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1 Group Theory

1.1 Basic definitions

Let G be a set and · be a binary operation on G. Say that:

1. · is associative if for any x, y, z ∈ G have (x · y) · z = x · (y · z). With induction you can also show that
for all x1, . . . , xn ∈ G the value of x1 · x2 · · ·xn is independent of the order in which the · operations
are performed.

2. · has a unit element e if for all x ∈ G one has x · e = e · x = x. Unit elements, if they exist, are unique:
indeed, if e, e′ are units then e = e · e′ = e′.

3. an element x ∈ G has an inverse x−1 if x · x−1 = x−1 · x = e. If G is associative then inverses, if they
exist, are unique. Suppose a, b are inverses to x. Then a = ae = a(xb) = (ax)b = eb = b.

4. · is commutative or abelian if xy = yx for all x, y ∈ G.

We say that G with · is:

1. a semigroup if · is associative.

2. a monoid if G is a semigroup and there exists a unit.

3. a group if G is a monoid and every element has an inverse.

A list of many examples:

1. Z with + and 0 is a group.

2. Z≥0 with + and 0 is a monoid.

3. Q, R, C with + and 0 are groups.

4. for n ≥ 2 an integer Z/nZ = {0, 1, . . . , n− 1} with addition modulo n and 0 is a group.

5. for n ≥ 2 an integer (Z/nZ)× = {d ∈ Z/nZ|(d, n) = 1} with multiplication modulo n and 1 as unit is
a group.

6. Q/Z = [0, 1) ∩Q with unit 0 and addition defined as

x“ +′′ y = x + y mod 1 = {x + y} =

{
x + y x + y < 1

x + y − 1 x + y ≥ 1

is a group (here {x} represents the fractional part).
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7. If (G, ·G, eG) and (H, ·H , eH) are two groups then (G × H, ·, eG × eH) is a group where · is defined
component-wise. For example the Klein group is (Z/2Z)× (Z/2Z) = {(0, 0), (0, 1), (1, 0), (1, 1)}.

8. For n ≥ 2, Sn is the group of permutations of a fixed set of n elements. Multiplication is composition
of permutations and the identity is the identity permutation.

9. The dihedral group D2n is the group of symmetries of a regular n-gon. Again, multiplication is
composition of symmetries and the identity map is the identity element.

10. If R is Z,Q,R or C and n ≥ 1 then the set Mn×n(R) of n × n matrices with entries in R is a group
with respect to matrix addition.

11. If R is Q,R or C then the set GL(n,R) of n× n matrices with entries in R and non-zero determinant
is a group with respect to matrix multiplication.

1.2 Cyclic groups

The simplest groups are the cyclic ones. An infinite cyclic group is a group G, written multiplicatively,
whose elements are {1, a±1, a±2, . . .} where a ∈ G is such that an 6= 1 for any n ∈ Z. The element a is called
a generator of G (we write G = 〈a〉) and say that a has infinite order.

A finite cyclic group of order n is a group G, written multiplicatively, whose elements are {1, a, a2, . . . , an−1}
where a ∈ G such that an = 1 but ad 6= 1 for any 0 < d < n. Again, a is said to be a generator of G (G = 〈a〉)
and we say that a has order ord(a) = n.

If G is any group and a ∈ G we can still define the order of a as above.

Proposition 1. Suppose a ∈ G has order n and d ≥ 1 is an integer. Then ord(ad) = n/(d, n).

Proof. In class I only did the case when (d, n) = 1. Suppose m = ord(ad). Then m is the smallest positive
integer such that (ad)m = adm = 1. Certainly (ad)n/(d,n) = (an)d/(d,n) = 1 and so m ≤ n/(d, n) by the
minimality assumption.

Next, use division with remainder to write md = qn + r where 0 ≤ r < n. This is a phenomenally
powerful tool that we’ll use many times. Then

1 = adm = aqn+r = (an)qar = ar

Since a has order n and r < n it follows that r must be 0. Thus dm = qn and we can rewrite this as

d

(d, n)
m =

n

(d, n)
q

Now d/(d, n) and n/(d, n) are coprime and so, by unique factorization in the integers, it follows that n/(d, n) |
m. As m > 0 this implies that m ≥ n/(d, n) and so we deduce, from the above, that m = n/(d, n) as
desired.
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