(y)) → C[β1, . . . , βd][y]/(p(y)). The localization χ of ψ1 is a field iso-
morphism χ : C(x1, . . . , xd)[y]/(q(y)) → C(β1, . . . , βd)[y]/(p(y)) ∼= C(X).

Let Y = V (q) ⊂ C
d+1. Since p(y) is irreducible, q(y) is irreducible, and it follows that

Y is an irreducible hypersurface in C
d+1, where y is regarded as the d + 1th variable.

Further, C(Y ) = C(x1, . . . , xd)[y]/(q(y)), so χ : C(Y ) → C(X) is an isomorphism of
function fields. Hence, by Lemma 0.24, there exists c ∈ C[X] and a birational morphism
φ : Xc → Y such that χ is the localization of φ∗.

Q.E.D.

For Step (4), let φ : X → Y be a morphism of affine algebraic sets with corresponding
algebra homomorphism φ∗ : C[Y ] → C[X]. Then if x ∈ X, φ∗(mφ(x)) ⊂ mx. In particular,
we obtain a linear map dφ∗

x : T ∗

φ(x)(Y ) → T ∗

x (X) given by dφ∗

x(f + m
2
φ(x)) = φ∗(f) + m

2
x,

which is called the codifferential. Its transpose dφx : Tx(X) → Tφ(x)(X) is called the
differential of φ at x.

Note that if in addition ψ : Y → Z is a morphism, then d(ψ ◦ φ)∗x = dφ∗

x ◦ dψ
∗

φ(x), since

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗. It follows that d(ψ ◦ φ)x = dψφ(x) ◦ dφx.

Remark 0.27. EXERCISE 3 If φ : X → Y is an isomorphism of affine varieties, then
for all x ∈ X, dφx : Tx(X) → Tφ(x)(Y ) is an isomorphism of vector spaces. In particular,
if X is smooth and Y is singular, there is no isomorphism between X and Y .

Remark 0.28. EXERCISE 4 Let X = C and let Y = V (y2−x3) ∈ C
2. Define φ : X → Y

by φ(b) = (b2, b3).

(i) Let β = (0, 0) ∈ Y . Compute Tβ(Y ) and T ∗

β (Y ).

(ii) Let a = 0 ∈ X and compute dφa : Ta(X) → Tβ(Y ) and dφa
∗ : T ∗

β (Y ) → T ∗

a (X).

(iii) Prove that X and Y are not isomorphic as affine varieties.

Remark 0.29. EXERCISE 5; these are all good exercises.

(i) Define φ : GL(n) → C by φ(g) = det(g). For g ∈ GL(n), use the fact that GL(n)
is open in M(n) to identify Tg(GL(n)) = Tg(M(n)) = M(n) and for z ∈ C, identify
Tz(C) = C. Prove that dφg(A) = Tr(A), the trace of A.

(ii) Let i : Y → X be the inclusion of a closed subset Y in an affine set X. Prove that if
y ∈ Y , then diy : Ty(Y ) → Tx(X) is injective.

(iii) If φ : C
n → C

m is a linear map, show that if a ∈ C
n, we can identify dφa : Ta(C

n) →
Tφ(a)(C

n) with φ.



10 S. EVENS

We combine the preceding results to prove the following theorem, which is the main
result of these notes.

Theorem 0.30. Let X be an affine variety and let α ∈ X. Then

(1) dim(Tα(X)) ≥ dim(X);

(2) The smooth locus of X is open and nonempty.

Proof : By Proposition 0.26, there is c ∈ C[X] and a birational morphism φ : Xc →
Y := V (f) to an irreducible hypersurface. By Proposition 0.17 of the notes on fiber
dimension, there is a nonempty affine open set V of Y such that U1 := φ−1(V ) is affine
open in Xc and φ : U1 → V is an isomorphism of affine varieties. By Proposition 0.18,
the set Yr of smooth points of Y is open and dense. Since Y is irreducible, Vr := Yr ∩V is
nonempty and Vr is smooth by Remark 0.16. Let U = φ−1(Vr) and note that φ : U → Vr

is an isomorphism of affine varieties. By Exercise 3 above, it follows that U is smooth.
Hence, U ⊂ Xr, where Xr is the set of smooth points of Xr, so in particular, Xr is
nonempty. Since Sing(X) is closed, (2) follows.

To establish (1), note that Xr ⊂ Sd(X), and Sd(X) is closed in X by Proposition 0.19.
Since X is irreducible and Xr is open and nonempty, Xr = X, so X = Sd(X). This gives
(1).

Q.E.D.

The assertion that dim(Tα(X)) ≥ dim(X) means in some rough sense that around α,
C[X] cannot be generated by fewer than dim(X) functions. We make this more precise
below.

Lemma 0.31. (COROLLARY TO NAKAYAMA’S LEMMA) Let R be a local ring with
maximal ideal n and let M be a finitely generated R-module and let N ⊂ M be a R-
submodule. If M = N + m ·M , then M = N .

Proof : M/N is a finitely generated R-module and the hypothesis implies that M/N =
m ·M/N . Hence, by Nakayama’s Lemma, M/N = 0, so M = N .

Q.E.D.

Lemma 0.32. Let R be an integral domain with maximal ideal m and suppose R is C-
algebra and R/m = C. Let S = R − m and let n = S−1

m, the maximal ideal of the local
ring S−1R. Then the map m/m2 → n/n2 given by y + m

2 7→ y

1
+ n

2 is an isomorphism of
R-modules.

Proof : This is the same as the proof of Lemma 0.7.

Q.E.D.

Lemma 0.33. For a point α in an affine variety X, let Rα = S−1
C[X], where S = R−mα

and let m = S−1
mα. Let f1, . . . , fk ∈ Rα. Then m = Rαf1 + · · · + Rαfk if and only if

m/m2 is generated as a Rα/m-vector space by the images of f1, . . . , fk.
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One direction of this result is easy. The other direction is a consequence of Nakayama’s
Lemma. The vector space m/m2 = mα/mα

2, so it follows that the dimension of Tα(X) is
the same as the minimal number of generators for the Rα-module m.

By Lemma 0.32, m/m2 ∼= mα/mα
2, so that the Lemma implies that the dimension of

Tα(X) is the minimal number of generators of the local ring Rα.

The local ring Rα with maximal ideal m from Lemma 0.33 is called a regular local ring
if the length of a maximal chain of prime ideals of Rα is dim(X). A regular local ring is
an integral domain, and is integrally closed in its fraction field.

We state the following result from commutative algebra.

Proposition 0.34. Let α ∈ X be a smooth point of an affine variety X. Then Rα is a
regular local ring.

A point α ∈ X is called normal if Rα is integrally closed. If U = Xf ⊂ X is the affine
open set defined by nonvanishing of f , then U is normal if and only if each point α ∈ U
is normal in X. By Theorem 0.30 and Proposition 0.34, there is a nonempty open set
V ⊂ X such that if α ∈ V , α is a normal point of X. Since every open set in X is a union
of principal open sets, it follows that there is a principal open set of X that is normal.
This gives an alternative proof of Proposition 0.19 from the notes on fiber dimension, but
requires more commutative algebra


