
Regenerative cascade homotopies for solving

polynomial systems

Jonathan D. Hauenstein∗ Andrew J. Sommese†

Charles W. Wampler ‡

September 13, 2010

Abstract

A key step in the numerical computation of the irreducible decompo-
sition of a polynomial system is the computation of a witness superset

of the solution set. In many problems involving a solution set of a
polynomial system, the witness superset contains all the needed infor-
mation. Sommese and Wampler gave the first numerical method to
compute witness supersets, based on dimension-by-dimension slicing
of the solution set by generic linear spaces, followed later by the cas-
cade homotopy of Sommese and Verschelde. Recently, the authors of
this article introduced a new method, regeneration, to compute solu-
tion sets of polynomial systems. Tests showed that combining regen-
eration with the dimension-by-dimension algorithm was significantly
faster than naively combining it with the cascade homotopy. How-
ever, in this article, we combine an appropriate randomization of the
polynomial system with the regeneration technique to construct a new
cascade of homotopies for computing witness supersets. This regener-

ative cascade is superior in practice to all known methods.

∗Department of Mathematics, Mailcode 3368, Texas A&M University, College Station,
TX 77843 (jhauenst@math.tamu.edu, www.math.tamu.edu/∼jhauenst). This author was
supported by the Fields Institute, the Duncan Chair of the University of Notre Dame, and
NSF grant DMS-0712910.

†Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556
(sommese@nd.edu, www.nd.edu/∼sommese). This author was supported by the Duncan
Chair of the University of Notre Dame and NSF grant DMS-0712910.

‡General Motors Research and Development, Mail Code 480-106-359, 30500 Mound
Road, Warren, MI 48090 (Charles.W.Wampler@gm.com, www.nd.edu/∼cwample1). This
author was supported by NSF DMS-0712910.

1



Keywords. witness set, witness superset, generic points, homotopy
continuation, cascade homotopy, irreducible components, multiplic-
ity, numerical algebraic geometry, polynomial system, numerical irre-
ducible decomposition, primary decomposition, algebraic set, algebraic
variety
AMS Subject Classification. 65H10, 68W30, 14Q99

Introduction

Numerical algebraic geometry is the computation and manipulation of the
solution sets of systems of polynomials using numerical algorithms (see [13]
for a comprehensive development of the area). Let

f(z) =




f1(z)
...

fn(z)


 = 0 (1)

denote a system of n polynomials with z ∈ C
N . The basic data structure to

describe an irreducible component X of the solution set

V (f) :=
{
z ∈ C

N | f(z) = 0
}

of this system is a witness set for X. When X is a multiplicity one irreducible
component of V (f), a witness set of X is a triple (f,L, X ∩ L) consisting
of the polynomial system f , a random affine linear subspace L of C

N of
dimension complementary to the dimension of X, plus the points X∩L. For
a component of multiplicity greater than one, a witness set contains extra
information that is computable from the triple (f,L, X ∩ L) [13, §13.3]. In
particular, the triple (f,L, X ∩ L) is the key object to compute, and for
practical purposes, may be regarded as the witness set of the irreducible
component X.

Witness sets are a natural data structure to numerically describe the
decomposition of a solution set into irreducible components [8, 13] and to
enable the computation of other detailed information about algebraic sets,
e.g., their intersections [9, 10]. Using homotopy continuation, it is compu-
tationally inexpensive to compute as many random and widely-distributed
points on X as desired, from which, for instance, polynomials cutting out
the component X may be computed.

A witness set of X is computed from a witness superset of X. A witness

superset of X is a triple (f,L, S) where f and L are as above and S is a

2



finite set of points with (X ∩L) ⊂ S ⊂ (V (f) ∩ L). The points in S \X are
called junk points and are filtered out to create a witness set.

The numerical irreducible decomposition of V (f) is a collection, say W,
of witness sets for each irreducible component of V (f). The computation of
W proceeds in three steps

1. computation of a witness superset Ŵ of V (f);

2. computation of a witness set W of V (f) from Ŵ;

3. decomposition of the witness set W into witness sets of the irreducible
components of V (f).

There are two existing algorithms to perform Step 1, namely a dimension-
by-dimension algorithm presented in [12] and a cascade algorithm presented
in [7]. While the computational cost of the two approaches is usually roughly
comparable, these methods may differ in the number of junk points they pro-
duce. In this way, the choice of method directly affects the computational
cost of Step 2. In this regard, the cascade algorithm is favored as it gen-
erally computes many fewer junk points than the dimension-by-dimension
algorithm.

It should be mentioned that a version of the regeneration algorithm
presented in [3] performs Steps 1 and 2 together in an integrated way. A
significant drawback of that version of regeneration is that it may require
deflation of intermediate systems that arise. While a methodology exists for
this, it is complicated to implement. Neither the dimension-by-dimension
method nor the cascade method have this drawback. Like these, the new
algorithm presented in this paper also does not require deflation. It is based
on the version of regeneration from [3] that seeks only to find isolated solu-
tion points. In this article, we limit our computational experiments to the
three methods that never require deflation.

Step 3 is performed using a monodromy algorithm that is certified using
a trace test [11]. This step is independent of Steps 1 and 2, so we shall say
nothing further about it here.

For many problems, Step 1 is the most computationally intensive part of
finding a numerical irreducible decomposition. The subject of this article,
the regenerative cascade, addresses this step. We provide evidence that
the new approach matches the efficiency of the older cascade algorithm in
regards to the number of junk points it produces while reducing the cost of
Step 1 as compared to both of the prior algorithms.

3



This article is organized as follows. Section 1 provides an overview of
regeneration [3]. Section 2 presents the regenerative cascade algorithm; Sec-
tion 2.3 describes the advantages of the regenerative cascade algorithm; and
section 3 provides computational results.

1 Regeneration

Before describing the regenerative cascade algorithm in § 2, we summa-
rize the regeneration algorithm [3] for computing the nonsingular isolated
solutions of a square polynomial system utilizing an equation-by-equation
approach with a general linear product decomposition.

Let

f(z) = f(z1, . . . , zn) =




f1(z1, . . . , zn)
...

fn(z1, . . . , zn)




be a polynomial system with di = deg fi. For i = 1, . . . , n and j = 1, . . . , di,
let Li,j(z) be a general linear function on C[z1, . . . , zn] and, for m = 0, . . . , n,
define

Fm(z) =




f1(z)
...

fm(z)
Lm+1,1(z)
Lm+2,1(z)

...
Ln,1(z)




and Gm(z) =




f1(z)
...

fm(z)∏dm+1

j=1 Lm+1,j(z)

Lm+2,1(z)
...

Ln,1(z)




.

Regeneration starts with the solution of the linear system

F0(z) =




L1,1(z)
...

Ln,1(z)


 = 0

and computes the solutions of Fn(z) = f(z) = 0 by using a sequence of two
types of homotopies. For 0 ≤ m ≤ n − 1 and 1 ≤ a ≤ di, the first type
of homotopy is a parameter homotopy that moves from the linear space

4



Lm,1 = 0 to Lm,a = 0, namely

Hparm
m,a (z, t) =




f1(z)
...

fm(z)
(1 − t)Lm+1,a(z) + tLm+1,1(z)

Lm+2,1(z)
...

Ln,1(z)




.

For 0 ≤ m ≤ n− 1, the second type of homotopy is a general linear product
homotopy that moves from the product of linear spaces

∏dm+1

i=1 Lm+1,i = 0
to fm+1 = 0, namely

Hprod
m (z, t) = (1 − t)Fm+1(z) + tGm(z)

=




f1(z)
...

fm(z)

(1 − t)fm+1(z) + t
∏dm+1

i=1 Lm+1,i(z)
Lm+2,1(z)

...
Ln,1(z)




.

The following algorithm computes the nonsingular isolated points of
V (f) using regeneration.

Procedure S = Regenerate(f)

Input A set f = {f1, . . . , fn} of n polynomials on C
n.

Output A set S ⊂ C
n consisting of the nonsingular isolated points of V (f).

Begin 1. Let di = deg fi. For i = 1, . . . , n and j = 1, . . . , di, let Li,j(z)
be a random linear function on C[z1, . . . , zn].

2. Use numerical linear algebra to compute the set S0 consisting of
the solution of the linear system F0 = 0.

3. For m = 0, . . . , n − 1, do the following:

(a) Solve for Tm, the set of nonsingular isolated points of V (Gm),
using the homotopies H

parm
m,j , j = 1, . . . , dm+1, with start

points Sm.

5



(b) Solve for Sm+1, a superset of the nonsingular isolated points

of V (Fm+1), using the homotopy H
prod
m with start points Tm.

(c) Expunge any singular points in Sm+1.

Return S = Sn.

Note 1.1 H
parm
m,1 (z, t) ≡ Fm(z).

2 Regenerative cascade

The regenerative cascade algorithm is applicable to the following basic prob-
lem in numerical algebraic geometry.

Problem 1 (Witness Superset) Given a polynomial system f : C
N →

C
n find a witness superset for V (f).

2.1 Regenerative cascade algorithm

Let f : C
N → C

n be a polynomial system as in Eq. 1 with d1 ≥ · · · ≥ dn

where di = deg fi. Let r = rank(f) (see [13, § 13.4]) and αi,j ∈ C be random
for 1 ≤ i ≤ r and i < j ≤ n. Define

A =




1 α1,2 α1,3 · · · · · · · · · α1,n

1 α2,3 · · · · · · · · · α2,n

. . .
...

1 αr,r+1 · · · αr,n


 (2)

and
f̂ = A · f. (3)

The polynomial system f̂ consists of r polynomials in N variables with
r ≤ N and deg f̂i = di. Since dimV (f̂) ≥ N − r, we will append N − r

general linear functions onto f̂ . That is, for i = 1, . . . , N − r, let Li(z) be a

generic linear function on C[z1, . . . , zN ] and L =




L1
...

LN−r


. Define

F =

[
L

f̂

]
. (4)

The following lemma shows how to compute a witness superset for V (f)
using a witness superset for V (F).

6



In the above, “generic” means that the generality needed to obtain the
results we seek holds for all but a proper algebraic subset of the set of all
possible choices of αi,j and the coefficients defining the linear functions L
and Li, i = 1, . . . , N − r. Let us call the complex Euclidean space of all
these parameters the “algorithm parameter space.”

Lemma 2.1 For a Zariski open dense subset of the algorithm parameter

space, the following holds. Let Wi = {F , Li,Xi} be a witness superset for the

ith dimensional irreducible components of V (F). If Xi = {x ∈ Xi | f(x) =
0}, then WN−r+i = {f, {L, Li}, Xi} is a witness superset for the (N−r+i)-th
dimensional irreducible components of V (f).

Proof. Altogether {L, Li} are N−r+i generic linear equations, hence Xi is
a witness superset for the (N −r+ i)-dimensional irreducible components of
f̂ . By the randomization theorem, Theorem 13.5.1, of [13], all the (N−r+i)-
dimensional irreducible components of f will be among these, but only points
in V (f) can be witness points for components of V (f). 2

For i = 1, . . . , N − r and j = 1, . . . , di, let Li,j(z) be a general linear
function on C[z1, . . . , zn]. The following are analogous to Fm, Gm, H

parm
m,a ,

and H
prod
m defined in § 1:

Fm(z) =




L(z)

f̂1(z)
...

f̂m(z)
Lm+1,1(z)
Lm+2,1(z)

...
Lr,1(z)




, Gm(z) =




L(z)

f̂1(z)
...

f̂m(z)∏dm+1

j=1 Lm+1,j(z)

Lm+2,1(z)
...

Lr,1(z)




,

Hparm
m,a (z, t) =




L(z)

f̂1(z)
...

f̂m(z)
(1 − t)Lm+1,a(z) + tLm+1,1(z)

Lm+2,1(z)
...

Lr,1(z)




,

and Hprod
m (z, t) = (1 − t)Fm+1(z) + tGm(z).

7



A point x ∈ V (Fm) (or V (Gm)) is a nonsolution with respect to f if
f(x) 6= 0. Bertini’s theorem and genericity provide that nonsolutions of Fm

and Gm are nonsingular isolated solutions of Fm and Gm, respectively. The
following lemma shows that regenerating the nonsolutions of Fm will yield
a superset of the isolated solutions of Fm+1.

Lemma 2.2 For a Zariski open dense subset of the algorithm parameter

space, the set of solutions of Fm+1 obtained by regenerating the nonsolutions

of Fm contains the isolated solutions of Fm+1.

Proof. According to the theory underlying the regeneration algorithm
(§ 1), the isolated solutions of Fm+1 are contained in the set of endpoints of

Hprod
m using the isolated solutions of Gm as start points, which themselves

are obtained by the homotopies Hparm
m,j , j = 1, . . . , dm+1 using the isolated

solutions of Fm as start points. If, for m < r, x is an isolated solution
of Fm with f(x) = 0, then it lies on a component of V (f) of dimension
at least m. The paths from such a point must remain on this component
during the homotopies Hprod

m and Hparm
m,j , j = 1, . . . , dm+1. and hence cannot

lead to nonsingular solutions to Fm+1. Thus, the paths originating from the
nonsolutions of Fm suffice to find all isolated solutions of Fm+1. 2

Procedure S = RegenerativeCascade(f)

Inputs A set f = {f1, . . . , fn} of n polynomials on C
N .

Output A witness superset S for V (f).

Begin 1. Rename f so that di ≥ · · · ≥ dn where di = deg fi and compute
r = rank(f).

2. For 1 ≤ i ≤ r and i < j ≤ n, let αi,j ∈ C be random. Construct

A and f̂ as in Eqs. 2 and 3, respectively.

3. Let L(z) be a set of N−r random linear functions on C[z1, . . . , zN ]
and construct F as in Eq. 4.

4. For i = 1, . . . , r and j = 1, . . . , di, let Li,j(z) be a random linear
function on C[z1, . . . , zN ].

5. Use numerical linear algebra to compute the set X0 consisting of
the solution of the linear system F0 = 0.

6. For m = 0, . . . , r − 1, do the following:

8



(a) Solve for Tm, the set of nonsolutions with respect of f in
V (Gm), using the homotopies Hparm

m,j , j = 1, . . . , dm+1, with
start points Xm.

(b) Solve for Um+1, a set containing the nonsolutions with re-
spect to f and the isolated points in V (Fm+1), using the

homotopy Hprod
m with start points Tm.

(c) Let Xm+1 ⊂ Um+1 be the nonsolutions of f and Sm+1 =
{f, {L, Lm+2,1, . . . , Lr,1}, Um+1 \ Xm+1}.

Return S = {S1, . . . , Sr}.

The following theorem justifies the regenerative cascade algorithm Re-
generativeCascade.

Theorem 2.3 For a Zariski open dense subset of the algorithm parameter

space, the RegenerativeCascade solves Problem 1.

Proof. This is a straightforward consequence of Lemmas 2.1 and 2.2. 2

2.2 Extrinsic vs. intrinsic slicing

Similar to [3, §6.3], the homotopies Hparm and Hprod are called extrinsic
regenerative cascade homotopies due to the presence of extrinsic linear slic-
ing functions. Since the linear functions L, Lm+2,1, . . . , Lr,1 do not change
during the path tracking for these homotopies, we may use an intrinsic for-
mulation that is more efficient when m ≪ N . Numerical linear algebra can
be used to compute B ∈ C

N×(m+1), b ∈ C
N such that rank B = m + 1 and

for all u ∈ C
m+1, Bu + b ∈ V (L, Lm+2,1, . . . , Lr,1). The homotopies Hparm

and Hprod can then be replaced with ones of the form Ĥ(u, t) = H(Bu+b, t).
Since the linear functions are always zero and can be dropped, these new
homotopies consist of m + 1 functions and variables, instead of N .

For efficiency, the polynomials should be evaluated in a straight-line
manner rather than expanded in the new variables. When the intrinsic
formulation is heuristically advantageous, Bertini [1] automatically utilizes
it.

2.3 Advantages of the regenerative cascade algorithm

The regenerative cascade algorithm presented in § 2 has several advantages
over the the dimension-by-dimension algorithm of [12] and the cascade al-
gorithm of [7]. For a polynomial system f : C

n → C
n of rank n with

9



d1 ≥ · · · ≥ dn, where di = deg fi, this section describes the theoretical
advantages with computational evidence presented in § 3.

The first advantage is that the regenerative cascade is amenable to in-
trinsic slicing. This reduces the number of variables for tracking the paths,
which can reduce the computational costs associated with linear algebra.
While the dimension-by-dimension algorithm can also use intrinsic slicing,
the original cascade cannot. It uses a homotopy in n variables at every
stage.

A second advantage is that the regenerative cascade often tracks fewer
paths than either of the other two algorithms. In the case of the original
cascade algorithm, it is the first stage of the cascade that is expensive to
solve. If one uses a total degree homotopy for this stage, the total degree
number of paths, namely d1 · · · dn, must be tracked. One could instead use a
polyhedral homotopy [4, 6] to possibly reduce the number of paths to track,
but this comes at the cost of constructing the polyhedral homotopy, which
can be a significant cost to bear. In the case of the dimension-by-dimension
algorithm, the last stage is the one that must track the total degree num-
ber of paths or use a polyhedral homotopy. Due to the structure of the
regenerative cascade algorithm, in which endpoints on higher-dimensional
components (including ones at infinity) do not initiate paths at the next
stage, the total number of paths that need to be tracked can be less than
the total degree.

Finally, the termination of further tracking on all but the nonsolutions
generally leads to a witness superset that contains fewer junk points. The
regenerative cascade and original cascade algorithms share this advantage.
In contrast, the dimension-by-dimension algorithm handles each dimension
independently, and so has no mechanism for results obtained at a higher
dimension to affect the computation at a lower dimension. This generally
leads to a witness superset containing more junk points. Computational
evidence, such as Table 2, suggests that the number of junk points of the
cascade and regenerative cascade algorithms are related.

Problem 2 What is the relation between the junk sets in the witness super-

sets produced by the cascade and regenerative cascade algorithms?

We do not yet have an answer to this problem, but the results of the
following section are suggestive.

10



paths tracked (slices moved) number of junk points
Dimension-by- Regenerative Dimension-by- Regenerative

n Cascade dimension cascade Cascade dimension cascade
3 56 30 26 (12) 6 10 6
4 295 126 96 (47) 30 60 30
5 1,380 510 340 (169) 125 295 125
6 6,050 2,046 1,190 (594) 486 1,342 486
7 25,465 8,190 4,150 (2,074) 1,813 5,853 1,813
8 104,247 32,766 14,456 (7,227) 6,600 24,910 6,600
9 418,289 131,070 50,336 (25,167) 23,665 104,399 23,665
10 1,653,320 524,286 175,246 (87,622) 84,028 433,068 84,028

Table 1: Comparison for computing a witness superset for P2,3,n using var-
ious algorithms

3 Computational results

The regenerative cascade algorithm RegenerativeCascade is implemented
in Bertini [1]. The examples discussed here were run using Bertini v1.2. The
results presented in Table 2 were run on a 2.4 GHz Opteron 250 processor
with 64-bit Linux. The results presented in Table 3 were run on a clus-
ter consisting of a manager that uses one core of a Xeon 5410 processor
and 8 computing nodes each containing two 2.33 GHz quad-core Xeon 5410
processors running 64-bit Linux, i.e., one manager and 64 workers.

3.1 A collection of high-dimensional examples

Consider computing a witness superset for the polynomial system, denoted
P2,3,n constructed by taking the 2×2 adjacent permanents of a 3×n matrix
with indeterminant entries [5]. For n ≥ 3, V (P2,3,n) consists of components
in multiple dimensions. Table 1 compares the number of paths tracked and
the number of junk points in the witness superset for the cascade algorithm,
dimension-by-dimension algorithm, and the regenerative cascade algorithm.
Table 2 lists the time needed for computing a witness superset for P2,3,n, 3 ≤
n ≤ 9, using a single processor. Table 3 lists the time needed for computing
a witness superset for P2,3,n, 8 ≤ n ≤ 10, using parallel processing. One
may see that the regenerative cascade consistently tracks fewer paths and
uses less computation time than the alternatives. Moreover, the two cascade
algorithms are equal in the number of junk points generated, beating the
dimension-by-dimension method in this regard. Fewer junk points means
less work in the next stage of computing a witness set, which is the removal
of junk points from the witness superset.

11



Dimension-by- Regenerative
n Cascade dimension cascade

3 0.26s 0.22s 0.19s

4 2.46s 2.20s 1.52s

5 18.8s 17.7s 9.92s

6 2m13s 2m12s 1m9s

7 13m58s 17m25s 6m33s

8 1h22m16s 1h51m8s 36m30s

9 7h30m1s 10h57m17s 2h56m46s

Table 2: Computing a witness superset for P2,3,n using various algorithms

Dimension-by- Regenerative
n Cascade dimension cascade

8 2m16s 1m52s 51.4s

9 10m12s 10m50s 3m38s

10 54m3s 60m37s 16m27s

Table 3: Computing a witness superset for P2,3,n using various algorithms
in parallel

4 Summary

The regenerative cascade algorithm RegenerativeCascade combines the
advantages of the cascade, dimension-by-dimension, and regeneration algo-
rithms for computing a witness superset. It utilizes randomization to avoid
the disadvantage of the version of regeneration that sometimes needs to de-
flate systems during the algorithm. Computational evidence suggests that
it computes a witness superset with a similar number of junk points as the
cascade algorithm, which is generally less than the number of junk points
generated by the dimension-by-dimension algorithm. Moreover, in our tests,
the regenerative cascade tracks the fewest number of paths, which coupled
with the additional advantage of being amenable to intrinsic path tracking,
makes it the most efficient method for generating a witness superset.

References

[1] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler,
Bertini: software for numerical algebraic geometry, Available at
www.nd.edu/∼sommese/bertini.

12



[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Soft-
ware for numerical algebraic geometry: a paradigm and progress to-
wards its implementation, in IMA Volume 148: Software for Algebraic

Geometry, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer,
New York, 2008, pp. 1–14.

[3] J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Regeneration
homotopies for solving systems of polynomials, to appear in Math.

Comp.

[4] B. Huber and B. Sturmfels, A polyhedral method for solving sparse
polynomial systems, Math. Comp., 64 (212), 1541–1555, 1995.

[5] R.C. Laubenbacher and I. Swanson, Permanental ideals, J. Symbolic

Comput., 30(2):195–205, 2000.

[6] T.Y. Li, Numerical solution of polynomial system by homotopy contin-
uation methods, In Handbook of Numerical Analysis, Vol. XI, 209–304.
North-Holland, Amsterdam, 2003.

[7] A.J. Sommese and J. Verschelde, Numerical homotopies to compute
generic points on positive dimensional algebraic sets, J. Complexity,
16, 572–602, 2000.

[8] A.J. Sommese, J. Verschelde, and C.W. Wampler, Numerical decompo-
sition of the solution sets of polynomials into irreducible components,
SIAM J. Numer. Anal., 38, 2022–2046, 2001

[9] A.J. Sommese, J. Verschelde, and C.W. Wampler, Homotopies for in-
tersecting solution components of polynomial systems, SIAM J. Numer.

Anal., 42, 1552–1571, 2004.

[10] A.J. Sommese, J. Verschelde, and C.W. Wampler, An intrinsic ho-
motopy for intersecting algebraic varieties, J. Complexity, 21, 593–
608, 2005.

[11] A.J. Sommese, J. Verschelde, and C.W. Wampler, Symmetric functions
applied to decomposition solution sets of polynomial systems, SIAM J.

Numer. Anal., 40, 2026–2046, 2002.

[12] A.J. Sommese and C.W. Wampler, Numerical algebraic geometry, in
The Mathematics of Numerical Analysis, J. Renegar, M. Shub, and
S. Smale, eds., volume 32 of Lectures in Applied Mathematics, 1996, pp.

13



749–763. Proceedings of the AMS-SIAM Summer Seminar in Applied
Mathematics, Park City, Utah, July 17-August 11, 1995, Park City,
Utah.

[13] A.J. Sommese and C.W. Wampler, The numerical solution of systems

of polynomials arising in engineering and science, World Scientific,
Singapore, 2005.

14


	Introduction
	Regeneration
	Regenerative cascade
	Regenerative cascade algorithm
	Extrinsic vs. intrinsic slicing
	Advantages of the regenerative cascade algorithm

	Computational results
	A collection of high-dimensional examples

	Summary

