Graduate Algebra, Fall 2014
 Lecture 1

Andrei Jorza

2014-08-27

1 Group Theory

1.1 Basic definitions

Let G be a set and \cdot be a binary operation on G. Say that:

1. • is associative if for any $x, y, z \in G$ have $(x \cdot y) \cdot z=x \cdot(y \cdot z)$. With induction you can also show that for all $x_{1}, \ldots, x_{n} \in G$ the value of $x_{1} \cdot x_{2} \cdots x_{n}$ is independent of the order in which the \cdot operations are performed.
2. • has a unit element e if for all $x \in G$ one has $x \cdot e=e \cdot x=x$. Unit elements, if they exist, are unique: indeed, if e, e^{\prime} are units then $e=e \cdot e^{\prime}=e^{\prime}$.
3. an element $x \in G$ has an inverse x^{-1} if $x \cdot x^{-1}=x^{-1} \cdot x=e$. If G is associative then inverses, if they exist, are unique. Suppose a, b are inverses to x. Then $a=a e=a(x b)=(a x) b=e b=b$.
4. . is commutative or abelian if $x y=y x$ for all $x, y \in G$.

We say that G with • is:

1. a semigroup if • is associative.
2. a monoid if G is a semigroup and there exists a unit.
3. a group if G is a monoid and every element has an inverse.

A list of many examples:

1. \mathbb{Z} with + and 0 is a group.
2. $\mathbb{Z}_{\geq 0}$ with + and 0 is a monoid.
3. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with + and 0 are groups.
4. for $n \geq 2$ an integer $\mathbb{Z} / n \mathbb{Z}=\{0,1, \ldots, n-1\}$ with addition modulo n and 0 is a group.
5. for $n \geq 2$ an integer $(\mathbb{Z} / n \mathbb{Z})^{\times}=\{d \in \mathbb{Z} / n \mathbb{Z} \mid(d, n)=1\}$ with multiplication modulo n and 1 as unit is a group.
6. $\mathbb{Q} / \mathbb{Z}=[0,1) \cap \mathbb{Q}$ with unit 0 and addition defined as

$$
x^{\prime \prime}+{ }^{\prime \prime} y=x+y \quad \bmod 1=\{x+y\}= \begin{cases}x+y & x+y<1 \\ x+y-1 & x+y \geq 1\end{cases}
$$

is a group (here $\{x\}$ represents the fractional part).
7. If $\left(G, \cdot{ }_{G}, e_{G}\right)$ and $\left(H,{ }_{H}, e_{H}\right)$ are two groups then $\left(G \times H, \cdot, e_{G} \times e_{H}\right)$ is a group where \cdot is defined component-wise. For example the Klein group is $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})=\{(0,0),(0,1),(1,0),(1,1)\}$.
8. For $n \geq 2, S_{n}$ is the group of permutations of a fixed set of n elements. Multiplication is composition of permutations and the identity is the identity permutation.
9. The dihedral group $D_{2 n}$ is the group of symmetries of a regular n-gon. Again, multiplication is composition of symmetries and the identity map is the identity element.
10. If R is $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ or \mathbb{C} and $n \geq 1$ then the set $M_{n \times n}(R)$ of $n \times n$ matrices with entries in R is a group with respect to matrix addition.
11. If R is \mathbb{Q}, \mathbb{R} or \mathbb{C} then the set $\mathrm{GL}(n, R)$ of $n \times n$ matrices with entries in R and non-zero determinant is a group with respect to matrix multiplication.

1.2 Cyclic groups

The simplest groups are the cyclic ones. An infinite cyclic group is a group G, written multiplicatively, whose elements are $\left\{1, a^{ \pm 1}, a^{ \pm 2}, \ldots\right\}$ where $a \in G$ is such that $a^{n} \neq 1$ for any $n \in \mathbb{Z}$. The element a is called a generator of G (we write $G=\langle a\rangle$) and say that a has infinite order.

A finite cyclic group of order n is a group G, written multiplicatively, whose elements are $\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$ where $a \in G$ such that $a^{n}=1$ but $a^{d} \neq 1$ for any $0<d<n$. Again, a is said to be a generator of $G(G=\langle a\rangle)$ and we say that a has order ord $(a)=n$.

If G is any group and $a \in G$ we can still define the order of a as above.
Proposition 1. Suppose $a \in G$ has order n and $d \geq 1$ is an integer. Then $\operatorname{ord}\left(a^{d}\right)=n /(d, n)$.
Proof. In class I only did the case when $(d, n)=1$. Suppose $m=\operatorname{ord}\left(a^{d}\right)$. Then m is the smallest positive integer such that $\left(a^{d}\right)^{m}=a^{d m}=1$. Certainly $\left(a^{d}\right)^{n /(d, n)}=\left(a^{n}\right)^{d /(d, n)}=1$ and so $m \leq n /(d, n)$ by the minimality assumption.

Next, use division with remainder to write $m d=q n+r$ where $0 \leq r<n$. This is a phenomenally powerful tool that we'll use many times. Then

$$
1=a^{d m}=a^{q n+r}=\left(a^{n}\right)^{q} a^{r}=a^{r}
$$

Since a has order n and $r<n$ it follows that r must be 0 . Thus $d m=q n$ and we can rewrite this as

$$
\frac{d}{(d, n)} m=\frac{n}{(d, n)} q
$$

Now $d /(d, n)$ and $n /(d, n)$ are coprime and so, by unique factorization in the integers, it follows that $n /(d, n) \mid$ m. As $m>0$ this implies that $m \geq n /(d, n)$ and so we deduce, from the above, that $m=n /(d, n)$ as desired.

