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We prove properties of transcendence degree.
Let E/F be a field extension. An element α ∈ E/F is called transcendental if α

is not algebraic over F .
A subset S of E is called algebraically independent over F if for every nonempty

finite subset {α1, . . . , αn} ⊂ S, there is no nonzero polynomial f = f(x1, . . . , xn) ∈
F [x1, . . . , xn] such that f(α1, . . . , αn) = 0. It follows that the empty set is alge-
braically independent. If S is not algebraically independent over F , S is called
algebraically dependent over F .

Note that a subset of an algebraically independent set is trivially algebraically
independent.

Definition 1. If E/F is a field extension, a subset S of E is called a transcendence

basis of E/F if S is algebraically independent over F and E/F (S) is algebraic.

If E is algebraic over F (S), we say that S spans E algebraically over F . Thus,
a transcendence basis is an algebraically independent set over F spanning E alge-
braically over F . The terminology suggests the close analogy between the notion
of transcendence basis and linear basis of a vector space over a field F .

The main results to prove are:

Theorem 2 (Ash, 6.9.3). If E/F is a field extension, there is a transcendence

basis of E over F .

Theorem 3 (Ash, 6.9.5). Let E/F be a field extension with transcendence bases

S and T . Then S is finite if and only if T is finite, and if so, |S| = |T |.

More generally, if S and T are two transcendence bases of E over F , then |S| =
|T |. Theorem 3 above suffices for most applications in algebra.

Definition. Let E/F be a field extension with transcendence basis S. Then the

transcendence degree of E/F is |S|, which is independent of the choice of S by the

above remarks.

Let F be a field and let f = f(x1, . . . , xn) ∈ F [x1, . . . , xn] be nonzero. We say f
depends on x1 if f is not in F [x2, . . . , xn], viewed as a subring of F [x1, . . . , xn] in
the obvious way.

Lemma 4. Let E/F be a field extension and let S ⊂ E be algebraically independent

over F . Let α ∈ E − S. Then α is algebraic over F (S) if and only if S ∪ {α} is

algebraically dependent over F .
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The analogous assertion in linear algebra is that if V is a vector space over a
field F and S ⊂ V is linearly independent and v ∈ V is not in S, then v is in the
F -span of S if and only if S ∪ {v} is linearly dependent. This linear algebra result
is essentially trivial. Lemma 4 is treated as a triviality in Ash, section 6.9. While
the proof of Lemma 4 is not difficult, it is nontrivial, and it is useful to make it
explicit.

Proof of Lemma 4. If α is algebraic over F (S), there are ck−1, . . . , c0 ∈ F (S) so
that

αk + ck−1α
k−1 + c1α+ c0 = 0

It is easy to check that F (S) is the fraction field of F [S], the smallest subring
of E containing F and S. Thus, each ci =

ai

bi
, with ai, bi ∈ F [S] and bi nonzero.

Then d := Πk−1
i=0 bi ∈ F [S] is nonzero.

Let g(y) = dyk + dck−1y
k−1 + · · · + dc0 ∈ F [S][y]. Then g(y) is a nonzero

polynomial, and g(α) = 0.

Since every element γ of F [S] is in F [C], where C ⊂ S is a finite subset depending
on γ, it follows that the elements d and dci, i = 0, . . . , k − 1, are in F [W ] for some
subset W = {β1, . . . , βs} ⊂ S.

Let R = F [x1, . . . , xs] and use the universal property of polynomial rings to
define a surjective ring homomorphism χ : R → F [W ] by χ(xi) = βi for all i
and χ|F = idF . Identify R[y] = F [y, x1, . . . , xs], and extend χ to a surjective ring
homomorphism χ : R[y] → F [W ][y] by χ(

∑
aiy

i) =
∑

χ(ai)y
i (the ai are in R).

It follows from the definition that if f ∈ R[y] = F [y, x1, . . . , xs], and γ ∈ F , then
χ(f)(γ) = f(γ, β1, . . . , βm).

Thus, there is nonzero f ∈ R[y] = F [y, x1, . . . , xs] such that χ(f(y)) = g(y), so
f(α, β1, . . . , βs) = χ(f)(α) = g(α) = 0. Hence, S ∪ {α} is algebraically dependent
over F .

Conversely, assume S ∪ {α} is algebraically dependent over F , so there exists
a subset W = {β1, . . . , βs} ⊂ S and a nonzero polynomial f ∈ F [y, x1, . . . , xs]
such that f(α, β1, . . . , βs) = 0. Let R = F [y] as above, and R[x1, . . . , xs] =
F [y, x1, . . . , xs], and define χ : F [y, x1, . . . , xs] → F [y] by mapping xi to βi as
above. Then f depends on y since W is algebraically independent over F , as it is
a subset of S. Thus, we may write

f = f(y) = aky
k + · · · + a1y + a0 ∈ R[y] with k > 0 and ak 6= 0. As above,

χ(f)(α) = f(α, β1, . . . , βs) = 0.

Let d = χ(ak). Then d is nonzero since ak is nonzero and W is algebraically
independent.

Set g(y) = χ(f)(y)
d

= yk + χ(ak−1)
d

yk−1 + · · ·+ χ(a0)
d

.

Then g(α) = χ(f)(α)
d

= 0, so α is algebraic over F (W ) and hence over F (S).
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Remark 5. For a field extension E/F , let S = {α1, . . . , αn} ⊂ E with Sα1
=

S − {α1} algebraically independent over F . Suppose there is a nonzero polynomial

f = f(x1, . . . , xn) ∈ F [x1, . . . , xn] such that f(α1, . . . , αn) = 0 and f depends on x1.

Then α1 is algebraic over F (α2, . . . , αn). Indeed, this may be proved by repeating the

proof of the converse assertion in Lemma 4, letting α = α1 and letting {α2, . . . , αn}
play the role of W .

Lemma 6. Let E/F be a field extension and let S span E algebraically over F .

For α ∈ S, let Sα = S − {α}. Then Sα spans E algebraically over F if and only if

α is algebraic over F (Sα).

Proof of Lemma 6. If α is algebraic over F (Sα), then F (S) is algebraic over
F (Sα). Since E is algebraic over F (S), it follows by Ash, Corollary, 3.3.5, that E
is algebraic over F (Sα). For the converse, if E/F (Sα) is algebraic, then certainly
α is algebraic over F (Sα). �

Proof of Theorem 2. Let V be the collection of subsets U of E such that U is
algebraically independent over F . If Ui, Uj are in V , we say Ui ≤ Uj if Ui ⊂ Uj . V
is nonempty since the empty set is in V , so V is a nonempty poset.

Let A ⊂ V be a totally ordered subset. Let UA = ∪Ui∈AUi. Then UA is
algebraically independent over F . Indeed, if W = {α1, . . . , αn} is a subset of UA,
then αj ∈ Uij for some Uij ∈ A, so since A is totally ordered, there is k, 1 ≤ k ≤ n
so that Uij ≤ Uik for all j, 1 ≤ j ≤ n. Thus, all αj are in Uik , so since Uik is
algebraically independent over F , W is algebraically independent over F . Since
Ui ⊂ UA for all Ui ∈ A, UA is an upper bound for A. Thus, the hypotheses of
Zorn’s Lemma are satisfied, so E has a subset S such that S is maximal among all
algebraically independent subsets over F .

We claim that S is a transcendence basis of E over F . Indeed, if α ∈ E − S,
then S ∪ {α} is algebraically dependent by maximality of S, so α is algebraic over
F (S) by Lemma 4. �

Proof of Theorem 3. We prove that if |T | is finite, then |S| ≤ |T |. Switching
roles of S and T , it follows that if |S| is finite, then |T | ≤ |S|, which implies the
result.

Let |T | = m. If |S| > m, there is a subset {α1, . . . , αm+1} of S that is alge-
braically independent over F .

Let S0 = T . We show by induction on i that there exists an ordering T =
{β1, . . . , βm} such that if

(∗ ∗ ∗) Si = {α1, . . . , αi, βi+1, . . . , βm},
then Si is a transcendence basis of E over F for i = 0, . . . ,m. Given this,
Sm = {α1, . . . , αm} is a transcendence basis of E/F , so αm+1 is algebraic over
F ({α1, . . . , αm}). Thus by Lemma 4, S is algebraically dependent over F . This is
a contradiction, so |S| ≤ |T |.
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The assertion is clear if i = 0, so we assume i > 0 and we have found β1, . . . , βi−1

in T so Si−1 as defined in (***) is a transcendence basis of E/F . We now find βi

in T so Si is a transcendence basis.
Since E/F (Si−1) is algebraic, αi is algebraic over F (Si−1). By Lemma 4,

{αi} ∪ Si−1 is algebraically dependent over F , so there is a nonzero polynomial
f(y1, . . . , yi, xi, . . . , xm) ∈ F [y1, . . . , yi, xi, . . . , xm] with f(α1, αi, βi, . . . , βm) = 0
(here, the yj and the xk are all variables, and we use different letters for them
because yj evaluates to αj and xk evaluates to βk).

Choose a nonzero polynomial h ∈ F [y1, . . . , yi, xi, . . . , xm] such that h depends
only on exactly r of the variables xk with r minimal and h(α1, . . . , αi, βi, . . . , βm) =
0. Then h must depend on some xk with k ≥ i. Indeed if not,

h(α1, . . . , αi, βi, . . . , βm) = 0

makes {α1, . . . , αi} algebraically dependent over F . By renumbering, we may as-
sume that h depends on xi, xi+1, . . . , xi+r−1.

We claim further that {α1, . . . , αi, βi+1, . . . , βi+r−1} is algebraically independent
over F . Indeed, if they are algebraically dependent, there is a nonzero polyno-
mial h1 depending on fewer than r − 1 variables from the set {xi, . . . , xm} so that
h1(α1, . . . , αi, βi, . . . , βm) = 0, which contradicts the minimality of r.

Thus, by Remark 5, βi is algebraic over Si = {α1, . . . , αi, βi+1, . . . , βm}. But
V = Si ∪ {βi} contains Si−1, so E is algebraic over F (V ), so by Lemma 6 with
α = βi, E is algebraic over F (Si).

It remains to prove that Si is algebraically independent over F . Note that
Ui = Si−1 − {βi} is algebraically independent over F , since it is a subset of the
algebraically independent set Si−1. Since Si = Ui ∪ {αi}, it follows that if Si is
algebraically dependent over F , then by Lemma 4, αi is algebraic over F (Ui). But
we just checked that βi is algebraic over F (Si), so by Ash, Cor. 3.3.5, it follows
that βi is algebraic over F (Ui), so Si−1 is algebraically dependent over F by Lemma
4 again. But Si−1 is algebraically independent, so Si is algebraically independent
over F . �

Remark. It is not difficult to prove that if E/F has transcendence degree k and

K/E is a field extension of transcendence degree r, then K/F is an extension with

transcendence degree k + r.


