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Abstract— An approach to combating network intrusion is the
development of systems applying machine learning and data min-
ing techniques. Many IDS (Intrusion Detection Systems) suffer
from a high rate of false alarms and missed intrusions. We want
to be able to improve the intrusion detection rate at a reduced
false positive rate. The focus of this paper is rule-learning,
using RIPPER, on highly imbalanced intrusion datasets with an
objective to improve the true positive rate (intrusions) without
significantly increasing the false positives. We use RIPPER as
the underlying rule classifier. To counter imbalance in data, we
implement a combination of oversampling (both by replication
and synthetic generation) and undersampling techniques. We
also propose a clustering based methodology for oversampling
by generating synthetic instances. We evaluate our approaches
on two intrusion datasets — destination and actual packets based
— constructed from actual Notre Dame traffic, giving a flavor
of real-world data with its idiosyncrasies. Using ROC analysis,
we show that oversampling by synthetic generation of minority
(intrusion) class outperforms oversampling by replication and
RIPPER’s loss ratio method. Additionally, we establish that our
clustering based approach is more suitable for the detecting
intrusions and is able to provide additional improvement over
just synthetic generation of instances.

Index Terms— Computer Network Security, Imbalanced

Datasets, Classification, ROC Curves

I. INTRODUCTION

Network intrusion detection refers to the set of techniques
used to isolate attacks against computers and networks. An
Intrusion Detection System (IDS) thus detects hostile activities
in a network. In addition to detection of attacks, such a system
must prevent their malicious effects, or assist a human in
a system or network administrator role in this prevention.
By nature, even basic networks are very complex systems
and the further evolution of the Internet has made it difficult
to construct a total understanding of the system. However,
work by Leland et al. suggests that local network traffic may
contain complex, yet self-similar patterns [1]. Later, multi-
fractal scaling was discovered and reported by Levy-Vehel et
al. [2]. The results of the 1998 DARPA Off-line Intrusion
Detection Evaluation indicated that further research should be
performed focusing on techniques to find new attacks [3].

Data mining applications to network security can be broadly
categorized into two sets, anomaly detection and signature
detection. Anomaly detection constructs models of normal data
and then detects deviations from this norm (anomalous logins,
traffic to source port > X), typically using outlier detection.
The difficulty in this method is differentiating “normal” be-
havior from “abnormal” behavior causing these techniques to
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suffer from high false positive rates. However, there has been
work in reducing the false positive rate by using multiple
data streams [4]. Other avenues of false positive rate improve-
ment includes hierarchical aggregation of specified portions of
total activity [5]. Alternatively, the signature-based approach
searches for specific patterns (strings) that denote suspicious
behavior. While this approach is sufficient for known attacks,
it becomes insufficient when the attack signature or normal
traffic makeup is unknown. This breakdown leads signature-
based approaches to suffer from a high false positive rate.
Thus, it is imperative to design methods of classification with
low false positive rates.

Going hand in hand is the compelling and inherent problem
of learning such signature based classifiers from highly imbal-
anced network intrusion datasets. Typically, network intrusions
and malicious behavior will represent a very small subset of
all network traffic. However, their detection is highly critical
for the health of a network. Hence, we cannot afford a high
intrusion detection rate at the expense of false alarms, as it will
lead to a loss of relevant packets. Thus, learning classifiers
from such unbalanced datasets faces a number of relevant
problems: improper classification evaluation metrics, absolute
or relative lack of data, data fragmentation, improper inductive
bias, and noise [6], in addition to the skew of accuracy and
probability measures employed by the classifiers.

Axelsson [7] demonstrated that the primary limitation of an
intrusion detection system is not the ability to identify behavior
as intrusive, rather its effectiveness stems from its abilities to
limit false alarms. Therefore, it is the purpose of this paper
to study the effectiveness of several techniques to reduce
false positives in intrusion datasets. We chose to construct
our own “real-world” intrusion dataset by tapping the Notre
Dame traffic to avoid the various limitations of the DARPA
traffic [8]. Moreover, we constructed two different types of
datasets — packet based and destination based. This allowed
us to evaluate the efficacy of the approaches on datasets with
different features and class distribution. We then used RIPPER
[9] and several sampling methods to construct classifiers on
these datasets.

Contribution: The main contributions of our work include
a) effective evaluation and comparison of sampling methods,
including oversampling by replication, SMOTE (Synthetic Mi-
nority Over-sampling TEchnique) [10], and undersampling, on
real-world intrusion datasets; b) comparisons with RIPPER’s
loss ratio implementation for re-weighting the costs of false
positives vs. false negatives and c) a clustering based imple-
mentation of SMOTE (Cluster-SMOTE) that further improves
the performance over all the sampling methods.

Our hypothesis is that by generating synthetic intrusion
cases to populate the dataset, particularly in the localized
clusters, we will evoke the notion of “similarities” in network



traffic. SMOTE generates new instances based on the “known”
distribution, thus improving the generalization capacity of the
learned classifier. SMOTE adds these instances in the space
between minority examples, emphasizing the class border in
favor of the minority class. To learn efficient discriminative
learners it is important to emphasize on such class borders.
To demonstrate our claim, we first compare SMOTE to other
techniques using ROC curve analysis and demonstrate the
success of its emphasis on class borders by comparison to a
pure random replication oversampling method. In addition, we
will also present a new technique of Cluster-SMOTE, which
applies unsupervised learning to partition datasets into regions
that will enable SMOTE to deliver enhanced results and we
will present results indicating that this method may be used
as an improvement over SMOTE.

The rest of the paper is organized as follows. Section 2
outlines the approach used to construct our datasets. Section
3 discusses the data mining approaches utilized in our study.
Section 4 presents the experiments and Section 5 discusses
results. Section 6 draws conclusions and discusses future work.

II. DATA EXTRACTION

Many efforts have used the DARPA’98 dataset for testing
and training purposes. While this is a benchmark for intrusion
detection methods, it has a number of shortcomings. The
validity of DARPA’98 was questioned by McHugh [8] for its
use of synthetic traffic for generating normal data and using
attacks generated from scripts and programs. Additionally, the
normal data does not contain natural but noisy traffic behavior
such as packet storms or strange fragments. Ultimately, this
dataset is not representative of contemporary network traffic.
Thus, it was imperative to construct our own dataset based on
a collection of contemporary network traffic. Many other ap-
proaches construct a data model based on network connections
[11]-[15].

We operated using real network data from the University of
Notre Dame. This network runs at 100 Mbps and is comprised
of over 10,000 primarily residential computers, the majority of
which run Windows. Traffic was collected during the summer
of 2004. During this collection, a number of on-campus
machines fell victim to a Trojan horse style attack and became
“zombie” hosts in a distributed denial of service attack. Thus,
the data sample used in our experiments represents a fairly
“interesting” segment of network traffic.

In order to extract new classifiers for network intrusion
detection, we must construct a dataset which further entails
a packet labeling method must be elected and applied. Many
stored network traffic files were processed using the SNORT
open source intrusion detection system and received labeling
based on the appropriate rule set [16]. This set makes a
wide sweep on potential attacks such as viruses, port-scans,
MYSQL attacks, and DoS and DDoS attacks. One limitation
with this approach is that SNORT can only apply one label
per packet, for instance SNORT performs telnet checking prior
to DDoS; thus, a packet violating both rules will only reflect
the attack for which it is first scanned. We can accommodate
this limitation by focusing our approach and treating this

as a 2-class problem. Rather than associating the type of
intrusion with the packet, we merely label whether a packet
was intrusive. This simplifies our approach in our packet
analysis and allows for other flexibility. Using this method,
we constructed two datasets: Packets and Destinations. While
the Packets dataset measures the intrusiveness on a per packet
basis, Destinations generates an aggregate of traffic.

A. Packets Dataset

Our first dataset comprised of collected packets and their
SNORT labels. The set of attributes for each element denotes
the packet’s type, the status of its flags, values of other perti-
nent fields, and a basic summary of the packet’s data payload.
The set of characteristics summarizing the payload calculate
the percentages of bytes representing printable and unprintable
characters, as well as the percentage of digits, white space,
punctuation, upper case, and lower case characters within the
payload. Such a set of features truncates the total amount of
information yielded by a packet capture and provides ample
means to differentiate between attack and normal traffic. While
the total number of packets studied will be significantly higher
than that of the destinations set and the packet dataset should
contain less noisy examples, accurate classifier construction
may be even more problematic as the the imbalance ratio of
this dataset is even less favorable than that of the destinations
dataset, as can been seen in Table I. The packet dataset should
therefore produce an even more compelling case for SMOTE
and our Cluster-SMOTE method.

dataset attributes | alerts | non-alerts | total size

Destinations | 25 147 3933 4080

Packets 43 2106 344,514 346,620
TABLE I

DATA DISTRIBUTIONS IN THE DATASETS.

B. Destinations Dataset

We elected to construct another novel dataset. Instead
of a connection model, we elected for the construction a
destination-based model in which packets are organized by
their destination. Attributes are constructed by noting the
number, type, and rate of packets received in addition to
the number of connections on a given host. Other attributes
summarize the overall make-up of the packets themselves and
standard deviation calculations are used to note high or low
levels of variance in these characteristics. Thus, each dataset
member represents a separate host that we have recorded as
have received traffic and its attributes represent the composite
of traffic received. We use SNORT to identify intrusion packets
and label hosts receiving such packets as compromised. This
will enable us to perform a survey of compromised and
uncompromised hosts and to induce a set of rules for both
groups. Studying destination traffic allows for a separate, host-
based analysis that is useful to network managers and intrusion
detection systems by isolating systems that are likely to have
received attack traffic. While administrators are privy to a
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The attribute space in (a) features a sparse majority class, a minority class region, and several minority outliers. In (b), Cluster-SMOTE detects two

clusters of minority points and uses this information to generate new synthetic examples, as seen in (c)

substantial amount of traffic passed on their networks, it is
unlikely that even this wealth of information is enough to
supply number of examples required to accurately forecast,
even via data-mining, the relatively rare case of intrusion.
Thus, we anticipate that SMOTE will assist us by generating
synthetic examples of compromised hosts, improving our
classifier performance.

III. MINING FOR SIGNATURES

The intrusion datasets are highly imbalanced in nature, as
revealed in Table I. A dataset is imbalanced if the classification
categories are not approximately equally represented. While
our main goal is to correctly identify the intrusive instances
based on the signatures, the classification techniques can be
easily biased towards the majority class (non-intrusive). We
are more interested in the trade-offs between true positives and
false positives, that is how many false positives are potentially
caused as we increase the intrusion detection rate. One can
potentially configure the signature based system depending
on the system specific trade-offs. We used SMOTE [10] and
our proposed Cluster-SMOTE along with RIPPER [9] as our
classification technique and each method is briefly outlined in
the following subsections.

A. RIPPER

RIPPER is a fast, highly noise tolerant rule learner, orig-
inally targeting learning problems involving very large and
noisy datasets [9]. While this application is used heavily in
many, text-driven data-mining experiments, its noise tolerance
makes it very useful in many other studies, such as our
own. Thus, RIPPER will produce a set of rules outlining
intrusive traffic and assume all other traffic to be non-intrusive.
Comprehensibility of a classifier can be key for network
security for post-analysis by a human expert.

B. SMOTE: Synthetic Minority Oversampling TEchnique

Sampling methods are very popular in balancing the class
distribution before learning a classifier, which uses an error
based objective function to search the hypothesis space. Over
and under-sampling methodologies have received significant
attention to counter the effect of imbalanced datasets [10],
[17]-[20].

The random under and over-sampling methods have their
various shortcomings. The random undersampling method can
potentially remove certain important examples, and random
oversampling by replication can lead to overfitting. Oversam-
pling by replication can also lead to similar but more specific
regions in the feature space as the decision region for the
minority class. This can potentially lead to overfitting on the
multiple copies of minority class examples.

To overcome the overfitting and broaden the decision region
of the minority intrusion class cases, SMOTE can be used to
generate synthetic examples by operating in “feature space”
rather than in “data space” [10]. The minority class is over-
sampled by taking each minority class sample and introducing
synthetic examples along the line segments joining any/all
of the k& minority class nearest neighbors. Depending upon
the amount of over-sampling required, neighbors from the k&
nearest neighbors are randomly chosen. Synthetic samples are
generated in the following way: Take the difference between
the feature vector (sample) under consideration and its near-
est neighbor. Multiply this difference by a random number
between 0 and 1, and add it to the feature vector under
consideration. This causes the selection of a random point
along the line segment between two specific features. This
approach effectively forces the decision region of the minority
class to become more general. For the nominal cases, we take
the majority vote for the nominal value amongst the nearest
neighbors. We use the modification of Value Distance Metric
(VDM) [21] to compute the nearest neighbors for the nominal
valued features.

The synthetic examples cause the classifier to create larger
and less specific decision regions, rather than smaller and
more specific regions, as typically caused by over-sampling
with replication. More general regions are now learned for
the minority class rather than being subsumed by the majority
class samples around them. The effect is that classifiers
generalize better. This generalization capacity of a classifier
can be very pertinent for intrusion detection.

C. Cluster-SMOTE

Our intuition into the class imbalance problem is that having
a small group of minority examples makes it difficult to
establish proper class borders. Thus, the ability to correctly
define the class regions and hence their borders would allow
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Fig. 2. ROC Curves depicting 500 SMOTE against RIPPER loss ratio on
the Packets dataset

for trivial classification. As these regions are unknown and
even in the best cases may be impossible to deduce from
given data, we believe only an approximation of these regions
may be inferred. Even approximations may enhance classifier
construction.

To develop these minority region approximations, we have
applied simple k-means clustering to the set of minority ex-
amples in each dataset. We then apply SMOTE to each cluster
and then reform the dataset by reinserting the set of original
minority examples and the synthetic examples as well. This
process allows for focused improvements on a localization
basis for the minority class and should improve SMOTE’s per-
formance on imbalanced datasets. Leland’s observation of self-
similar patterns suggests that clustering enable the detection of
such distinct patterns and that generating synthetic examples
focusing on localizations will enhance global classification [1].

IV. EXPERIMENTS

Our experiments demonstrate the success of SMOTE in
improving the detection of intrusive packets and compromised
hosts, with an acceptable relative increase in the rate of false
alarms. We show the efficacy of SMOTE both when used
globally and locally (Cluster-SMOTE). As SMOTE generates
additional synthetic examples for the training set by empha-
sizing the alert and non-alert class borders, it was important
to establish that SMOTE’s contribution was this emphasis,
rather than its creation of a more balanced dataset. Therefore,
experiments were performed in which examples of the alert
class were replicated at the same rate used by SMOTE and
were likewise added to the training set. As this method
improves the class imbalance ratio, we expect an improvement
over an unaugmented training set. However, as replication
does not emphasize the class borders, we expect SMOTE’s
performance to dominate.

To sweep an ROC curve, we undersampled the majority
class by randomly removing a given percentage of majority
examples from the training set. As with minority class over-
sampling via replication, random majority class undersampling
improves classification performance by essentially emphasiz-
ing the minority class by reducing the ratio of majority to
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Fig. 3. ROC Curves depicting the optimal SMOTE and random replication
methods applied on the Packets Dataset from rules learned by RIPPER.

minority examples. The set {1%M AJ, 5% M AJ, 10% M AJ,
20%MAJ, ..., 100%M AJ} represents the sets of majority
examples used in our experimental datasets. At each of the un-
dersampling amounts, we applied SMOTE and oversampling
with replication. This allowed us to generate ROC curves with
sufficient points.

An alternative to SMOTE is adjusting RIPPER’s loss ratio,
L, which specifies the relative cost of a false positive against a
false negative. Hence, a ratio L < 1 penalizes more heavily for
missing minority examples, while a ratio L > 1 increasingly
penalizes for false alarms. As opposed to the more complicated
cost-sensitivity matrix which assigns point values to each of
the four types of classification: true positives, true negatives,
false positives, and false negatives, loss ratio provides a
simpler progressive method for adjusting the minority class
true positive rate. The effects of this adjustment on RIPPER
in producing rules were compared against those of SMOTE.

A. ROC Curves

Receiver Operating Characteristic (ROC) Curves provide an
effective basis for comparison between classifiers of imbal-
anced datasets by tracing the increase in the rate of false alarms
as the classifier is tuned to increase the rate of correct alarms
raised [22]. Visualization of ROC curves also enables an
understanding of the interplay between the rates of generation
of false and true positives. Depending on the nature of system,
one can choose an operating point from the ROC curve. Thus,
an ROC curve study is important to understanding SMOTE’s
effectiveness in these experiments.

We undersampled the majority class to generate ROC
curves, with each undersampled point representing the rate
of true positives against the rate of false positives for the
learned classifier, yielding a single curve. Then, we over-
sampled (using SMOTE, replication, and Cluster-SMOTE) for
each of the undersampled dataset. This generated a separate
set of ROC curves for comparison. The best classifiers are
represented by those points closest to the upper-left corner
of the graph, the optimal point representing perfect minority
detection with no false alarms raised. There was an additional
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Fig. 4. ROC Curves comparing the performance of SMOTE and Cluster-
SMOTE on Packets using rules learned by RIPPER.

group of experiments studying the effects of varying the loss
ratio of Ripper from 1 to .01 used in classifier construction.

B. Training and testing sets

The task of classification requires two separate datasets:
one for training and one for testing. The learning algorithm
generates rules on the training dataset and its performance is
measured by its classification results on the testing set. Given
the very large size of the packets dataset, we randomly split
the dataset with 75% of the examples used in training and
25% used for testing, while maintaining the original class
distribution in both the sets. Considering the low number of
alerts in the destinations dataset, a simple split method was
insufficient, as it would have led to a very small amount of
alerts for training and testing. Thus, we performed a 10-fold
cross-validation and averaged the true positive rate and false
positive rate across the 10 folds.

V. RESULTS

The first experiment established a baseline by comparing
SMOTE’s performance against that of RIPPER’s loss ratio.
Figure 2 displays the results of this comparison on the packets
dataset. The loss ratio’s sudden halt precludes its use in cases
where more generous false alarm rates are allowed. Addition-
ally, the SMOTE curve dominates the loss ratio curve from
start to finish. Similar observations were made for the same
experiment on the destinations dataset. Therefore, SMOTE
is a more effective method than varying loss ratio and our
experiments further validate SMOTE as an effective means to
combat intrusion.

A. Packets

As seen in Figure 3, adding a layer of oversampling using
SMOTE and replication adds value to the prediction of the
alert cases. It is important to note that the SMOTE curves
clearly dominate all the ROC curves. Thus, the additional
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Fig. 5. ROC Curves showing the performance of SMOTE and random
replication on the Destinations dataset using RIPPER.

emphasis on the class borders placed by SMOTE must be ef-
fective in generating a superior AUC and thus allows RIPPER
to generate a better classifier.

Our results indicate that high levels of SMOTE have
improved ROC curves on both datasets. However, we can
improve results further by applying our outlined Cluster-
SMOTE technique. We applied simple k-means clustering to
the minority examples of the packets dataset and performed
two experiments using three and five centroids, values seeded
by the user. Oversampling varied at the rates in the previous
experiments on individual clusters and RIPPER was applied
to the entire dataset. Figure 4 depicts some of the best results
along with a 500-SMOTE baseline for comparison purposes.

Among these curves, there is no single classifier that clearly
dominates. However, it is possible to fit a convex hull to
the curves presented on an ROC graph [23]. This allows for
the approximation of the optimal classifier, based on known
classifiers. When this procedure is applied to Figure 4, all
but one point within this convex hull come from classifiers
based on the Cluster-SVIOTE method. Therefore, the optimal
classifier for a given acceptable false-positive rate will be
selected from Cluster-SMOTE classifiers in all but one case.
Hence, Cluster-SMOTE is shown to be an effective method of
classifier enhancement on the packets dataset.

B. Destinations

Likewise, the effectiveness of the SMOTE technique is
demonstrated through our destinations dataset experiments.
The visual trade-off between true positives and false positives
is presented as an ROC in Figure 5. Given the unstable nature
of the rules formed by RIPPER, there will tend to be certain
points in the ROC space that will slightly deviate from the
trend, but in general, the trend of the curves is as one might
expect. Another deviation is that the best ROC curve for repli-
cation was at 100% level, indicating that more replication led
to severe overfitting. However, SMOTE successively improved
performance as we added more synthetic examples, giving best



performance at 500%. As this dataset features an extremely
low number of alert examples, the ROC curves produced are
especially prone to drastic sudden changes, as can be seen
in Figure 5. However, the same general observations hold
from the destinations dataset as they did from packets: the
SMOTE curve dominates the random replication curve. As this
dataset contained a very small minority class and clustering
on these examples yielded a single cluster, this indicates that
the alerts within destinations fall within a compact region of
the total feature space; thus, Cluster-SMOTE would be unable
to generate improved classifiers on this dataset.

VI. CONCLUSION

Efficient intrusion detection is a difficult problem because
of the difficulty inherent in identifying intrusive behavior
while maintaining the ability to limit false alarms. Thus, we
have conducted an investigation into methods of false positive
limitation. We began by outlining a procedure for building
a dataset from collected network traffic. Using basic payload
analysis and destination address grouping, we generated two
imbalanced datasets featuring a large set of attributes. Using
an open source IDS, SNORT, we were able to label examples
from each dataset as alert and normal.

These datasets were then used in our investigation of
applications of SMOTE and a new method, Cluster-SMOTE,
in terms of restricting false positive rates while generating
rules using RIPPER. ROC curves were presented establishing
that SMOTE’s emphasis on class borders in rule learning im-
proves classifiers beyond the level of class balance restoration
through simple random minority example replication. These
experiments held true through both datasets. An additional
experiment on the packets dataset demonstrated SMOTE’s
effectiveness over RIPPER loss ratio.

In addition, we have investigated the effectiveness of
Cluster-SMOTE as a technique for imbalanced class learning
above SMOTE within the scope of these datasets. We have
concluded that Cluster-SMOTE provides an improvement on
SMOTE for the packets dataset, but cannot be used on destina-
tions due to the limited feature space size of the minority class.
Our success with the packets dataset indicates that Cluster-
SMOTE is a technique which may be useful in application
settings outside of intrusion detection, but within the set of
class imbalance problems.

Looking forward, we will further pursue Cluster-SMOTE
through a thorough examination of its effectiveness on other
datasets. Additionally, the simple k-means method employed
in this paper is at best limited in its effectiveness and it is our
goal to develop superior localizations of the minority class
through an approach using hyper-rectangles. In conjunction
with this investigation of methods for localizing class imbal-
anced datasets, we will investigate new methods of synthetic
point generation that yield superior class boundary definition.
This in turn will enable us to strike at the heart of the class
imbalance problem: class region definition.
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