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What Moves Investment Growth?

We use accounting identities to decompose unexpected changes in invest-
ment growth into surprises to current cash-flow growth and stock returns, and
revisions of expectations about future cash-flow growth and future discount
rates. Using a vector autoregressive model we find that current cash-flow
surprises account for the largest element of the variance decomposition.
Investment growth and current cash-flow surprises are negatively correlated
with news about future cash-flow growth, which can be expected from per-
sistent productivity shocks and decreasing returns to scale. We find little
evidence of a discount rate channel for investment since return terms are
small and have unintuitive signs.
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BUSINESS INVESTMENT IS PERENNIALLY IMPORTANT for economics:
it creates current employment and leads to long-run growth; at the same time large
swings in investment are a primary contributor to business cycle volatility. Investment
is a trade-off between the present and the future. When making investment decisions
managers should consider the prospect of future profits created by the new investment
and the present cost of such profits. But what really moves investment? Does the
stock market affect investment over and above cash flows? Is investment explained
by expected future profits or by current cash flows? These are some of the most
fundamental questions in financial economics.
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Many papers study the relationship between investment, stock returns, and mea-
sures of “fundamentals” (see, e.g., Barro 1990, Morck, Shleifer, and Vishny 1990,
Cochrane 1991, Blanchard, Rhee, and Summers 1993, Lamont 2000, Lettau and
Ludvigson 2002, Campello and Graham 2013). While in general returns are found to
have limited explanatory power for investment, a debate remains regarding the inter-
pretation of this finding since it is hard to disentangle the effect of returns from the
effect of cash flows. At the same time, economists have long been puzzled by a strong
relation between investment and current cash flows (see Eisner 1978, for an early
summary). Fazzari, Hubbard, and Petersen (1988) interpret this investment-cash flow
sensitivity as evidence in favor of financial constraints, although others argue that
current cash flow may contain long-run information not captured by other variables
(see, e.g., Abel and Eberly 2011). The difficulty in this second strand of the literature
is on how to separate information about long-run cash-flow dynamics from short-run
cash-flow shocks.

Borrowing the asset pricing techniques developed by Campbell and Shiller (1988),
we propose a simple methodology to address the above-mentioned issues, that is, the
interplay between cash flows and returns, and between short-run and long-run dynam-
ics. Our novel methodology has several advantages. First, investment growth in our
framework is decomposed into four main elements—current cash flows, expectations
of future cash flows, current returns, and expectations of future discount rates—
through present-value identities before any theoretical consideration is brought to
the table. Second, we estimate the relation between investment and each one of its
four components simultaneously and within a consistent framework, allowing us to
directly compare the relative magnitudes of the different elements. Finally, we allow
for time variation in future discount rates, that is, for a discount rate channel, which
as emphasized by Abel and Blanchard (1986) accounts for most of the movements
in q (the present value of marginal profits) and potentially also for the movements
in investment (see Lettau and Ludvigson 2002). It is important to emphasize that we
decompose investment into its different elements, all of which are potentially endoge-
nous and interact with each other. This is not the same as decomposing investment
into its response to primitive drivers (e.g., technology or preference shocks). In other
words, our decomposition accounts for the relative importance of the main channels
of investment variation, but we do not claim that these elements cause investment in
a deeper sense.

Specifically, we start from the intertemporal budget constraint of the firm that
links cash flows, investment, equity values, and stock returns. The budget equation
identifies the sources of variation in investment growth, but is model free in the
sense that any theory that obeys basic identities can be expressed in this form.
By being model free, our approach delivers a set of quantitative stylized facts for
all potential theories to match. We can avoid taking a stand with respect to the
underlying mechanisms because some basic relations—especially those enforced
through accounting identities—must hold regardless of economic interpretation and
modeling. The appeal of this approach can be summarized by going back to Brainard
and Tobin (1968):
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We argue for the importance of explicit recognition of the essential interdependencies
of markets in theoretical and empirical specifications of financial models. Failure to
respect some elementary interrelationships–for example, those enforced by balance-
sheet identities–can result in inadvertent but serious errors of econometric inference and
of policy. This is true equally of equilibrium relationships and of dynamic models of
the behavior of the system in disequilibrium. (p. 99)

We estimate current surprises and long-run news through a vector autoregressive
(VAR) system in the style of variance decompositions that followed Campbell and
Shiller (1988). This system of predictive regressions imposes minimal structure on
expectations and on the information set available to economic agents when they make
forecasts. Some of its advantages are, first, simplicity and the flexibility to condi-
tion on alternative information sets. Second, a predictive system instead of a single
regression model has the advantage that all simultaneous effects, which can in prin-
ciple offset each other, are accounted for. Chirinko and Schaller (1996) and Gatchev,
Pulvino, and Tarhan (2010) make a similar point in favor of predictive systems vis-
à-vis single equation models of investment. However, they do not compute long-run
news terms like we do, and Gatchev, Pulvino, and Tarhan (2010) do not consider
equity values as endogenous to the system. Third, predictive regressions provide
estimates of short-run and long-run effects without relying on direct measures of q.
Empirical proxies for q typically require particular modeling assumptions such as the
equivalence theorem between average and marginal q (Hayashi 1982) and are prone to
measurement error (see Erickson and Whited 2000, 2012). Much debate in the litera-
ture is focused on whether q fails as a sufficient statistic for long-run information, and
on how cash-flow variables may contain long-run information that q does not capture
(see Abel and Eberly 2011). Our measures sidestep this problem by computing long-
run news that are based solely on identities and predictive regressions. To be sure,
our methodology has its own shortcomings, but it represents a reasonable alternative
way to estimate long-run information that is rooted in the asset pricing tradition.

Our main results refer to aggregate U.S. data starting from 1952, and industries
of U.S.-listed firms starting from 1970. We also perform our decomposition at the
firm level, although our framework is, admittedly, best suited to study investment
series that are less lumpy. The main findings are as follows. First, the lion’s share
of variation in investment growth is strongly correlated with surprises to current
cash-flow growth. Second, we find that investment growth is negatively correlated
with news about long-run cash-flow growth, although this component is smaller
than the one attributable to current cash-flow surprises. The differences in sign and
magnitude reveal interesting dynamics in investment and cash flows that cannot be
captured by a static model. In fact, we find that cash-flow surprises are not pure
transitory windfalls, but they contain long-run information about future cash-flow
growth. Finally, we find that, when compared to the magnitude of cash-flow terms,
return terms are of second-order importance in accounting for investment dynamics,
and crucially, they correlate with investment with unintuitive signs. Current return
surprises are negatively correlated with investment growth as also found by Lamont
(2000). More importantly, the correlation of investment growth and long-run discount
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rate news is positive, which is unintuitive in a present-value sense since it implies
that investment growth increases when discount rates go up. One possibility is that
positive discount rate news coincide with positive cash-flow surprises, and hence
the correlation between investment and discount rate news that we can estimate
empirically has the wrong sign. However, in the data, there is no such correlation
between discount rate news and cash-flow surprises. Overall, we do not find evidence
in favor of a discount rate channel.

We include a simple, stripped-down model where we derive some basic impli-
cations for the decomposition of investment growth. It is important to note that we
focus on investment growth rather than investment levels (i.e., the investment-to-
capital ratio). This has the advantage, empirically speaking, that first differences
remove low-frequency aspects of the data (see Barro 1990, Cochrane 1991, and
Morck, Shleifer, and Vishny 1990 along these lines). Investment growth is also the
focus of an important part of the asset pricing literature on the cross-section of stock
returns (see Titman, Wei, and Xie 2004, and Liu, Whited, and Zhang 2009 among
others). Our model does surprisingly well in matching the positive covariance of
investment and cash-flow surprises, and the negative covariance of investment with
long-run cash-flow news. Persistent productivity shocks and decreasing returns to
scale are two key features of the model that allow us to match these joint dynamics
of cash flows and investment. It is important, in this respect, that we deal with growth
rates and not with levels. Future investment levels are positively correlated to cur-
rent (and persistent) productivity shocks, but future investment growth rates can be
negatively correlated to current shocks because growth rates fall as the effect of the
productivity shock decays into the future. The model with constant returns to scale
does worse in matching these dynamics. However, the main problem with all versions
of the model—with and without decreasing return to scale—is that they produce a
counterfactually high comovement of investment and returns, and typically a strong
negative effect of discount rates.

The model that we present allows us to digest the empirical results in an orderly
fashion, making explicit the connection of cash flows, investment, and returns with
primitive drivers such as technology or preference shocks. The different elements
of the variance decomposition are endogenous in the sense that they all depend on
the dynamics of these drivers. Admittedly, we cannot do justice to the richness and
diversity of investment models. In particular, we do not claim that all investment
theories and their multiple incarnations are beyond repair in their capacity to fit our
empirical findings. We simply highlight where the main challenges lie in the data.

Our results are related to several strands of the literature. First, the large effect of
current cash flows that we find is reminiscent of the investment-cash flow sensitivity
literature started by Fazzari, Hubbard, and Petersen (1988). We emphasize that our
results do not rely on assuming the existence of financial constraints, mispricing,
managerial short-termism (excessive attention to stock markets) or myopia (insuf-
ficient attention to stock markets), or any other friction. Like Campbell and Shiller
(1988) in the asset pricing literature, we solely rely on budget constraints that can
be recast in terms of present-value relationships. We also find different responses of
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investment to short-run and long-run cash-flow terms, which highlights the fact that
there are nontrivial dynamics between cash flows and investment that can go unno-
ticed in a purely static model. Our model tries to rationalize these patterns without
assuming financial constraints, but we do not attempt to distinguish between models
with and without financial constraints.

Second, our results are related to the long-standing debate about the relationship
between stock markets and investment. Morck, Shleifer, and Vishny (1990) argue
that the stock market is a side show for investment decisions. Blanchard, Rhee,
and Summers (1993) arrive at a similar conclusion stating that “market valuation
appears to play a limited role, given fundamentals, in the determination of investment
decisions” (p. 132). Barro (1990), however, argues that returns have substantial
explanatory power for investment growth, even in the presence of cash-flow variables.
In this article, we find that, in general, returns play a secondary role in accounting for
the variance of investment growth. Furthermore, when we split return information
between short-run surprises and long-run discount rates we find that the discount rate
channel is small in magnitude and goes in the wrong direction.

A related debate concerns the real effects of market inefficiency and mis-
pricing (see, e.g., Chirinko and Schaller 1996, Stein 1996, Baker, Stein, and
Wurgler 2003, Gilchrist, Himmelberg, and Huberman 2005, Polk and Sapienza 2009,
Campello and Graham 2013). Our results suggest that the impact of market mispric-
ing is at best limited, at least when studying aggregate investment, large portfolios of
firms such as industries, or a long time series. The effects of mispricing are potentially
easier to detect in narrow subsets of firms more exposed to stock market fluctuations
(as, e.g., in Baker, Stein, and Wurgler 2003) or in particular time periods with notable
deviations of prices from fundamentals (as in the 1990s technology bubble studied
by Campello and Graham 2013).

The rest of the article proceeds as follows. Section 1 develops the present-value
relationship between investment and discounted cash flows starting from the intertem-
poral budget constraint of the firm. Section 2 presents the various data sources and
empirical methodology. Section 3 shows the results for aggregate investment growth
and discusses portfolio- and firm-level results. Section 4 presents a simple log-linear
model to digest the empirical findings. Section 5 concludes.

1. INVESTMENT AND THE PRESENT VALUE OF CASH FLOWS

1.1 The Firm’s Intertemporal Budget Constraint

The intertemporal budget constraint for equity is

Et+1 = Et × Rt+1 + NIE
t+1 − DIVt+1, (1)

where Et is total equity value at the end of period t , Rt is gross equity return in period
t , NIE

t is net equity issuance in period t , and DIVt is total dividends during period t .
The difference DIVt+1 − NIE

t+1 is net equity payout as in Boudoukh et al. (2007) or
Larrain and Yogo (2008). Equation (1) says that equity in the current period is equal
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to equity last period, which has grown at the realized rate of return, plus the amount
contributed by shareholders (i.e., net equity issuance), minus the dividend payout.

The Flow of Funds (FOF) identity is

It+1 + DIVt+1 = EARNt+1 + CFADJt+1 + NID
t+1 + NIE

t+1, (2)

where It+1 is investment, EARNt+1 is earnings (after interest expense), CFADJt+1 is
cash-flow adjustments to earnings, and NID

t+1 is net debt issuance. Equation (2) states
that the uses of funds (investment and payout) must be equal to the sources of the
funds (cash flow plus net securities issuance).1

We define Yt+1 or equity cash flow as

Yt+1 = EARNt+1 + CFADJt+1 + NID
t+1

= It+1 + DIVt+1 − NIE
t+1. (3)

The term “equity cash flow” is meant to refer to the total amount of cash that the
firm can allocate to either investment or net equity payout. Combining equations (1)
and (3) yields the intertemporal budget constraint for equity in terms of investment
and equity cash flow:

Et+1 = Et × Rt+1 + It+1 − Yt+1. (4)

Similarly, we define Y A
t+1 or asset cash flow as

Y A
t+1 = EARNt+1 + INTt+1 + CFADJt+1

= It+1 + DIVt+1 − NIE
t+1 + INTt+1 − N I D

t+1, (5)

where INTt+1 is interest expense. Equation (5) shows that asset cash flow is the amount
of cash the firm can allocate to either investment or net payout of equityholders and
debtholders together. As in the case of equity, the intertemporal budget constraint for
assets (equity plus debt) can be written as

At+1 = At × R A
t+1 + It+1 − Y A

t+1, (6)

where At is the value of total assets (equity plus debt), R A
t+1 is asset return, and Y A

t+1
is asset cash flow.

The intertemporal constraints for equity and assets are very similar. We focus
primarily on the one for equity because the connection between equity returns and
investment has dominated much of the literature. The budget constraint for assets
relates investment with returns that combine equity and debt. On the other hand, asset
cash flow only captures internally generated funds, while equity cash flow includes

1. Appendix A provides additional details by relating our identities to the firm-level flow of fund
identity discussed in Gatchev, Pulvino, and Tarhan (2010).
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debt financing. Ultimately, the difference between both constraints is whether debt is
included in returns (as in the case of assets) or in cash flows (as in the case of equity).
Investment is the same in both cases.

1.2 Present-Value Relation Involving Cash Flow, Investment, and Discount Rates

In the same style of Campbell and Shiller (1988), we log-linearize the intertemporal
budget constraint for equity in equation (4). The derivation for the case of total assets
is analogous. In the following derivations, small letters represent the log of the
original variables (in capital letters). The notation �t+1 refers to the log-difference
between t + 1 and t for a given variable. As is explained in detail in Appendix B, the
log-linearization of equation (4) gives us (ignoring constants):

vt ≈ rt+1 − θ�yt+1 + (θ − 1)�it+1 + ρvt+1, (7)

where we define,

vt ≡ θyt − (θ − 1) it − et . (8)

The variable vt is the log version of the net payout yield for equity, which in
levels is (Yt − It )/Et . Equation (7) is similar to equation (4) in Larrain and Yogo
(2008); however, we dig deeper into the determinants of net payout growth in our
specification. In Appendix B, we discuss the log-linearization in detail, including its
accuracy, and the choice of parameters (θ = 1.77 and ρ = 0.99).

Solving equation (7) forward and taking expectations, we get a present-value
equation for the net payout ratio:

vt =
∞∑
j=1

ρ j−1 Et [rt+ j − θ�yt+ j + (θ − 1)�it+ j ]. (9)

The net payout ratio is higher because expected returns are higher, or expected cash-
flow growth is lower, or expected investment growth is higher.

In a way analogous to the decomposition of unexpected returns of Campbell (1991),
we decompose unexpected investment growth from equation (9) into four elements:

�it+1 − Et�it+1 = − 1

θ − 1
(rt+1 − Et (rt+1))︸ ︷︷ ︸

Cr,t+1

+ θ

θ − 1
(�yt+1 − Et (�yt+1))︸ ︷︷ ︸

Cy,t+1

− 1

θ − 1
�Et+1

∞∑
j=2

ρ j−1rt+ j

︸ ︷︷ ︸
Nr,t+1
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+ θ

θ − 1
�Et+1

∞∑
j=2

ρ j−1�yt+ j − �Et+1

∞∑
j=2

ρ j−1�it+ j

︸ ︷︷ ︸
Ncf,t+1

= − Cr,t+1 + Cy,t+1 − Nr,t+1 + Ncf,t+1. (10)

The equation says that unexpected investment growth can be understood as the sum
of four components: (i) unexpected current return (Cr,t+1), (ii) unexpected current
cash-flow growth (Cy,t+1), (iii) discount rate news (Nr,t+1), and (iv) cash-flow news
(Ncf,t+1). The first two components are current realizations that deviate from prior
expectations. The last two components are revisions of expectations about the future.
Equation (10) does not imply that the four right-hand-side elements cause investment
growth. To the contrary, these are all potentially endogenous pieces that simply add
up to total unexpected investment growth.

It is important to note that the investment decomposition holds by definition.
Therefore, without resorting to any particular investment theory, one can see how
each element contributes to investment. For example, holding constant current cash
flow and expectations on future returns and cash flows, higher investment today must
imply lower stock return today because of the substitution between investment and
payout. This explains the negative sign before Cr,t+1. It does not mean, however, that
unexpected investment and stock returns have to be negatively correlated in the data,
because the other three terms can move around (or can be influenced by corporate
policies) and affect investment at the same time. After these other effects are taken
into account, investment and returns could be positively correlated.

Similarly, holding everything else constant, investment can be financed through a
positive cash-flow shock, which explains the positive sign before Cy,t+1. This does
not mean, however, that investment has to be positively correlated with cash-flow
shocks. Forward-looking managers could react to a transitory cash-flow shock by
adjusting current payout and leaving investment intact. That is, Cr,t+1 and Cy,t+1 can
change at the same time without impacting investment.

We study the contribution to investment variation of each element by computing
the covariance of �it+1 − Et�it+1 with each side of equation (10):

var(�it+1 − Et�it+1) = cov(�it+1 − Et�it+1,−Cr,t+1)

+ cov(�it+1 − Et�it+1, Cy,t+1)

+ cov(�it+1 − Et�it+1,−Nr,t+1)

+ cov(�it+1 − Et�it+1, Ncf,t+1). (11)

The variance of investment can be decomposed into four covariance terms. Intu-
itively, not all variation of the items in the right-hand side of equation (10) matters
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for the variation of investment. What matters is the portion of variation that is related
to investment, which is precisely what the covariance captures.2

If we divide both sides of equation (11) by var(�it+1 − Et�it+1), we get

1 = βCr + βCy + βNr + βNcf , (12)

where each β is a covariance divided by the variance of investment. Each β can be
interpreted as the regression coefficient from running one of the terms, say Cr,t+1,
on unexpected investment growth. In other words, if investment moves unexpectedly
today this movement must come from either current returns, current cash flow, future
returns, or future cash-flow growth. These regression coefficients have to add up to
one if the budget constraint holds.

One can use this decomposition to give content to different theories about invest-
ment behavior. For example, if current shocks are purely transitory and managers
are forward looking we expect to find small βCr and βCy , but large βNr and βNcf . Of
course, the identity by itself cannot tell us about the relative importance of investment
components. The economic content of the identity comes down entirely to estimation,
which is what we do in the next section.

2. DATA AND EMPIRICAL METHODOLOGY

2.1 Data Sources

Our primary source for aggregate data is the seasonally adjusted quarterly data
from the FOF Accounts of the United States, 1952:01–2014:04.3 We construct the
variables for the nonfinancial corporate sector. All flows are expressed at the quarterly
frequency and not at the annual frequency. From table F.103, we obtain earnings
(EARNt , Line 1), dividends (DIVt , Line 3), capital expenditure (It , Line 11) which
includes fixed investment (Line 12) and inventory change, net equity issues (NIE

t ,
Line 47), and net debt issues (NID

t , Line 40 plus Line 42). Interest expense (INTt )
is not reported by the FOF so we obtain it from the NIPA table 1.14. With these
elements, we compute equity cash flow (Yt ) and asset cash flow (Y A

t ) as defined in
equations (3) and (5), respectively. From table B.103, we obtain the book value of
debt (Line 25) and the market value of equity (Et , Line 41), which together represent
our measure of total assets (At ) as in Larrain and Yogo (2008). Stock returns (Rt )
and asset returns (R A

t ) are computed with the above elements from equations (1) and
(6), respectively. All data are deflated using the end-of-quarter CPI from the Bureau
of Labor Statistics.

2. We emphasize that the four elements in the right-hand side of equation (10) are not assumed to
be independent or orthogonal to each other. See Campbell and Ammer (1993) for a similar treatment
regarding return decompositions.

3. Data were downloaded on December 2015 from http://www.federalreserve.gov/releases/z1/Current/
data.htm.
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Our secondary data source is a merge of the Compustat Annual Industrial File
and the Center for Research in Security Prices (CRSP) Database. When constructing
the variables, we follow the variable definitions and procedures in Larrain and Yogo
(2008) and Gatchev, Pulvino, and Tarhan (2010) closely. Due to the requirement for
the statement of cash flows, the data are available at annual frequency only since
1971 and up to 2014. We exclude SIC codes 6000–6799 to focus on the nonfinan-
cial firms. The Compustat–CRSP data set covers only publicly traded companies,
while the FOF includes public and private companies. From Compustat, we collect
earnings (NI), dividends (DV), share repurchases (PRSTKC), and share issuance
(SSTK). “Investment”: is defined as capital expenditure (CAPX) minus the reduction
in inventory (INVCH).4 The market capitalization at the end of each year (Et ) and
annual stock returns are computed using the CRSP database. Firm-level variables
are aggregated to the market level. The main variables of interest during year t are
then scaled with the total market capitalization at the end of year t . Individual stock
returns (ret) and capital appreciation components (retx) are also aggregated to the
market level using value weighting. Finally, annual log growth rate in variable X is
computed as �x = ln(( X

E )t ) − ln(( X
E )t−1) + ln(1 + retxt ).

2.2 Descriptive Analysis of Quarterly Sample

Figure 1 plots investment growth against equity cash-flow growth (top) and earn-
ings growth (bottom). Growth rates are computed as log differences. For visual clarity,
we first compute the average across quarters in each year, and then plot the time series
of annual averages. Investment growth tends to follow cash flow and earnings growth
closely. For example, investment growth, cash-flow growth, and earnings growth
reach their lowest points during the 2001 recession. Overall, investment growth and
cash flow or earnings growth behave like close cousins (if not twins), going wildly
up and down together.

Table 1 reports summary statistics for the quarterly sample. Average investment
growth, earnings growth, and cash-flow growth are below 1%, and average stock re-
turns are about 2% quarterly, which implies an average annual return of approximately
8%. Investment growth is about as volatile as stock returns, earnings growth, and cash-
flow growth. The correlations of investment growth with cash-flow growth and with
earnings growth are positive and high (0.72 and 0.47, respectively). These strong cor-
relations are consistent with previous results in this literature (see Blanchard, Rhee,
and Summers 1993, Hassett and Hubbard 1997, Caballero 1999). Dividend growth
is less volatile than investment.5 Dividend growth is essentially uncorrelated with
either earnings growth or cash-flow growth.

4. In other words, the increase in inventory is categorized as investment. We do this in order to match
the definition of capital expenditures in the FOF. This treatment, however, does not drive our results.
We obtain very similar results using a definition of “investment” that excludes changes in inventory (see
Section 3.2).

5. For this table, dividends are taken from Amit Goyal’s database, and not from the FOF as in the
rest of the article, in order to facilitate comparisons with the asset pricing literature. For details on the
construction of variables in Amit Goyal’s database, see Goyal and Welch (2008).
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FIG. 1. Cash Flow and Investment Growth.
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TABLE 1

SUMMARY STATISTICS

Panel A: Summary stats
Obs Mean Std. Dev. Min Max First autocorr

Investment growth 251 0.008 0.068 −0.338 0.188 0.001
Returns equity 251 0.021 0.087 −0.313 0.214 0.074
Returns assets 251 0.016 0.047 −0.155 0.247 0.052
Cash-flow growth equity 251 0.009 0.093 −0.339 0.363 −0.120
Cash-flow growth assets 251 0.009 0.116 −0.392 0.337 −0.302
Earnings growth 251 0.006 0.085 −0.456 0.221 0.155
Dividend growth 252 0.005 0.019 −0.074 0.058 0.580
Net payout yield equity 252 0.010 0.005 0.001 0.030 0.823
Net payout yield assets 252 0.005 0.003 0.000 0.014 0.745
Dividend yield 252 0.008 0.003 0.003 0.016 0.972

Panel B: Correlation matrix

Inv. R. eq. R. as CF g. eq. CF g. as. Prof. g. Div. g. NP yield eq. NP yield as. Div. yield

Investment growth 1.00
Returns equity −0.04 1.00
Returns assets −0.05 0.95 1.00
Cash-flow growth

equity
0.72 −0.10 −0.07 1.00

Cash-flow growth
assets

0.64 −0.10 −0.07 0.85 1.00

Earnings growth 0.47 −0.01 −0.01 0.34 0.35 1.00
Dividend growth 0.11 0.03 0.07 0.13 0.10 −0.01 1.00
Net payout yield

equity
−0.07 −0.08 −0.06 0.14 0.11 −0.17 0.27 1.00

Net payout yield
assets

0.04 −0.09 −0.07 0.21 0.28 −0.05 0.29 0.83 1.00

Dividend yield −0.10 −0.13 −0.12 −0.07 −0.05 −0.13 −0.16 0.03 −0.16 1.00

NOTES: Quarterly data 1952:01–2014:04. All data are taken from the FOF for the Nonfinancial Corporate Sector, except for dividend growth
and dividend yield which are taken from Amit Goyal’s database. Growth rates are computed as log differences and returns are in log form.
The net payout yields and the dividend yield are in levels, not logs. All variables are expressed in real terms using the Consumer Price Index
from the BLS.

Some correlations are puzzling. Stock returns are negatively related to investment
growth (−0.04), although the correlation is small in magnitude. Lamont (2000) argues
that this result is counterintuitive, since both investment and returns supposedly reflect
the same forward-looking information. Lamont (2000) further argues that the lack
of a proper correlation between investment and returns is caused by lags in the
implementation of investment plans. Stock returns are also negatively correlated
to cash-flow growth (−0.10) and earnings growth (−0.01). This seems to suggest
that discount rates go up precisely when there are positive shocks to cash flows or
earnings. As Kothari, Lewellen, and Warner (2006) point out, this would be against
the predictions of standard asset pricing models.

The net payout yield for equity (i.e., (Yt − It ) over Et ) is more stationary than the
dividend yield, a variable that is commonly used to predict returns. The autocorrela-
tion of net payout yield is 0.82, while the autocorrelation of the dividend yield is 0.97.
In fact, the dividend yield exhibits a downward trend during much of the 1952–2014
period.
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2.3 VAR Estimation of the Variance Decomposition

A direct approach for computing the variance decomposition is to run regressions
of long-run returns or cash-flow growth onto current investment shocks. As seen in
equation (12), the coefficients of these different regressions are interrelated and should
add up to one. However, it has been documented that long-horizon regressions have
poor finite-sample properties (e.g., Hodrick 1992, Valkanov 2003, Boudoukh et al.
2007). Therefore, we estimate expectations and surprises to the different variables
through a VAR model as is typical in the asset pricing literature (e.g., Campbell
1991). Consider a vector of demeaned variables xt = (rt ,�yt ,�it , vt )′ such that:

xt+1 = �xt + εt+1, (13)

where E[εt+1] = 0 and E[εt+1ε
′
t+1] = �. The first three equations of this VAR can

be interpreted as a vector error-correction model where the payout ratio vt is the
cointegrating vector. This is perhaps the best way to justify our VAR specification
and thus the information set we use to estimate long-run news. As shown by Chen
and Zhao (2009), changes in the VAR specification can lead to different conclusions
about the importance of cash-flow news and return news when the information set
is arbitrarily chosen, at least in the case of return decompositions. The forecasting
variables typically used in investment regressions (e.g., Barro 1990) are precisely the
ones we consider: investment lags, earnings or profitability growth, stock returns, and
scaled stock prices (i.e., the net payout ratio). In robustness checks, we also include
other variables (e.g., the market-to-book ratio) to the information set without any
material impact on the results as we report later on.

The intertemporal budget constraint in equation (7) implies the following restriction
on the VAR coefficients:

[e′
1 − θe′

2 + (θ − 1)e′
3 + ρe′

4]� = e′
4, (14)

where ei is the i th column of the 4 × 4 identity matrix I . The VAR model implies
that the dynamics of unexpected investment in equation (10) can be written as

e′
3εt+1 = − 1

θ − 1
e′

1εt+1︸ ︷︷ ︸
Cr,t+1

+ θ

θ − 1
e′

2εt+1︸ ︷︷ ︸
Cy,t+1

− 1

θ − 1
e′

1ρ�(I − ρ�)−1εt+1︸ ︷︷ ︸
Nr,t+1

+
(

θ

θ − 1
e′

2 − e′
3

)
ρ�(I − ρ�)−1εt+1︸ ︷︷ ︸

Ncf,t+1

. (15)
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Define

A = ρ�(I − ρ�)−1. (16)

The variance decomposition of unexpected investment becomes

e′
3�e3 = − 1

θ − 1
e′

1�e3 + θ

θ − 1
e′

2�e3 − 1

θ − 1
e′

1 A�e3

+
(

θ

θ − 1
e′

2 − e′
3

)
A�e3. (17)

We estimate the VAR using OLS equation-by-equation. An alternative way, similar
to what Campbell and Shiller (1988) do, is to obtain the coefficients of the fourth
regression (the net payout yield regression) by imposing the constraints in equation
(14). The unrestricted OLS regression for the net payout yield gives very similar
coefficients, which only attests to the underlying connection between the different
coefficients through a budget constraint and the accuracy of the log-linear approxima-
tion. The results of the variance decomposition are not affected in a material way by
imposing the restrictions in equation (14). We report Newey–West corrected standard
errors for the coefficients of the VAR.

3. RESULTS

3.1 Baseline Case with Aggregate Data

The left panel in Table 2 reports the VAR results using the quarterly sample for
1952:02–2014:04 and terms in the equity budget constraint. Consistent with the
current literature (see Boudoukh et al. 2007, Larrain and Yogo 2008), the net payout
yield significantly predicts stock returns (0.033, t-statistic 2.21). The payout yield
also predicts cash-flow growth (−0.063, t-statistic −3.48) and investment growth
(−0.043, t-statistic −3.46). Importantly, the ability of the payout yield to predict
cash-flow growth and investment growth is stronger than its ability to predict returns;
this is clear from both the size of the coefficients and the t-statistics. As in Lettau and
Ludvigson (2002), we find that the same variables that predict returns also predict
investment growth. Not surprisingly, the lagged payout ratio strongly predicts the
current payout ratio (0.898, t-statistic 30.1).

As the cointegration vector, the ability of the net payout yield to predict each
variable largely determines the long-run expectation of that variable. Since the payout
yield is the key variable, one common practice in the literature is to estimate a
reduced-form VAR, in which the only independent variable is the payout yield (see,
among others, Cochrane 2008, Chen 2009). When we do so, the coefficient on
the return equation becomes significant only at the 10% level (t-statistic 1.73), but
the coefficient on the cash-flow equation (−0.076, t-statistic −4.27) and on the
investment equation (−0.045, t-statistic −3.85) become slightly larger and more
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significant. In the language of cointegration, the results of the VAR can be summarized
as follows. When the net payout ratio is high, and in order for the payout ratio to
go back to its mean, it has to be the case that either future returns are high or future
payout growth is low. The VAR shows that part of the adjustment is achieved through
future returns, but more importantly through future payout growth.

These results are basically unchanged if we run a “kitchen-sink” VAR that includes
a host of predictive variables studied in the literature and reviewed by Goyal and Welch
(2008).6 Adding more variables allows us to check the robustness of the predictive
relationships to changes in the information set. In particular, the kitchen-sink VAR
(not reported) includes the following variables besides those already presented in
Table 2: the book-to-market ratio, the earnings-price ratio, the dividend-payout ratio,
the term spread, the default yield spread, Lettau and Ludvigson’s (2001) cay, inflation,
net equity issuance, stock return variance, and the investment-to-capital ratio. We find
that the predictive relationships presented in Table 2 are robust to including all or
subsets of these variables.

The R2 of the regressions in Table 2, though not very high, is on par with (or even
better than) typical studies on return and cash-flow predictability (e.g., Campbell
and Shiller 1988, Cochrane 2008). The R2 for cash-flow growth and for investment
growth of around 10% is actually quite good when compared to the literature. In the
case of the kitchen-sink VAR, the R2 goes up to approximately 25%.7

The right panel in Table 2 shows the annual VAR with aggregate Compustat–CRSP
data. The main difference with the quarterly sample is that the power of the net payout
yield to predict cash-flow growth and investment growth is reduced in significance.
Different firms in Compustat are associated with different fiscal year ends, resulting
in a nonsynchronicity problem that partially explains the reduction in significance.
The R2 for the cash-flow regression and investment regression is still higher than in
the return regression since the other lags of returns, cash-flow growth, and investment
growth provide substantial predictive power.

Table 3 reports the variance decompositions that follow from the quarterly VARs.
In Panel A, we present the results for the full VAR, the reduced-form VAR, and the
kitchen-sink VAR, all using the quarterly FOF data. For the full VAR, the variance
of unexpected investment growth is 0.0041 per quarter, which implies a standard
deviation of 6.4% per quarter. The standard deviation of raw investment growth is
6.8% per quarter (see Table 1). Therefore, raw investment volatility and unexpected
investment volatility are quite close.

The covariance between unexpected investment growth and current cash-flow
surprises is 0.0092 or 225% of the variance of unexpected investment growth. This
number represents the largest element in the variance decomposition. In the lower

6. The predictive variables included in the kitchen-sink VAR are available from Amit Goyal’s website,
and they have been updated through to 2014.

7. Again, a limited predictive power is standard in regressions with growth rates. Very different are
the regressions that use earnings and investment in levels (i.e., as fraction of assets), which tend to have
higher R2 because levels move more slowly. Regressions in levels also typically rely on cross-sectional
differences and not solely on the time series like we do.
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TABLE 3

VARIANCE DECOMPOSITION

Panel A: Quarterly FOF data: 1952:02–2014:04

Full VAR Reduced VAR Kitchen-sink VAR

Levels frac. of var(i) Levels frac. of var(i) Levels frac. of var(i)

var(i) 0.0041 1.00 0.0044 1.00 0.0037 1.00

Variance decomposition:
cov(i, Cy) 0.0092 2.25 0.0096 2.17 0.0077 2.10
cov(i, Ncf) −0.0035 −0.86 −0.0041 −0.94 −0.0035 −0.96
-cov(i, Cr) 0.0001 0.03 0.0001 0.02 0.0003 0.08
-cov(i, Nr) −0.0017 −0.42 −0.0011 −0.25 −0.0009 −0.26
Sum 0.0041 1.00 0.0044 1.00 0.0035 0.96
Correlation(i, Cy) 0.7268 0.7047 0.6958
Correlation(i, Cr) −0.0175 −0.0116 −0.0435
Correlation(Cy, Cr) −0.0812 −0.0698 −0.1200

Panel B: Annual Compustat data: 1972–2014

Full VAR Reduced VAR

Levels frac. of var(i) Levels frac. of var(i)

var(i) 0.012 1.00 0.014 1.00

Variance decomposition:
cov(i, Cy) 0.027 2.33 0.035 2.39
cov(i, Ncf) −0.012 −1.02 −0.014 −0.96
-cov(i, Cr) 0.009 0.81 0.009 0.59
-cov(i, Nr) −0.012 −1.04 −0.013 −0.93
Sum 0.013 1.087 0.016 1.087
Correlation(i, Cy) 0.9101 0.9252
Correlation(i, Cr) −0.3827 −0.2851
Correlation(Cy, Cr) −0.3471 −0.2346

NOTES: We decompose the variance of unexpected investment growth (i) into covariances with each of its four components: (i) Cy: current cash-
flow surprises, (ii) Ncf: future cash-flow news, (iii) Cr: current return surprises, and (iv) Nr: future discount rate news. The log-linearization
parameters are θ = 1.77 and ρ = 0.99. In Panel A, quarterly data are obtained from the FOF for the Nonfinancial Corporate Sector. The
sample covers the period 1952:02–2014:04. In Panel B, annual data are obtained from Compustat–CRSP merged database excluding financial
firms. The sample covers the period 1972–2014.

panel of the table, we report the correlation of investment surprises and cash-flow
surprises, which is close to 0.70 in the three VAR specifications. Therefore, the high
covariance is not simply an artifact of the volatility of cash flow, but it comes from the
synchronization of unexpected movements in both investment and cash-flow growth.
We obtain very similar results using both the reduced-form and the kitchen-sink
VARs, suggesting that the results are not driven by potentially strange combinations
of VAR coefficients, the autocorrelation of the variables, or the information set.

The second largest element (in absolute terms) in the decomposition is the covari-
ance of long-run cash-flow growth and unexpected investment growth. The negative
covariance implies that higher than expected current investment growth goes hand
in hand with lower than expected long-run cash-flow growth. If we were to run a
regression of long-run cash-flow growth on past investment surprises, we would get
a negative coefficient (i.e., βNcf < 0). As explained in detail in Section 4, future
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cash-flow growth can be negatively correlated to the current increase in the capital
stock as a product of diminishing returns in production.

The other two covariances—of unexpected investment growth with current return
surprises and with discount rate news—are smaller in magnitude. The covariance
with discount rate news is the largest of the two, but still smaller than 42% of
investment variance. Return dynamics seem to be disconnected from investment
growth or they are of second-order importance. Compared to Lamont (2000), we do
not only estimate the covariance of current investment with current returns, but we
simultaneously estimate the covariance of current investment with long-run discount
rate news. In this last case, we also find a result that seems to defy the present-value
logic: the positive covariance implies that investment growth increases when long-run
discount rates go up.

Panel B in Table 3 shows the variance decomposition based on the annual
Compustat–CRSP sample. Given the shorter sample length, we do not run the kitchen-
sink VAR. The estimates of the cash-flow related terms are similar to the ones in the
quarterly sample. The return-related terms are, however, larger than in the quarterly
sample. Both terms are about 100% of investment variance in the case of the full VAR.
Still, the covariance of investment and current returns is estimated to be negative,
while the covariance of investment and discount rate news is positive. In a sense, the
Compustat–CRSP results only deepen the puzzle.

3.2 Robustness Checks with Aggregate Data

We explore the robustness of our results to several modifications of the baseline
framework. None of the modifications changes the overall picture.

Using earnings instead of cash flows. The difference between earnings and equity
cash flow lies in the cash-flow adjustment term and net debt issuance (see equation
(3)). Earnings growth and equity cash-flow growth have similar volatility and a
relatively high correlation (0.34 in Table 1). Although the budget constraint of the
firm does not hold exactly if we substitute equity cash flow for earnings, we run the
basic VAR and decomposition using earnings growth instead of cash-flow growth.8

The results in Table 4 are very similar to the baseline case, showing that the high
covariance between investment and cash-flow growth is not an artifact of cash-flow
adjustments or debt financing.

Asset decomposition. In Table 4, we present the decomposition of investment vari-
ance based on the budget constraint for total assets (equation (6)). The procedure is
analogous to the case of equity, although using asset cash flow, asset returns, and the
asset net payout yield (i.e., (Y A

t − It ) over At ). As seen in Table 1, asset cash-flow
growth is slightly more volatile than equity cash-flow growth, but both are highly
correlated (0.85). Similar to the case of equity, asset cash-flow growth is still highly

8. In this case, and the other cases in Table 4, we derive the coefficients on the net payout yield equation
by imposing the restrictions in equation (14).
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TABLE 4

VARIANCE DECOMPOSITION: OTHER CASES

Case II Case III Case IV

Levels frac. of var(i) Levels frac. of var(i) Levels frac. of var(i)

var(i) 0.0039 1.00 0.0041 1.00 0.0005 1.00

Variance decomposition:
cov(i, Cy) 0.0053 1.34 0.0096 2.36 0.0016 3.12
cov(i, Ncf) −0.0016 −0.40 −0.0052 −1.29 −0.0004 −0.86
-cov(i, Cr) 0.0004 0.10 0.0002 0.05 −0.0001 −0.13
-cov(i, Nr) −0.0001 −0.03 −0.0004 −0.10 −0.0006 −1.17
Sum 0.0040 1.01 0.0041 1.02 0.0005 0.96
Corr(i, Cy) 0.4536 0.6497 0.4515
Corr(i, Cr) −0.0557 −0.0565 0.0260
Corr(Cy, Cr) −0.0146 −0.0809 −0.0764

NOTES: The FOF data correspond to the Nonfinancial Corporate Sector. The quarterly sample covers the period 1952:02–2014:04. For Case
II, we use earnings growth instead of equity cash-flow growth. For Case III, we use the asset budget constraint to derive the variance
decomposition. For Case IV, we use fixed investment instead of capital expenditures. We decompose the variance of unexpected investment
growth rate (i) into covariances with each of its four components: (i) Cy: current cash-flow surprises, (ii) Ncf: future cash-flow news, (iii) Cr:
current return surprises, and (iv) Nr: future discount rate news. The log-linearization parameters are θ = 1.77 and ρ = 0.99.

correlated with investment growth (0.64). Asset returns are lower on average than
equity returns (1.6% vs. 2.1% quarterly), and less volatile (4.7% vs. 8.7% quarterly).
The net payout yield for assets is also highly correlated with the net payout yield for
equity (0.83).

The results in Table 4 show that the decomposition of investment growth based on
the asset budget constraint is very similar. The covariance with cash-flow growth is
still the largest term in the decomposition at 236% of investment variance. Long-run
cash-flow growth is negatively correlated with current investment growth surprises.
The covariances with current and long-run returns are both small: none is larger than
10% of investment variance in absolute value.

Fixed investment. In the last panel of Table 4, we use fixed investment instead of
capital expenditures as our definition of “investment.” The FOF defines capital ex-
penditures as fixed investment plus inventory changes (plus other minor adjustments).
Fixed investment accounts for the bulk of capital expenditures (95% on average), so
we do not expect a big modification of our results by excluding inventory changes.9

However, fixed investment is also more slow moving, that is, positively autocorre-
lated, and less volatile than inventory changes. Still, as seen in Table 4, the variance
decomposition is very similar to our baseline case in Table 3. The sole exception
is that the covariance of investment with discount rate news grows in magnitude to
117% of variance. This covariance remains positive, which, again, only deepens the
puzzle.

9. By changing the definition of investment, we also change equity cash flow (Yt ) as seen in equation
(3). Remember that equity cash flow is defined as the amount of cash that the firm can either invest or pay
to shareholders. Another way to understand this is that now changes in inventory are included in CFADJt

in equation (2). Net equity payout (DIVt − NIE
t ) does not change, hence, equity returns (Rt ) and equity

values (Et ) remain as in our baseline case.
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TABLE 5

VARIANCE DECOMPOSITION: FIVE TERMS

Flow of funds (Full VAR) COMPUSTAT (Full VAR) COMPUSTAT (Fixed Inv)
Quarterly 1952–2014 Annual 1971–2014 Annual 1971–2014

Levels frac. of var(i) Levels frac. of var(i) Levels frac. of var(i)
var(i) 0.004 1.00 0.009 1.00 0.024 1.00

Variance decomposition:
cov(i, earn) 0.005 1.26 0.027 3.15 0.070 2.97
cov(i, adj) 0.003 0.91 −0.009 −1.09 −0.031 −1.30
cov(i, Ncf) −0.003 −0.76 −0.009 −1.08 −0.006 −0.24
-cov(i, r) 0.000 0.05 0.009 1.03 −0.001 −0.05
-cov(i, Nr) −0.002 −0.46 −0.009 −1.02 −0.008 −0.34
Sum 0.004 1.00 0.008 0.99 0.025 1.04
Corr(i, earn) 0.430 0.405 0.587
Corr(i, adj) 0.248 −0.142 −0.321
Corr(i, r) −0.027 −0.468 0.014
Corr(earn, r) 0.001 0.204 0.250
Corr(adj, r) −0.079 −0.365 −0.342

NOTES: We decompose the variance of unexpected investment growth rate (i) into covariances with each of its five components: (i) earn:
current earnings surprises, (ii) adj: current surprises about cash-flow adjustment, (iii) Ncf: future cash-flow news, (iv) Cr: current return
surprises, and (v) Nr: future discount rate news. The FOF data correspond to the Nonfinancial Corporate Sector. The quarterly sample covers
the period 1952:02–2014:04. Annual data are obtained from Compustat–CRSP merged database. The sample covers the period 1972–2014
and excludes financial firms. We define investment as capital expenditures except for the last panel where investment is just fixed investment.
The log-linearization parameters are θ = 1.77 and ρ = 0.99.

Five-term decomposition. We can write equity cash flow as

Yt+1 = EARNt+1

(
1 + CFADJt+1 + NID

t+1

EARNt+1

)
, (18)

which after taking logs and first differences is

�yt+1 = �earnt+1 + �ad jt+1,

where �ad jt+1 = � ln(1 + CFADJt+1+NID
t+1

EARNt+1
). Therefore, equity cash-flow growth can

be decomposed into earnings growth and the growth rate of the adjustment term
defined above. Current cash-flow shocks in equation (10) can then be split into
earnings shocks and adjustment shocks:

Cy,t+1 = Cearn,t+1 + Cad j,t+1. (19)

In Table 5, we report the variance decomposition, now with five components,
using the aggregate samples. The five-term decomposition is derived from a VAR
with five variables xt = (rt ,�earnt ,�ad jt ,�it , vt )′. The covariance of investment
growth and earnings growth still accounts for the largest share of the investment
decomposition. Unexpected earnings growth and unexpected investment growth are
positively correlated in the FOF and Compustat (the correlation coefficient is above
0.40). The covariance of investment growth and the adjustment term flips signs
depending on whether we look at the FOF or Compustat–CRSP. A positive covariance,
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as seen in the FOF sample, implies that investment growth is unexpectedly high when
the ratio of cash-flow adjustments and debt issuance to earnings is growing fast. In
the Compustat–CRSP sample, we obtain a negative correlation instead.

Notice that the decompositions in the Compustat–CRSP sample give the same
overall message regardless of whether we define “investment” as capital expenditures
(fixed investment plus inventory change) or just fixed investment. The covariance of
investment and earnings is still positive and the largest element in the decomposition,
and the covariance of investment and discount rate news is still positive. The only
difference is that fixed investment is less correlated with current returns since it moves
more slowly than capital expenditures.

Notice that by adding the first two terms in the five-term decomposition we get
approximately the term cov(�it+1 − Et�it+1, Cy,t+1) of our original decomposition.
The only difference lies in that the VAR for the five-term decomposition includes
five variables instead of four, which modifies a bit the predictive power of each
regression. Since the differences are small, and the five-term decomposition provides
more information, we report only the five-term decomposition in the tables that follow.

3.3 Evidence with Disaggregated Data

Portfolio results. Table 6 reports the variance decomposition of unexpected invest-
ment growth for 10 industry portfolios formed with Compustat data. We used the
Fama–French 10 industrial classifications. A first thing to note is that investment
surprises are almost 10 times more volatile in the most volatile industry (consumer
durables) compared to the least volatile industry (health care). Despite this varia-
tion in the level of investment variance, the composition of investment surprises is
less heterogeneous across industries. The covariance with current cash-flow growth
(earnings plus adjustment growth) is in general the largest element in the variance
decomposition. On average, this covariance is about 200% of the variance of invest-
ment, confirming the main finding in the aggregate data. The covariance of unexpected
investment growth with long-run cash-low news is always negative, but smaller in
magnitude than the covariances in previous cases. The covariances of investment with
return surprises and long-run discount rate news are generally smaller than other ele-
ments in the variance decomposition for each industry. The covariance of investment
with long-run discount rate news is always positive, except for one industry (business
equipment).

Firm-by-firm results. Applying our decomposition to individual firms presents some
technical challenges. The most immediate problem is that some elements in the FOF
identity in equation (4) can be negative in some periods, which makes it impossible to
use logs. For instance, the fraction of firm-year observations with negative earnings in
our Compustat sample is approximately 20%. Recall that the annual log growth rate
in variable X is computed as �x = ln(( X

E )t ) − ln(( X
E )t−1) + ln(1 + retxt ). When X

is negative, the log growth rate is undefined. To circumvent this problem, we increase
both ( X

E )t and ( X
E )t−1 by the same amount in those firm-year observations with

negative Xs. To ensure the flow of fund identity, we apply the same constant upward
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shift to investment (I ), earnings (E ARN ), and equity cash flow (Y )—all scaled by
market capitalization—so their minimum is 5%. This procedure, albeit ad hoc, avoids
negative numbers and at the same time preserves the relative magnitudes of different
growth rates.

Table 7 shows results for two different VARs using firm-by-firm data. First, we run
a panel VAR that includes all the cross-sectional and time-series variation. Second,
we run a VAR for each firm, and then we average coefficients and t-statistics across
all firms for each variable (a “reverse” Fama–MacBeth procedure). For both VARs,
we use the same panel containing firms with at least 18 years of data. The panel
contains 2,167 firms, each with an average of 28 years of data.

The magnitude of coefficients is similar across both VARs (see Panels A1 and B1).
The main predictive relationships observed in the aggregate data are also seen here.
For example, the net payout ratio predicts returns with a positive sign, and earnings
and investment growth with a negative sign. The autocorrelation coefficient of the net
payout yield is smaller than at the aggregate level (e.g., 0.44 in the panel VAR). The
R2 is higher than in the case of aggregate data, but still only around 30% at the most.

The results for the variance decomposition in Panels A2 and B2 show that invest-
ment is naturally more volatile at the firm level than at the aggregate level or industry
level. Current earnings growth accounts for close to 100% the variation in investment,
while the other elements of the variance are quite small. Both cash-flow news and
discount rate news seem practically irrelevant at the firm level.

3.4 Do Cash-Flow Surprises Contain Long-Run Information?

Our findings show that cash-flow surprises account for the lion’s share of variation
in unexpected investment growth. Therefore, a natural question to ask is whether
these shocks are transitory surprises or if they represent signals about the future.
This is important since in many models cash-flow surprises affect investment be-
cause they are signals about future profitability (e.g., Abel and Eberly 2011). In
terms of our previous notation, this question boils down to estimating the covari-
ances between cash-flow surprises and news terms, that is, cov(Cy,t+1, Ncf,t+1) and
cov(Cy,t+1, Nr,t+1). Remember that the four terms in the decomposition shown in
equation (10) are not assumed to be orthogonal, hence these covariances can be pos-
itive, negative, or zero. Intuitively one can understand these covariances as coming
from predictive regressions of future long-run cash-flow growth or returns on current
cash-flow surprises:

T∑
j=2

�yt+ j = a + bCy,t+1 + ε,

T∑
j=2

rt+ j = c + dCy,t+1 + ε.
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TABLE 7

VARIANCE DECOMPOSITION: INDIVIDUAL FIRMS

Panel A1: Panel VAR

Dependent variable

Earnings CF adj Investment Net payout
Lagged regressor Return growth growth growth yield

Return −0.007 0.464 −0.340 0.301 −0.228
(−1.08) (36.13) (−27.24) (37.05) (−12.77)

Earnings growth −0.003 −0.330 0.244 0.138 −0.543
(−0.50) (−33.99) (26.47) (21.03) (−36.05)

Adjustment growth −0.007 0.083 −0.221 0.102 −0.622
(−1.43) (9.72) (−26.18) (17.47) (−43.10)

Investment growth −0.029 −0.080 −0.076 −0.433 0.437
(−5.60) (−8.59) (−7.60) (−56.09) (29.35)

Net payout yield 0.011 −0.075 −0.163 −0.082 0.449
(6.00) (−20.24) (−43.89) (−37.91) (69.21)

Obs 59,653 59,653 59,653 59,653 59,653
No. of firms 2,167 2,167 2,167 2,167 2,167
R2 0% 11% 21% 13% 17%

Panel A2: Variance decomposition

Levels frac of var(i)

var(i) 0.302 1.00
cov(i, earn) 0.329 1.09
cov(i, adj) 0.027 0.09
cov(i,Ncf) 0.006 0.02
-cov(i, r) −0.058 −0.19
-cov(i, Nr) 0.005 0.02

Panel B1: Firm-by-firm VAR

Dependent variable

Earnings CF adj Investment Net payout
Lagged regressor Return growth growth growth yield

Return 0.013 0.474 −0.385 0.285 −0.320
(1.35) (22.33) (−18.94) (22.64) (−12.79)

Earnings growth 0.006 −0.313 0.407 0.224 −0.176
(0.57) (−14.06) (17.84) (14.68) (−7.22)

Adjustment growth −0.036 0.040 −0.031 0.139 −0.219
(−3.76) (2.05) (−1.62) (10.00) (−11.46)

Investment growth −0.032 −0.070 −0.162 −0.401 0.141
(−2.56) (−2.65) (−6.32) (−26.21) (5.50)

Net payout yield 0.037 −0.076 −0.221 −0.103 0.282
(13.05) (−14.38) (−40.82) (−25.70) (35.59)

Average no. of periods 28 28 28 28 28
No. of firms 2,167 2,167 2,167 2,167 2,167
R2 22% 27% 37% 30% 31%

Panel B2: Variance decomposition

Levels frac of var(i)

var(i) 0.250 1.00
cov(i, earn) 0.298 1.17
cov(i, adj) −0.002 −0.06

(Continued)
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TABLE 7

CONTINUED

Panel B2: Variance decomposition

Levels frac of var(i)

cov(i,Ncf) 0.012 0.16
-cov(i, r) −0.051 −0.21
-cov(i, Nr) −0.001 −0.03

NOTES: We show results for two different VARs using firm level data. Annual data are obtained from Compustat–CRSP merged database.
The sample covers the period 1972–2014 and excludes financial firms. We include firms with at least 18 years of data. The panel contains
2,167 firms, each with an average of 28 years of data. In Panel A1, we run a panel VAR that includes all the cross-sectional and time-series
variations. In Panel B1, we run the VAR for each firm, and then average coefficients and t-statistics across all firms for each variable. In
Panels A2 and B2, we decompose the variance of unexpected investment growth rate (i) into covariances with each of its five components:
(i) earn: current earnings surprises, (ii) adj: current surprises about cash-flow adjustment, (iii) Ncf: future cash-flow news, (iv) Cr: current
return surprises, and (v) Nr: future discount rate news. The log-linearization parameters are θ = 1.77 and ρ = 0.99.

TABLE 8

PREDICTIVE POWER OF CURRENT EARNINGS SHOCKS

Panel A: Flow of Funds data

Future horizon (quarter) 1 2 3 4 8 12

Cash-flow growth equity −0.191 −0.189 −0.278 −0.253 −0.534 −0.619
(−2.075) (−2.499) (−2.688) (−2.044) (−4.367) (−4.427)

Net cash-flow growth equity −0.498 −0.486 −0.701 −0.554 −1.182 −1.307
(−2.257) (−2.832) (−3.019) (−2.163) (−4.980) (−4.783)

Earnings growth −0.0715 −0.157 −0.165 −0.366 −0.648 −0.875
(−1.261) (−1.335) (−0.972) (−2.282) (−2.729) (−4.027)

Returns −0.0517 −0.00976 −0.0258 0.0585 0.154 0.234
(−0.860) (−0.0908) (−0.195) (0.486) (0.859) (0.910)

Panel B: Compustat data

Future horizon (year) 1 2 3 4 5 6

Cash-flow growth equity −0.302 −0.452 −0.357 −0.698 −0.805 −0.941
(−1.556) (−1.543) (−1.419) (−2.894) (−2.403) (−4.175)

Net cash-flow growth equity −0.692 −1.036 −0.828 −1.486 −1.767 −1.987
(−1.805) (−1.870) (−1.905) (−3.368) (−2.931) (−3.899)

Earnings growth −0.385 −0.555 −0.554 −1.740 −1.744 −1.723
(−0.851) (−0.919) (−0.661) (−2.988) (−2.389) (−2.568)

Returns 0.627 0.808 0.603 0.610 0.299 0.251
(2.695) (2.827) (1.370) (1.430) (0.830) (0.430)

NOTES: We regress long-run (accumulated) cash-flow growth, investment growth, earnings growth, and returns on lagged earnings surprises
(VAR residuals from VARs in Table 3). Net cash-flow growth is defined as (θ /(θ − 1))*earnings growth-investment growth. Newey–West
t-stats are reported. Sample period is 1952:02–2014:04 for FOF data and 1972–2014 for Compustat data.

While we can also estimate the covariances of interest directly from the VAR, the
predictive regressions are more intuitive and they show that the results do not rely on
a particular VAR structure.

Panel A of Table 8 reports results for long-horizon regressions in the FOF quar-
terly sample. A positive surprise to cash-flow growth is a strong predictor of fu-
ture lower cash-flow growth at least up to 12 quarters after the shock. The effects
are long lasting and do not correspond simply to short-run mean reversion. The
same predictive power is seen in net cash-flow growth, which following the logic of
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cash-flow news in equation (10) is defined as [θ/(θ − 1)]�yt − �it . cash-flow sur-
prises have no predictive power for returns at any horizon. Panel B of Table 8 shows
similar results using the aggregate Compustat–CRSP annual sample. The negative
relationship between current cash-flow surprises and future cash-flow growth appears
with all alternative measures of cash flow. There is some predictive power for returns
in the short term, but no predictive power in the long term as in the FOF sample.

We conclude that cash-flow shocks contain long-run information. However, these
shocks have predictive power for future cash-flow growth, but not for discount rates.
Considering long horizons we can say that a positive cash-flow surprise implies
lower future cash-flow growth, that is, cov(Cy,t+1, Ncf,t+1) < 0, although no change
in discount rates, that is, cov(Cy,t+1, Nr,t+1) ≈ 0.

These regressions help us to complete the picture, although they only reiterate our
previous findings. If the argument is that current cash-flow surprises are correlated
with investment growth because current cash flow say something about the future,
then that forward looking component of investment is already captured by the terms
cov(�it+1 − Et�it+1, Ncf,t+1) and cov(�it+1 − Et�it+1,−Nr,t+1) in our decompo-
sition. The advantage of estimating all the pieces of the identity together is precisely
to impose discipline on the stories one can tell about the different factors that move
investment.

3.5 Investment Lags

Lamont (2000) argues that although investment and returns respond to the same
forward-looking information, investment decisions are implemented with lags while
prices reflect the information instantaneously. This can in principle explain the puz-
zling negative correlation between investment and return surprises. Consistent with
this argument, Lamont (2000) shows that investment plans (rather than actual invest-
ment) and returns are positively correlated. Similarly, Lettau and Ludvigson (2002)
show that some financial variables that predict returns also predict investment in the
long run, although not in the short run.

Can investment lags explain (i) the strong correlation between investment shocks
and current cash-flow surprises, and (ii) the wrong sign in the correlation of investment
shocks and return surprises? The answer to the first question is likely no. This is
because, contrary to the existence of lags, the response of investment to current cash-
flow shocks is not delayed. The fact that current cash-flow shocks are strongly related
to investment suggests that the bulk of investment is not implemented with lags.

Investment lags have more potential to answer the second question, that is, the
disconnection that we observe between investment and stock returns. We explore
this issue in Table 9 where we regress future investment growth on lagged return
surprises. Consistent with investment lags, returns predict two- and three-quarter
ahead investment growth with the correct (positive) sign. After three quarters the
predictive power disappears.

The predictive power is, however, quite small. The R2 (the fraction of future
investment variance explained by the variable) is at best 5% in these regressions.
Therefore, even if investment lags can save the role of returns, they still do not
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TABLE 9

REGRESSIONS OF FUTURE UNEXPECTED INVESTMENT GROWTH

F.i Cr R2 Cr F.Cy R2

1 −0.00951 0.000 −0.00189 0.232 0.518
(−0.265) (−0.0754) (16.27)

2 0.121 0.046 0.0298 0.227 0.522
(3.463) (1.172) (15.63)

3 0.101 0.033 0.0388 0.227 0.524
(2.877) (1.547) (15.89)

4 0.0171 0.001 0.0239 0.231 0.521
(0.477) (0.959) (16.24)

5 0.0260 0.002 0.0119 0.230 0.520
(0.723) (0.478) (16.16)

8 −0.00330 0.000 −0.00477 0.225 0.513
(−0.0934) (−0.193) (15.88)

NOTES: We regress future unexpected investment growth (F.i) on current Cr (current return surprise). Unexpected investment growth is
measured at least one quarter, and up to eight quarters, after Cr. In the right-hand side panel, we also control for Cy (current earnings surprise)
during the same quarter of unexpected investment growth. The FOF sample covers the period 1952:02–2014:04. t-Statistics are reported
below the coefficients.

explain the bulk of investment variation. This is because most of investment variation
corresponds to a simultaneous response—without a lag—to cash-flow shocks. In
particular, the right-hand side panel in Table 9 shows that the R2 increases up to
about 50% when contemporaneous cash-flow shocks are included in each regression.
Contemporaneous cash-flow shocks also seem to reduce the predictive power of past
returns.

4. UNDERSTANDING THE VARIANCE DECOMPOSITION OF INVESTMENT
GROWTH WITH A SIMPLE MODEL

Having summarized the empirical patterns regarding the variance decomposition
of investment growth, in this section we explore whether these patterns can be
understood in a simple model.

4.1 Production and Capital Accumulation

Assume that there is a single good in the economy. Earnings can be used for
consumption or for investment, which increases the stock of capital next period.
Assume that earnings (Yt+1), productivity (Zt+1), and the capital stock (Kt+1) are
related through a Cobb–Douglas production function:10

Yt+1 = Zt+1 K α
t+1. (20)

10. One can also understand this production function as having fixed unit labor. We express the
production function in terms of earnings and not output, but since we later on work with logs and
abstracting from constants, this is irrelevant. In a Cobb–Douglas framework, earnings (output minus
wage) are simply a constant fraction of output.
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The parameter α captures the degree of decreasing returns. If α = 1 the model
exhibits constant returns to scale. We assume the existence of adjustment costs in the
process of capital accumulation. Following Abel (2003), we propose a characteriza-
tion of adjustment costs that fits easily into a log-linear framework. In particular, the
stock of capital next period is given by

Kt+1 = (
I ν
t I 1−ν

t−1

)φ
K 1−φ

t . (21)

Where 0 � ν � 1 and 0 � φ � 1. Our parameterization of adjustment costs implies
that there are standard capital adjustment costs (as in Abel 1979, Hayashi 1982),
and simultaneously investment adjustment costs (as in Christiano, Eichenbaum, and
Evans 2005). This equation also encompasses the loss of capital due to depreciation. If
φ = 0, we are in a Lucas’ tree model with constant capital stock and no depreciation.
If φ = 1 (and ν = 1), we are in the neoclassical model with full depreciation.

To see more clearly how the different adjustment costs enter the model, define Qt

as the price of a unit of installed capital in terms of consumption foregone today (see
Abel 2003):

Qt =
(

d Kt+1

d It

)−1

= 1

νφ

(
It

Kt

)1−φ ( It

It−1

)φ(1−ν)

. (22)

Installed capital becomes more expensive as the investment-to-capital ratio in-
creases, which is a standard result in the q-theory. In this model, capital also becomes
more expensive when current investment increases relative to past investment.

Investment in this model is proportional to the market value of the capital stock,
Qt Kt+1, which is equal to

Qt Kt+1 = 1

νφ
It . (23)

In other words, the market value of the capital stock should be a sufficient statistic
for investment. This simple model gives the usual prediction that if we account for
the price of installed capital relative to its replacement cost, earnings should have no
additional predictive value for investment-to-capital ratios.

4.2 Equilibrium Condition

In order to link investment to primitive parameters, we close the model with an
equilibrium condition derived from the optimal behavior of a representative equity-
holder who holds the capital stock in the economy. The standard equilibrium condition
used in consumption-based asset pricing is derived from the consumer’s first-order
condition, that is, 1 = Et [Mt+1 Rt+1], where Mt+1 is the stochastic discount factor
(SDF) and Rt+1 is the return on any given asset. This equilibrium condition applied
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to the capital stock of the economy implies that

1 = Et

[
Mt+1

(
Yt+1 − It+1 + Qt+1 Kt+2

Qt Kt+1

)]

= Et

[
Mt+1

(
Yt+1 − It+1 + 1

νφ
It+1

1
νφ

It

)]
. (24)

Intuitively, the return on capital has a cash-flow piece, which corresponds to con-
sumption (Yt+1 − It+1), and a capital gain piece. Since market values are proportional
to investment, capital gains can be expressed in terms of investment growth.

4.3 Log-Linear Model

We now make functional assumptions and take approximations in order to match
the log-linear framework we developed in the first part of the article. First, we log-
linearize the return on capital, which abstracting from constants is equal to11

rt+1 = log

(
Yt+1 − It+1 + 1

νφ
It+1

1
νφ

It

)

≈ (1 − ρr )(yt+1 − it+1) + �it+1. (25)

Log productivity shocks (zt+1) are assumed to be exogenous and follow a simple
AR(1) process:

zt+1 = φz zt + εz,t+1, (26)

where εz,t+1 is a standard normal shock, with mean zero and standard deviation
σz . Subtracting zt from both sides of (26) and taking expectations:

Et [�zt+1] = Et
[
(φz − 1)zt + εz,t+1

]
= (φz − 1)(φz zt−1 + εz,t ). (27)

When φz is between zero and one, a positive productivity shock (εz,t ) today leads
to lower expected productivity growth (Et [�zt+1]) for tomorrow.

The log version of the intertemporal equilibrium condition is 1 = Et [exp(mt+1 +
rt+1)], hence we need to define the log SDF. The functional form that we assume is

mt+1 = −r f − 1

2
x2

t σ
2
z − xtεz,t+1. (28)

11. The log-linearization parameter is ρr = 1−νφ

(1−νφ)+νφ exp{E[yt −it ]} .
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This specification of the SDF follows Jermann (1998) and Lettau (2003) in the
sense that only productivity shocks are priced in this production economy. The shock
xt+1 works as a taste shifter that captures changes in investor preferences (i.e., risk
aversion). We also assume it follows an AR(1) process:

xt+1 = φx xt + εx,t+1, (29)

where εx,t+1 is a standard normal shock, with mean zero and standard deviation
σx . The correlation between the two shocks is ρxz .

4.4 Model Solution

Using the equilibrium condition and the other assumptions, one can show that (log)
investment is of the following form:

it = B + Bzzt + Bx xt + Bkkt + Bi it−1. (30)

We expect to find that investment responds positively to productivity (Bz > 0)
since investment is procyclical in the data. On the other hand, we expect investment
to respond negatively to a higher price of risk (Bx < 0). Finally, a higher capital
stock and higher past investment imply that adjustment costs are proportionally
lower, leading to higher investment (Bk > 0 and Bi > 0).12 The equations that define
the relevant parameters are given in Appendix C.

We can now express the items in the variance decomposition as functions of the
primitive parameters and shocks in this economy. Shocks to earnings, investment,
and returns are all driven by shocks to productivity and the price of risk. Unexpected
investment can be decomposed as follows:

�it+1 − Et�it+1 = Bzεz,t+1 + Bxεx,t+1, (31)

Cr,t+1 = 1

θ − 1

{
[(1 − ρr ) + ρr Bz]εz,t+1 + ρr Bxεx,t+1

}
, (32)

Cy,t+1 = θ

θ − 1
εz,t+1, (33)

Ncf,t+1 =
{

θ

θ − 1

[
ρ(φz − 1)

1 − ρφz
+ αλκz

]
− (κz − Bz)

}
εz,t+1

+
{

θ

θ − 1
αλκx − (κx − Bx )

}
εx,t+1, (34)

12. We also expect to find Bk < 1 since the unit price of capital (qt ) should be decreasing in the stock
of capital from the assumption of diminishing returns (Romer 1996).
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Nr,t+1 = − (Bzεz,t+1 + Bxεx,t+1 + Cr,t+1 − Cy,t+1 − Ncf,t+1
)
, (35)

where λ = ρφ[ν + ρ(1 − ν)]/[1 − ρ(1 − φ)], κz = 1
1−λBk−ρBi

1−ρ

1−ρφz
Bz , and κx =

1
1−λBk−ρBi

1−ρ

1−ρφx
Bx .13

A couple of conclusions can be quickly drawn. First, the shock to current earnings
Cy,t+1 in equation (33) is basically the shock to productivity. On the other hand,
unexpected investment growth in equation (31) is a response to both the shock to
productivity and the shock to the price of risk. As conjectured by Lamont (2000),
earnings shocks and investment shocks can be positively correlated as long as the
shock to the price of risk does not offset the effect of productivity shocks.

Second, future cash-flow news are a function of the shock to productivity and the
price of risk, and not only of the shock to productivity. This happens because future
cash flows depend on the endogenous response of investment to the price of risk.

Third, from (31) and (32) it is easy to see that unexpected returns behave essentially
like unexpected investment growth, particularly since ρr ≈ 1 (see also Cochrane
1991). Intuitively, unexpected investment responds to the same shocks that affect
market values, therefore they must be highly correlated. It follows immediately that
whatever correlation there is between earnings surprises and investment surprises, the
model predicts a similar correlation between earnings surprises and return surprises.
If surprises to investment and earnings are highly correlated, then it has to be the case
that surprises to earnings and returns are highly correlated as well in the model.

4.5 Calibration

We calibrate most parameters by taking standard values in the literature. The share
of capital α is set at 0.30 in the baseline case although we also show results for
the case of constant returns to scale (α = 1). For the adjustment cost function, we
set φ = 0.10 and ν = 0.50 as the baseline numbers (ν = 1 implies no investment
adjustment costs). We get ρr = 0.93 using these numbers and an average earnings-
investment ratio (E[Yt/It ] � exp(E[yt − it ])) of 1.377, which is close to the average
in our quarterly sample.

Following Lettau and Wachter (2007), we set σx = 0.12 and φx = 0.95 in order
to match the autocorrelation of the dividend yield. The persistence of productivity is
φz = 0.99. As is standard in the macroliterature, productivity is close to a random
walk (see, e.g., Campbell 1994, Lettau 2003). This implies that productivity shocks
are highly persistent instead of transitory noise. In the benchmark case, productivity
shocks and shocks to the price of risk are assumed to be perfectly and negatively
correlated (ρxz = −1) as in Campbell and Cochrane (1999). We calibrate the volatility

13. We define discount rate news in (35) as the residual from the budget constraint to ensure that the
variance decomposition holds. There is an alternative way to define discount rate news directly from the
definition of returns. However, the partial equilibrium nature of the model, given that the SDF is defined
exogenously, does not enforce the aggregate budget constraint on which our decomposition is based.
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of productivity shocks from the volatility of cash flows, which are equivalent in this
model. We set σz = 0.134, which is close to the volatility of asset cash-flow growth
in our quarterly sample.14

Table 10 shows the variance decomposition for various parameter choices of ad-
justment costs, and the volatility and correlation of shocks. The left-hand side panel
shows results for the case with α = 0.3. The variance of investment is higher than
the one seen in the data, except when φ is low (i.e., when capital adjustment costs
are severe). For instance, when φ = 0.01 the variance of investment is 0.0069 which
is close to the variance seen in the FOF sample. Capital adjustment costs have a
larger impact on the level of investment volatility than investment adjustment costs
(i.e., variation in ν). Across the different cases with α = 0.3, the covariance between
shocks to earnings and investment growth is about twice the variance of investment
growth, and it corresponds to the largest element in the variance decomposition.
Therefore, the model is capable of matching this key feature of the data.

The cases reported with α = 0.3 also match the negative covariance between
investment surprises and long-run cash-flow news seen in the data, although the
magnitudes are smaller than in the data. This contrasts sharply with the case of
constant returns to scale (α = 1) where the covariance of investment surprises and
long-run cash-flow news is positive and, in most cases, the largest element in the
variance decomposition.

To better understand the intuition behind these comovements, we examine the
impulse responses to a positive productivity shock. Figure 2 plots the future dynamics
of the main variables from year 2 to year 500 (the current year or year one is not
shown). For constant return to scale (α = 1), the positive productivity shock pushes up
investment, output, and returns contemporaneously. But beyond the current year, the
good shock slowly decays into the future according to equation (27), so both capital
and investment keep increasing but at a declining rate. As a result, future investment
growth and output growth converge to zero from above. This implies that future
cash-flow news is positive. In this case, the covariance between current investment
growth and future cash-flow news is positive (cov(�i, Ncf ) > 0). With decreasing
returns to scale (α = 0.3), the current impact of the positive productivity shock on
investment and output is smaller. The impact on future capital and investment is also
less pronounced. In fact, the optimal level of capital peaks very soon and then starts
declining. As a result, investment growth and output growth are both negative in the
long run and future cash-flow news is negative. In this case, the covariance between
current investment growth and future cash-flow news is negative (cov(�i, Ncf ) < 0).

In the case of α = 0.3, the positive covariance between investment growth and
returns is the second largest element in the decomposition. This result is almost
hard-wired into our model. Unfortunately, it is strongly counterfactual as we saw
in the data. The third largest element is the covariance of investment with discount
rate news. In most cases in Table 10, discount rate news is strongly and negatively

14. This number is quite high when compared to typical assumptions for the standard deviation of
technology shocks in the macro literature (see, e.g., King and Rebelo 1999).
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FIG. 2. Future Responses to a Productivity Shock.

NOTE: We introduce a positive productivity shock to our calibrated simple model for investment growth and examine the
future responses in capital (k), investment (i), investment growth (�i), output growth (�y), and return (r ) from year 2 to
year 500. The first row corresponds to the case where α = 1 and ν = 1; the second row corresponds to the case where
α = 0.3 and ν = 1; the third row corresponds to the case where α = 0.3 and ν = 0.5. All other calibration parameters
are described in Section 4.5.

correlated with investment. In other words, positive updates to future discount rates
typically lead to lower current investment in the model.

When α = 1, the covariance of investment surprises and return surprises is also
positive and large. The covariance with discount rate news is mostly positive, which
fits the data. However, there are other counterfactual results when α = 1. First, the
covariance of investment and earnings surprises is much reduced and it even turns
negative in some cases. Second, investment is much more volatile in the case of
constant returns to scale.

Overall, the model with decreasing returns to scale fits the data better. First, the
level of investment volatility is closer to the one observed in the data. Second, the
model is able to reproduce the large covariance of investment and earnings surprises.
It seems as if the importance of earnings surprises in the case of decreasing returns
is substituted for an increased importance of long-run news in the case of constant
returns to scale. Finally, when there are constant returns to scale, investment surprises
and earnings surprises are often negatively correlated, which is highly counterfactual.

The main challenge to this simple model lies in the behavior of returns in connection
to investment growth. In the model, the correlation between investment and return
surprises is positive and high irrespective of the degree of returns to scale or other
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parameter choices. From an asset pricing perspective, and given that investment
growth and returns are basically the same in this model, one can imply that return
surprises are highly correlated with current cash-flow surprises and that discount
rate news are relatively unimportant for returns. This is in contrast with many asset
pricing results (for instance, Campbell 1991 and Cochrane 2008, although see Chen
and Zhao 2009 for a dissenting view).

The model also illustrates that one can match the cash-flow side of the variance
decomposition without matching the return side. However, and precisely for this
reason, the model is only a partial answer to what moves investment. Looking at the
entire variance decomposition imposes discipline on the precise mechanism one can
argue is working behind the dynamics of investment.

5. CONCLUSIONS

Starting from the intertemporal budget constraint of the firm, we show that unex-
pected investment growth can be decomposed into four elements: unexpected current
cash-flow growth, unexpected current returns, revisions to expectations of future
cash-flow growth, and revisions to expectations of future discount rates. We find that
aggregate investment variation is predominantly related to current cash-flow shocks.
The terms related to current and future returns are small and have unintuitive signs.
Therefore, the role of the discount rate channel for investment appears to be secondary
at best.

APPENDIX

This appendix contains three sections. Appendix A provides additional details by
relating our identities to the firm-level flow of fund identity discussed in Gatchev,
Pulvino, and Tarhan (2010). Appendix B provides details about the log-linearization
of the present-value relation involving cash flow, investment, and discount rates.
Appendix C presents additional details on model solution and intuition.

APPENDIX A: FLOW OF FUND IDENTITY: FIRM LEVEL VERSUS AGGRE-
GATE LEVEL

The sources of funds must be equal to uses of funds for each individual firm, which
leads to the following two equations (see equations (2) and (3) in Gatchev, Pulvino,
and Tarhan (2010)):

CFt = �Casht + RPt + DIVt + INVt + ACQUISt − �LTDt

−�STDt − EQUISSt − ASALESt ,

CFt = EBITDAt − INTEXPt − TAXt − �NWCt ,
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where CF denotes internally available cash flow for investment and financing;
�Cash denotes change in cash balance; RP denotes shares repurchase; DIV denotes
dividends; INV denotes investment; ACQUIS denotes acquisitions; �LTD denotes
changes in long-term debt; �STD denotes changes in short-term debt; EQUISS de-
notes equity issuance; ASALES denotes asset sales; EBITDA denotes earnings before
interest, taxes, and depreciation; INTEXP denotes interest expenses; TAX denotes
cash taxes; �NWC denotes change in net working capital.

Combining the above two equations and aggregating across all firms (public and
private) in the economy, we have:

EBITDAt − INTEXPt − TAXt − �NWCt − �Casht + EQUISSt − RPt

= DIVt + INVt − �LTDt − �STDt .

Note AS AL E St and AC QU I St do not appear since they cancel out each other in
aggregate. To map to our aggregate flow of fund identity (equation (2) in the article),
we define:

EARNt = EBITDAt − INTEXPt − TAXt ,

CFADJt = −�NWCt − �Casht ,

NIE
t = EQUISSt − RPt ,

NID
t = �LTDt + �STDt ,

It = INVt .

Gatchev, Pulvino, and Tarhan (2010) do not talk about inventory changes sepa-
rately, since they are included in changes in net working capital (�NWC). Therefore,
the parallel that we draw in this section with respect to our identities corresponds to
the case where investment is identified with fixed investment as in our Section 3.2.

APPENDIX B: LOG-LINEAR APPROXIMATION

Assume that yt − et and it − et are stationary. The parameters used in the log-
linearization are:

ρ = 1

1 + exp{E[yt − et ]} − exp{E[it − et ]} , (B1)

θ = exp{E[yt − et ]}
exp{E[yt − et ]} − exp{E[it − et ]} . (B2)

A first-order Taylor approximation of the log of both sides of equation (4) in the
article around E[yt − et ] and E[it − et ] give equation (7) in the article.
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Empirically, E[yt − et ] > E[it − et ] so that ρ < 1 and θ > 1 are the relevant
cases. In the literature on present-value relationships it is standard to set ρ = 0.99.
For our application, we also arrive to ρ = 0.99 by substituting the average cash flow-
to-equity and investment-to-equity ratios observed in the sample period 1952:01–
2014:04 (4.75% and 3.78%, respectively) into equation (B1). In order to obtain a
consistent estimate of θ we note that the stationarity of returns, earnings growth, and
investment growth imply that earnings, investment, and equity values are cointegrated.
The parameter θ is part of the cointegrating vector between these variables. The ratio
vt is basically the cointegrating relationship. We run the DLS regression of Stock and
Watson (1993) to estimate θ .

et = α + βyt + γ it +
k∑

j=−k

[δ j�yt+ j + λ j�it+ j ] + εt .

Our analysis implies that β = θ and γ = −(θ − 1). In the period 1952:01–2014:04,
we obtain values of β between 1.68 and 2.35, and γ between −0.76 and −1.52,
depending on the particular subsample and the number of lags (k). We set θ = 1.77
for our analysis. Our results are virtually unchanged for similar values of θ .

In order to assess the accuracy of the log-linear approximation, we compare in-
vestment growth with its log-linear equivalent, that is, we compare both sides of the
following equation that is derived from equation (7) in the article:

�it+1 = 1

θ − 1
(vt − rt+1 + θ�yt+1 − ρvt+1)︸ ︷︷ ︸
approximate investment growth

(B3)

Exact Approximate Approximation
investment growth investment growth error

(1) (2) (1) − (2)

Std. deviation 0.0683 0.0688 0.0046
Correlation with (1) 1.0000 0.9978 −0.0735

As reported in the above table, the correlation between investment growth and its
approximate version is 0.99 in the main quarterly sample. The approximation error
has a standard deviation of only 0.0046. The correlation between investment growth
and the approximation error is −0.07.
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APPENDIX C: ADDITIONAL DETAILS ON THE MODEL

In this section, we first provide detailed solutions to the optimal investment in our
simple model in Section 4 of the article.

The coefficients on the investment equation are defined by:

0 = ρrφνB2
k + ρr Bk Bi + [(1 − ρr ) φνα − 1 + ρr (1 − φ)] Bk

+ (1 − ρr )(1 − φ)α, (C1)

0 = ρr B2
i + ρrφνBk Bi + [(1 − ρr ) φνα − 1] Bi + ρrφ(1 − ν)Bk

+ (1 − ρr )(1 − ν)φα, (C2)

Bz = (1 − ρr ) φz

1 − (1 − ρr ) φνα − ρrφz − ρrφνBk − ρr Bi
, (C3)

Bx = − [(1 − ρr ) + ρr Bz]σ 2
z

1 − (1 − ρr ) φνα − ρrφx − ρrφνBk − ρr Bi + ρrσxz
. (C4)
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FIG. 3. Contemporaneous Response to a Productivity Shock.

NOTE: We introduce a positive productivity shock to our calibrated simple model for investment growth and examine the
optimal response in investment (i), output (y), and return (r ) contemporaneously. The first row corresponds to the case
where α = 1 and ν = 1; the second row corresponds to the case where α = 0.3 and ν = 1; the third row corresponds to
the case where α = 0.3 and ν = 0.5. All other calibration parameters are described in Section 4.5.
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Out of the roots for Bk that follow from equations (C1) and (C2), we pick the root
that lies between zero and one.

Figure 3 plots the contemporaneous response of investment (i), output (y), and
returns (r ) to a positive productivity shock in our model. For constant return to scale
(α = 1), the positive productivity shock pushes up investment, output, and returns
contemporaneously (see the first row in Figure 3). With decreasing returns to scale
(α = 0.3), the impact of the positive productivity shock on current investment and
output is smaller (see second row in Figure 3).
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