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Abstract—Meta-paths in heterogeneous information networks
are almost always hand created and have, so far, only been
attempted on data sets with very small type systems like DBLP,
IMDB, etc. Most real-world heterogeneous information networks
have large and complex type systems. As the size and complexity
of the type-system grows it becomes more and more difficult
for humans to form reasonable meta-path queries. This work
introduces a new technique to discover a new market for
data called interesting meta-paths from complex heterogeneous
information networks. Our interestingness measure is based on
classical knowledge discovery principles, but have been applied in
such a way that only interesting meta-paths are mined from the
hundreds-of-thousands of possible choices. As in classical pattern
mining literature, precision and recall statistics are difficult to
obtain; instead we evaluate the effectiveness of our results using a
quantitative node-similarity analysis as well as a large user study.
Finally, we apply the newly discovered interesting meta-paths to
find similar nodes on the Wikipedia heterogeneous information
networks.

Index Terms—information networks, meta-paths, similarity

I. INTRODUCTION

Current network science research, for the most part, works
with homogeneous or untyped networks where nodes are
objects of the same entity type (e.g., person, protein, particle)
and links are relationships of the same type (e.g., friendship,
binding, force). This line of research has discovered many
influential properties and applications from information net-
works, including models of contagion in epidemiology [1],
[2], small-worlds in social networks [3], [4], power-law dis-
tributions on the World Wide Web [5], [6], and so on.

Most real world networks are heterogeneous, where nodes
and relations consist of different types and have different
roles. Heterogeneous information networks (HINs) can be
constructed in almost any domain, including social networks
(e.g., Facebook), e-commerce (e.g., Amazon and eBay), online
movie databases (e.g., IMDB), and in numerous database
applications. HINs can also be constructed from text data, such
as news collections, by entity and relationship extraction using
natural language processing and other advanced techniques.

The heterogeneity of the networks brings rich information
but also challenges in the systematic analysis of the connection
type between objects. Meta-paths [7] are typed-sequences that
connect two or more objects in a HIN. Figures 1 and 2
illustrate a particular path between two Wiki-pages NORTH-
EASTERN University and SOUTH BEND, Indiana. These two

entries are separated by many loopless paths, one of which
traverses through the Wiki-pages of Laszlo BARABASI and
the University of NOTRE DAME. Thus, we can say that
NORTHEASTERN University is related to SOUTH BEND, In-
diana via Laszlo BARABASI and the University of NOTRE
DAME. The corresponding meta-path indicated in Figure 2 is
D�D2 representing a path of types: EDUCATION-PEOPLE-
EDUCATION-GEOGRAPHY. This meta-path describes how the
two endpoints are related. In this particular case, Laszlo
BARABASI worked at both NORTHEASTERN University and
the University of NOTRE DAME and because the University
of NOTRE DAME is in SOUTH BEND, Indiana.

There are many other paths that separate/connect NORTH-
EASTERN University and SOUTH BEND, Indiana, and, without
loss of generality, each of these paths indicates some special
relationship among and between seemingly unrelated objects.
In fact, there are 51 alternate paths of length 3 that connect
NORTHEASTERN University and SOUTH BEND, Indiana each
indicating some other relationship between the two endpoints.
If we include paths of length 4 or 5, then the number of
possible paths increases dramatically to thousands and hun-
dreds of thousands. If we further include type-combinations
of different granularities for each node, then the problem
becomes intractable very quickly.

Current meta-path techniques fail to compute on even
moderately-sized networks – recent attempts for HIN analysis
needed to limit the popular DBLP dataset to no more than
20 conferences or 1000 authors using only a few, short, hand-
crafted meta-paths [8]. Furthermore, the process of creating or
hand-annotating meta-paths may be feasible on non-complex
type systems like DBLP and IMDB, but hand-annotation is
intractable for complex type systems like Wikipedia.

Consider again the Wikipedia example in Figures 1. Because
of the complexity of Wikipedia’s category/type system, each
node contains a hierarchy of types with an increasing granu-
larity as we move up the category-tree. In the corresponding
example in Figure 2 we simply chose the first top-level-
category that we encountered when performing a breadth-
first-search. But is EDUCATION the appropriate type-label for
NORTHEASTERN University? Or should we label it SPORTS
or ED. IN BOSTON instead?

In this paper we investigate the automatic discovery of
interesting meta-paths that best describe how two objects
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Fig. 2: A path and its corresponding meta-path from NORTHEASTERN
University to SOUTH BEND, Indiana. There are many such paths between
NORTHEASTERN and SOUTH BEND, that traverse through similar and
vastly-different Wiki-pages. We ask: What are the paths that best describe the
similarities between two endpoints; what are the best type-labels to assign
to each page on this path; and, given type-assignments, can we use the
meta-paths to find similar pairs of endpoints?

are uniquely related in complex HINs. Meta-path discovery
promises new and interesting insights into the process by
which humans collectively organize information: by content
similarity, type, temporally, spatially, etc. Unfortunately, there
exist many limitations with the current state of the art: 1) Many
existing meta-path-based similarity search functions can only
find similarities for objects of the same type, that is, given
PEOPLE existing methods can only find other PEOPLE [9];
2) Existing frameworks, such as PathSim, scale only to a
few thousand nodes [10], [8]; and 3) Meta-paths must be
handcrafted [11], [12].

These challenges will be addressed in this work. Specifi-
cally, this paper makes the following contributions:

1) We propose a general framework to mine interesting
paths and meta-paths from complex heterogeneous in-
formation networks using adaptations from classical
knowledge discovery techniques.

2) We evaluate the robustness of the discovered paths
through various large scale experiments on the
Wikipedia dataset containing millions of nodes and
edges and a complex type system.

3) We explore meta-path discovery at various levels of
type-granularity in the complex type systems and discuss
the relative trade-offs.

4) We show how the newly discovered meta-paths can be
used as a basis for a simple similarity search, and we
discuss the implications of type granularity for relative-
similarity.

II. RELATED WORK

The task of discovering interesting meta-paths is akin to
finding paths in information networks and then analyzing the
nature of those paths. There has been a large body of work on
pathfinding and similarity in information networks that we will
explore, followed by a brief discussion of works that employ
meta-paths for other data mining tasks.

If two objects exist in the same network, their similarity
can be expressed by the distance between the two objects. If

two objects directly reference one another via a graph-edge
then they should be considered closely related, tie-strength
notwithstanding. If two objects are not directly related, then
their similarity can be expressed by some function of the
edges and paths that separate them. Studies abound in network
science and data mining literature exploring path finding and
relatedness, including network navigation [13], [14], decentral-
ized search in networks [3], [15], [16], [17], Web click-trail
analysis [18], [19], [20], [21] and so on.

Computing researchers often combine network analysis with
text and data mining techniques to validate network theories.
For example, the combination of information network analysis
of email communication [22], [23] with text analysis of
email content can provide a means to test theories such as
the strength of weak ties [24], structural holes [25], leader-
ship [26], broadcast diffusion [27], and information naviga-
tion [20], [21]. As these studies demonstrate, the examination
of information in networks can help researchers and practi-
tioners alike better understand why and how networks play
such a vital role in so many physical, real-world phenomena.

The last line of related work can be traced back to Milgrams
small-world experiment [3] and the algorithmic problem of
decentralized search in networks. Decentralized search con-
siders a scenario in which a starting node s is trying to
send a message to a given target node t by forwarding the
message to one of its neighbors, where the process continues
in the same way until eventually it is reached. This process
has been investigated both experimentally as well as through
simulations [16], [17].

The critical different between the existing state of the art and
the algorithm described in this paper is that existing method
require hand-crafted meta-paths to be input by the user,
whereas our approach aims to discover the most interesting
meta-path from the network.



BARABÁSI

WAND ROCKNE JONES

LINCOLN

NORTHEASTERN

NOTRE DAME

SAINT 

MARY’S
HARVARD

BOSTON

SOUTH 

BEND

Fig. 3: Heterogeneous Information Network of a simulated
social network comprised of PEOPLE (#), Geography (2) and
EDUCATION (D).

III. INTERESTING META-PATHS

A. Simple Network Similarity via Meta-Paths

We’ve discussed how the similarity between two objects is
related to the size and number of paths that connect them
in the network. To distinguish the semantics among paths
connecting two objects, meta-paths constrain what paths are
explored in the heterogeneous network thereby extracting
nodes and paths that have the same types as the meta-path’s
types. Consider the social network illustration in Figure 3.
In this heterogeneous information network there exist three
types: PEOPLE (#), Geography (2) and EDUCATION (D).
The persons most similar to BARABASI, considering only
graph distance, could be either WAND, ROCKNE or LINCOLN.
The different connection scenarios are represented by three
distinct meta-paths: (a) #D#, denoting that the similarity
is defined by the meta-path “PEOPLE-EDUCATION-PEOPLE”,
or (b) #D2D#, by the meta-path “PEOPLE-EDUCATION-
GEOGRAPHY-EDUCATION-PEOPLE”, or (c) #D#D# by
the meta-path “PEOPLE-EDUCATION-PEOPLE-EDUCATION-
PEOPLE”. A user can choose either (a), (b), (c) or their own
combination based on their preferred similarity semantics.
According to path (a), WAND and ROCKNE are equally close
to BARABASI because they equally match the meta-path query.
According to path (b), BARABASI is equally similar to all of
the other PEOPLEs; and according to path (c) BARABASI is
again equally similar to all of the other PEOPLEs. The meta-
path framework provides a mechanism for a user to select
an appropriate similarity semantics by manually choosing a
proper meta-path.

In most cases the next step is to use that meta-path to
determine various separation measures such as path count,
normalized path count, random walk probability, symmetric
random walk probability, and so on. Those measures are
input to some regression, clustering or classification tool for
analysis.

B. Meta-Path Discovery

As we briefly discussed earlier, we cannot always rely
on neatly delineated types that stem from well-structured
data sets like DBLP or IMDB. In many cases the network
schema consists of a complex ontology or type hierarchy,
and in other cases the types in the heterogeneous information

network were discovered by imperfect type and role discovery
algorithms [28]. In such cases, the network may consist of
multiple-membership or hierarchically typed nodes.

We choose Wikipedia because 1) it is one such complex
heterogeneous information network, and 2) like DBLP and
other popular data sources, Wikipedia has been proved to be a
high quality data set [29]. The Wikipedia example illustrated
in Figure 1 shows that each Wikipage contains at least one
(but usually more than one) category (type), and that each
category contains one or more parent categories. Moreover,
nothing precludes other untyped information networks such
as the World Wide Web or other networks that requiring
type and role discovery, from also exhibiting multiple and
hierarchical type systems. Thus, it is necessary to develop tools
and methodologies to not only cope with these sophisticated
systems, but to leverage the complexity for more powerful
analytics.

The simplest way to cope with complex type systems is
to ignore the hierarchy and heuristically pick some value for
each node’s type. For example, at the top level in Wikipedia’s
category system Wikipedia can be organized by its Main Topic
Classifications – among other type systems; these include
PEOPLE, EDUCATION, SPORTS, GEOGRAPHY, etc. If each
Wikipage is assigned to its nearest Main Topic Classification
then a heterogeneous information network emerges.

Paths between individual nodes in the heterogeneous net-
work determine how the nodes are separated and/or related.
Figure 4 shows some of the short paths between the Wikipedia
pages for Mitchell WAND and Knute ROCKNE. There are
actually several hundred paths between WAND and ROCKNE
with at most 4 edges; interestingly, there are three shortest
paths of length 3: 1) WAND-NORTHEASTERN-NOTRE DAME-
ROCKNE (path not shown); 2) WAND-NORTHEASTERN-
CARNEGIE MELLON UNIVERSITY-ROCKNE; and 3) WAND-
NORTHEASTERN-DREXEL UNIVERSITY-ROCKNE (path not
shown). In this case, an obvious question arises: why
are NOTRE DAME, CARNEGIE MELLON UNIVERSITY and
DREXEL UNIVERSITY contained in the short paths while
other universities are ignored? ROCKNE taught and coached
at NOTRE DAME, so that link is obvious. However, upon
further investigation we found that the Wiki pages of DREXEL
UNIVERSITY and CARNEGIE MELLON UNIVERSITY mention
ROCKNE in passing because those university’s football teams
beat ROCKNE’s football team - a feat so notable that it war-
ranted mention on the university’s Wikipedia page. Similarly,
the path that includes CY YOUNG and CARL HUBBELL is an
interesting case: CY YOUNG has a statue at NORTHEASTERN,
CARL HUBBELL won the Cy Young Award (for excellent
pitching), and ROCKNE is mentioned in a poem along with
CARL HUBBELL.

Although obscure football victories and poems may make
great trivia, they are probably not the best descriptors for the
separation and/or relatedness between WAND and ROCKNE
considering the plethora of alternatives. Again the challenge
arises: how do we determine the most interesting paths that
relate and separate two nodes? This is a clear data mining



task that asks for an algorithmic solution.
With these examples in mind, we developed an algorithm to

mine interesting meta-paths from heterogeneous information
networks.

Because a network path is basically a sequence of
items/nodes, it is possible to turn to sequential pattern mining
literature for help in developing appropriate interestingness
measures. In order to mine interesting network-paths using the
sequential pattern mining paradigm we could create a database
of possible paths between the two nodes and then run sequen-
tial pattern mining algorithms over the path-database. Unfor-
tunately, the number of possible paths that would populate
the sequential database is intractable, even in relatively small
networks and even under reasonable path-length constraints.

C. Path Generation

The proposed path generation technique is akin to a
generate-and-discard approach that first generates a set of
paths between two objects and throws away uninteresting
paths. Figure 5 shows an intuitive example of the proposed
path mining method given two query nodes WAND and
ROCKNE. First we find candidate paths and nodes by col-
lecting the paths between WAND and ROCKNE. Second we
consider all of the type or role-siblings of WAND and ROCKNE
and find paths between each. For example, WAND and BAR-
BARA LISKOV are both type-siblings in this example because
they share a Wiki-category called AMERICAN COMPUTER
SCIENTISTS. The candidate paths are collected into a list X
and the sibling-paths are collected into a list Y . By comparing
X and Y with respect to some interestingness measure we will
be able to discover the candidate paths that are most interesting
and worth returning to the user.

For this work we require a start-point au and endpoint av
to be provided by the user. These inputs determine the two
objects that should be analyzed. Using these two endpoints
we find 100 short paths that separate au and av using Yen’s
k-shortest paths algorithm [30] where k = 100. As a result
we have k paths of variable (yet mostly short) length: ~x =
〈a1, a2, . . . , a|~x|〉i s.t. au = a1, av = a|~x|, 1 ≤ i ≤ k.

Recall from the example in Figure 1 that each node has
one or more parent-types {t1, t2, . . .}, and inversely, each type
will contain one or more nodes {a1, a2, . . .} ∈ t that are of
an equivalent type. For a given node ai, we define aj to
be a sibling of ai if they share the one or more types, i.e.,
sib(ai, aj) iff ai ∈ t∧aj ∈ t. Furthermore, for a given node au
there are many nodes that satisfy the above sibling-definition;
the set of siblings of au is {a′u1

, a′u2
, . . .} ∈ A′u.

In order to determine which path {~x1, ~x2, . . . , ~xk} ∈ X is
the most interesting path we compare it with sibling paths
{~y1, ~y2, . . .} ∈ Y . Sibling paths are generated with a modified
version of Yen’s k-shortest path algorithm that finds k paths
between all start-point au’s siblings A′u and all of the endpoint
av’s siblings A′v . Figure 5 illustrates the make up of the short-
paths X and the short-sibling-paths Y .

Note that this process generates interesting paths not meta-
paths. However, we shall see that an exciting side-effect of

these calculations is the emergence of one or more interesting
meta-paths.

Next we describe two interestingness calculations. The first
uses an unordered collection of all the types on the short-paths.
The second looks at the node types in sequence.

D. Unordered Analysis

Each type t can have one or more parent types themselves
creating a hierarchy of types. For the unordered case, Ta
represents the full set of parent-types and all ancestor-types
for a node a. Note that the type granularity or hierarchy is not
considered in this set-of-types representation.

If we apply this to a path of nodes ~xi = 〈a1, a2, . . . , a|~xi|〉
we can retrieve a path of sets-of-types ~T~xi

=
〈Ta1 , Ta2 , . . . , Ta|~xi|

〉, or we can simply combine all of
the sets-of-types on the path into a single set-of-set-of-types:
T~xi

=
⋃|~xn|

n=1 Tan
.

If we similarly apply this to a sibling path ~yi = 〈a′u, . . . , a′v〉
we can get a path of sets-of-types for the sibling paths ~T~yi

=
〈Ta′

u
, . . . , Ta′

v
〉. We can again simply combine all of the sets-

of-types on the path into a single set-of-set-of-types T~yi
=

Ta′
u
∪
⋃|~yi|−1

n=2 {Tan
} ∪ Ta′

v
. We want to discover interesting

meta-paths using all of the types in all of the sibling paths, so
we further add all of the paths together to get one large set
of all of the types in all of the elements in all of the sibling
paths: TY =

⋃|Y |
i=1{T~yi

}.
Finally, we define the rank of each path according to the

proportion of types that appear in the path but not in the set
of sibling paths:

r(~xi) =

∣∣T~xi
∩ TY

∣∣
|TY |

E. Ordered Analysis

By taking the ordering of the nodes on the paths into account
we are able to specifically account for differences in node
(and node-type) positions. To do this we again consider a
set of k-shortest paths {~x1, ~x2, . . . , ~xk} between start-point
au and endpoint av , and the corresponding sibling paths
{~y1, ~y2, . . .} ∈ Y . We again consider the type parents for
each node Ta, but this time we consider the set-of-types one
position at a time, such that Ta1 is not combined with Ta2 , etc.
Instead, we look at the type proportions at each path position:

p(an, a
′
n) =

|Tan
∩ TYn

|
|TYn
|

where TYn
is the union of the set-of-types for each node in

the nth position on the sibling paths:
⋃|Y |

i=1{Tai,n
}.

To find the final proportion under ordered-path conditions
we multiply the positional proportions together:

r(~xi) =

|~xi|∏
n=1

p(an, a
′
n)

Because 0 ≤ p(an, a
′
n) ≤ 1, longer paths will be at a

disadvantage. So, we could alternatively calculate a path’s rank
based on the mean proportion.
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Fig. 5: Example of proposed interesting path mining method.
First, find short paths X between input/query nodes WAND and
ROCKNE. Second, find short paths Y between the type or role-
siblings of WAND and ROCKNE. Finally, use the paths in Y to
determine which paths in X are interesting.

In the example from Figure 5 we may find that an interest-
ing path is WAND-NORTHEASTERN-HARVARD-ROSE BOWL-
ROCKNE because ICE HOCKEY is found to separate WAND
and ROCKNE, but not their type-siblings. We would also
find that a meta-path between WAND and ROCKNE would
be PEOPLE-EDUCATION-EDUCATION-SPORTS-PEOPLE, or,
more-probably, a more fine-grained version of this meta-path
that we’ll discuss later.

F. Discussion

The unordered analysis is very similar to the confidence
measure in classical association rule mining c.f., p(A ∩
B)/p(B) [31], and the ordered analysis can be thought of
as a product of multiple, smaller confidence measures. Of
course, any number of interestingness measures can be applied
in various different ways.

What do these rankings mean? The ordered and unordered
analysis presented here describe how the paths by which the
start point and the endpoint are connected with respect to their
types. A path ~xi = au ; av that does not share many types
in common with the sibling paths would receive a score r(~xi)
closer to 0 than a path with many types in common with the
sibling paths. For lack of a better terminology, the ~xi with the
score closest to 0 is called the most interesting path between
au and av . In other words, the most interesting path is the
path (from within the k-shortest paths between au and av)
that most uniquely separate au from av .

Conversely, the path with the score closest to 1 is called the
most-general or least interesting path between au from av . The
most general path is so called because it has the most types
in common with the types in the set of sibling paths.

Examples and analysis of interesting and general paths are
presented in the next section.

IV. PATH RANKING ANALYSIS

To concretely evaluate the utility of the proposed model
we have devised a quantitative experiment and two qualitative
experiments. The first qualitative evaluation uses several thou-
sand human judgements to make sense of the variously ranked
paths; the second qualitative evaluation illustrates typical and
extreme cases1. Although there exist other heterogeneous
information network similarity measures as discussed above,
none of the existing techniques are comparable because they
require hand-crafted meta-paths as input. Conversely, the goal
of this paper is to determine the important/interesting meta-
paths.

A. Dataset

We use a very large, heterogeneous, directed network
datasets in our evaluation: Wikipedia (from the Dec. 2, 2013
database dump). We chose Wikipedia because of their robust
type-system and their size. DBLP, IMDB and other commonly
used information network datasets could be used, but their lim-
ited type systems are not the focus of meta path discovery and
therefore would not appropriately demonstrate the robustness
of the proposed model.

TABLE I: Experimental Dataset consisting of large, complex
heterogeneous information networks

nodes edges types avgdl
Wikipedia 10,276,554 740,056,056 1,018,609 524.7

Table I shows the sizes of the dataset. These statistics
includes redirection nodes that are not filtered out during
processing. Avgdl is the mean document length in the number
of words per document/node. Edges correspond to Wiki-links

1The entire set of ranked, result paths as well as source code and raw data
are available at https://github.com/nddsg/discrmetapath
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in color.)

in Wikipedia. The number of types in Wikipedia corresponds
to the number of Wikipedia Categories and is discussed
throughout this paper.

To generate random input for the start-node au and the end-
node av we randomly picked a starting node au and then
repeatedly picked a candidate ending-nodes until a node was
found to exist within 4 hops of the starting node. This was
done to limit the computational complexity of dealing with
very long paths. Furthermore, we are not particularly interested
in overly long paths with looking for interesting meta-paths.
Overall we generated 2,979 paths from Wikipedia.

Each pair of random inputs (au, av) is considered by the
path generation algorithm outlined above and ranked. We
report the paths at the top (most interesting), one-quarter, half,
three-quarter and bottom (least interesting) of the rankings,
labeled 0, 0.25, 0.5, 0.75, 1.0 respectively throughout. This
allows us to determine what differences, if any, exist between
the path rankings.

V. META-PATH SELECTION

Once we obtain interesting paths through the graph, the
next step is to find the corresponding meta-path. For ex-
ample, the path from WAND-NORTHEASTERN-HARVARD-
ROSE BOWL-ROCKNE would have several possible meta-
paths including PEOPLE-EDUCATION-EDUCATION-SPORTS-
PEOPLE corresponding to the main-topic classifications, i.e.,
top-level categories, on Wikipedia. Of course, it may also
be beneficial to consider the lowest category-granularity re-
sulting in a meta-path such as PROGRAMMING LANGUAGE
RESEARCHER-EDUCATION IN BOSTON-ASSOCIATION OF
AMERICAN UNIVERSITIES-ROSE BOWL-COLLEGE FOOT-
BALL HALL OF FAME INDUCTEES which correspond to the
one of immediate category designations for each node.

Recall, as illustrated in Figure 1, that each node can
have multiple category designations and each category can
themselves have multiple parent-categories. For the remainder
of this paper we simplify the category tree into a category

vector by finding the shortest path from the node to the top-
level category. Taking the category hierarchy in Figure 1 as an
example, we would simplify NORTHEASTERN’s category hier-
archy to be a vector of EDUCATION IN BOSTON-EDUCATION
IN THE UNITED STATES-EDUCATION IN NORTH AMERICA-
EDUCATION, because the path to the top-level EDUCATION
category was the shortest. Ties are broken arbitrarily.

Note that this simplification is for clarity on the Wikipedia
data; simplified category hierarchies are not central to our
approach.

Next, we change our running example to a pair of computer
scientists JIAWEI HAN and JOHANNES GEHRKE. Figure 6
illustrates that the most interesting path passes through the
DATA MINING and SIGKDD nodes2. Above each node is the
simplified category vector with the most specific category on
the bottom and the most general category on the top.

Depending on our task, we may wish to choose meta-
paths at different granularity levels. We define a granularity
parameter λ that regulates the specificity of a meta-path, where
0 ≤ λ ≤ 1, and 0 means most specific and 1 means most
general. For example, λ = 0 would return a fine-grained
meta-path best suited for the discovery of specific DATABASE
RESEARCHERS that are linked to by ACM SIG nodes, and so
on (red arrows in Figure 6). A λ = 1 would return a meta-path
of the top-level categories (green arrows in Figure 6).

VI. SIMPLE META-PATH SIMILARITY

In this section we present results for a simple meta-path
similarity search on Wikipedia. As is common in heteroge-
neous information network literature, no standard evaluation
procedure exists for this type of analysis, so in lieu of precision
and recall scores we present the reader with results from
different points of view.

Specifically, we take the interesting meta-paths at various
λ-granularity and perform a constrained random walk with
restart (RWR) search with 1,000 iterations. When we reach
the end of the constraining meta-path, the corresponding node
is recorded as having been visited. Similarity between the
visited nodes and the query nodes is obtained by ranking
visited nodes by their visitation percentage. For example, if
a single meta-path-constrained RWR starting at JIAWEI HAN
ends at JOHANNES GEHRKE then the count for JOHANNES
GEHRKE is increased by one. The percentage of constrained
walks ending with JOHANNES GEHRKE out of all completed
walks is the similarity score.

More robust and complete clustering and ranking algorithms
exist in recent literature. These heterogeneous information
network clustering and ranking algorithms operate, at a fun-
damental level, by looking at various meta-path-constrained
random walks. Rather than including the newly discovered
interesting meta-paths as features in the existing algorithms,
we are instead interested in showing the basic properties and
behavior of the interesting meta-paths.

2ICDM, unfortunately, does not have a Wikipedia page
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Fig. 7: Illustration-graph of the most frequent paths traveled with constrained RWR with meta-paths of different granularity
i.e., λ values. The colors of the paths in Figure 7 correspond to the colors of the meta-paths in Figure 6. The line-thickness
corresponds to the probability of traversing a given edge; edges under 10% probability were not drawn for clarity. (This figure
is best viewed in color.)

TABLE II: Results of meta-path constrained RWR for various
λ values on Wikipedia. Blank values mean that the node was
never encountered in 1,000 random walks.

λ
0 0.24 0.41 0.48

Edgar F. Codd 40.5 18.1 9.0
Johannes Gehrke 28.4 29.4 8.4 2.8

Raghu Ramakrishnan 31.1 6.0 3.6
Anita Borg 5.1 0.6 0.2

Shafi Goldwasser 4.9 0.6
Osmar R. Zaiane 4.8 3.6 1.6

Vint Cerf 4.1 2.4 0.2
Allen Newell 2.0 0.6

ACM 5.1
IEEE 4.9

Yahoo! Research 4.8
Microsoft Research 4.4

Table II shows the probability of reaching an endpoint
using the constrained RWR at different levels of λ. The meta-
paths generated by the λ values in Table II correspond to the
the meta-paths shown in Figure 6. The bottom-most meta-
path DATA MINERS-DATA MINING-ACM SIGS-DATABASE
RESEARCHERS corresponds to λ = 0 meaning it is the meta
path at the finest granularity. The top meta-path of PEOPLE-
SCIENCE-SOCIETY-PEOPLE returned an extremely wide array
of PEOPLE, none more than 3 times (out of the thousand RWR
iterations), so results for λ = 1 were omitted in Table II.

Recall that these similarity results listed here are not
necessarily the people or nodes most similar to JOHANNES
GEHRKE. Rather they are the nodes that are similar to JO-
HANNES GEHRKE in the same ways that JIAWEI HAN is
similar to JOHANNES GEHRKE. A different starting point
would surely return a different set of results.

As expected, different meta-path granularities give different
types of results. Presumably this is because different type
granularities cast a wider net of possible nodes. In other words,
general types impose less of a constraint on the random walker
than specific, or fine-grained, types.

A. Exploring Interesting Meta-paths

The previous section presented results nodes that were found
to be related with a target node in the same way that the
source node is related to the target node. The presented results
were gathered with a very simple similarity algorithm – meta-
path constrained RWR. The state of the art in HIN clustering
and classification use several different network measures to
generate values that are input into a regression, clustering or
classification algorithm. We omitted those steps, and instead
show the raw features. The actual presented results are less
important than the understanding of how the interesting meta-
paths actually describe the relationships between the start
points and endpoints.

To that end we traced the paths followed by the constrained
RWR algorithm for JIAWEI HAN and JOHANNES GEHRKE.
Figure 7 shows the most frequent paths traveled under different
λ values. The colors of the paths in Figure 7 correspond to
the colors of the meta-paths in Figure 6. The line-thickness
corresponds to the probability of traversing a given edge; edges
under 10% probability were not drawn for clarity.

The nodes listed on the right-hand portion of the illustration
correspond to the nodes most similar to JOHANNES GEHRKE
under the different meta-path granularities. For example, YA-
HOO RESEARCH and MICROSOFT RESEARCH are found to
be related to JOHANNES GEHRKE, but only at the most-
course granularity setting; this is because YAHOO RESEARCH



and MICROSOFT RESEARCH are within the SCHOLARS-type.
Otherwise, the endpoints are COMPUTER SCIENTISTS or
DATABASE RESEARCHERS or both.

Also note that the Wikipedia Category DATABASE RE-
SEARCHERS contains 48 total Wiki-pages corresponding to
many well known database researchers that are presumably,
somehow, related to JOHANNES GEHRKE. However, we stress
that, in this case, the 47 other database researchers have been
found to not be related to JOHANNES GEHRKE in the same
“interesting” way that JIAWEI HAN is related to JOHANNES
GEHRKE. Thus many of the 47 are not included in the results.

VII. CONCLUSIONS

In conclusion, we have presented an algorithm that discovers
interesting paths from complex heterogeneous information
networks. Next we performed an analysis of the paths at
various levels of interestingness and found no statistically
significant difference between the similarities of the documents
on the paths. We interpret this negative result to mean that
the differences in types do not necessarily correspond to
a significant difference in the overall word distribution. A
qualitative analysis on the same paths found that humans
judges chose the path with the highest interestingness score
as the path that best separates two random nodes.

Next we showed how meta-paths of varying granularity can
be extracted from the interesting paths and used to find nodes
that are similar to a given endpoint in the same way that the
starting point is similar to the endpoint. Finally, we presented
a brief snapshot of the paths that were traversed during the
meta-path constrained RWR.

As a matter for future work we intend to use human paths
to inform the selection of interesting meta-paths. We will also
explore the potential that a generative model could have to
iteratively refine other interesting meta-paths.

In summary, the complex type systems that exist in large,
real-world heterogeneous information networks pose a prob-
lem for existing techniques. We have presented a way to al-
gorithmically present the user with interesting meta-paths that
can be used to issue incisive queries to complex heterogeneous
information networks.
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