Graduate Algebra, Fall 2014 Lecture 1

Andrei Jorza

2014-08-27

1 Group Theory

1.1 Basic definitions

Let G be a set and \cdot be a binary operation on G. Say that:

- 1. \cdot is **associative** if for any $x, y, z \in G$ have $(x \cdot y) \cdot z = x \cdot (y \cdot z)$. With induction you can also show that for all $x_1, \ldots, x_n \in G$ the value of $x_1 \cdot x_2 \cdots x_n$ is independent of the order in which the \cdot operations are performed.
- 2. \cdot has a unit element e if for all $x \in G$ one has $x \cdot e = e \cdot x = x$. Unit elements, if they exist, are unique: indeed, if e, e' are units then $e = e \cdot e' = e'$.
- 3. an element $x \in G$ has an inverse x^{-1} if $x \cdot x^{-1} = x^{-1} \cdot x = e$. If G is associative then inverses, if they exist, are unique. Suppose a, b are inverses to x. Then a = ae = a(xb) = (ax)b = eb = b.
- 4. \cdot is commutative or abelian if xy = yx for all $x, y \in G$.

We say that G with \cdot is:

- 1. a **semigroup** if \cdot is associative.
- 2. a **monoid** if G is a semigroup and there exists a unit.
- 3. a group if G is a monoid and every element has an inverse.
- A list of many examples:
- 1. \mathbb{Z} with + and 0 is a group.
- 2. $\mathbb{Z}_{\geq 0}$ with + and 0 is a monoid.
- 3. \mathbb{Q} , \mathbb{R} , \mathbb{C} with + and 0 are groups.
- 4. for $n \ge 2$ an integer $\mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$ with addition modulo n and 0 is a group.
- 5. for $n \ge 2$ an integer $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{d \in \mathbb{Z}/n\mathbb{Z} | (d, n) = 1\}$ with multiplication modulo n and 1 as unit is a group.
- 6. $\mathbb{Q}/\mathbb{Z} = [0,1) \cap \mathbb{Q}$ with unit 0 and addition defined as

$$x``+'' y = x + y \mod 1 = \{x + y\} = \begin{cases} x + y & x + y < 1\\ x + y - 1 & x + y \ge 1 \end{cases}$$

is a group (here $\{x\}$ represents the fractional part).

- 7. If (G, \cdot_G, e_G) and (H, \cdot_H, e_H) are two groups then $(G \times H, \cdot, e_G \times e_H)$ is a group where \cdot is defined component-wise. For example the Klein group is $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) = \{(0,0), (0,1), (1,0), (1,1)\}.$
- 8. For $n \ge 2$, S_n is the group of permutations of a fixed set of n elements. Multiplication is composition of permutations and the identity is the identity permutation.
- 9. The dihedral group D_{2n} is the group of symmetries of a regular *n*-gon. Again, multiplication is composition of symmetries and the identity map is the identity element.
- 10. If R is $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ or \mathbb{C} and $n \geq 1$ then the set $M_{n \times n}(R)$ of $n \times n$ matrices with entries in R is a group with respect to matrix addition.
- 11. If R is \mathbb{Q}, \mathbb{R} or \mathbb{C} then the set GL(n, R) of $n \times n$ matrices with entries in R and non-zero determinant is a group with respect to matrix multiplication.

1.2 Cyclic groups

The simplest groups are the cyclic ones. An infinite cyclic group is a group G, written multiplicatively, whose elements are $\{1, a^{\pm 1}, a^{\pm 2}, \ldots\}$ where $a \in G$ is such that $a^n \neq 1$ for any $n \in \mathbb{Z}$. The element a is called a **generator** of G (we write $G = \langle a \rangle$) and say that a has infinite order.

A finite cyclic group of order n is a group G, written multiplicatively, whose elements are $\{1, a, a^2, \ldots, a^{n-1}\}$ where $a \in G$ such that $a^n = 1$ but $a^d \neq 1$ for any 0 < d < n. Again, a is said to be a generator of G ($G = \langle a \rangle$) and we say that a has order $\operatorname{ord}(a) = n$.

If G is any group and $a \in G$ we can still define the order of a as above.

Proposition 1. Suppose $a \in G$ has order n and $d \ge 1$ is an integer. Then $\operatorname{ord}(a^d) = n/(d, n)$.

Proof. In class I only did the case when (d, n) = 1. Suppose $m = \operatorname{ord}(a^d)$. Then m is the smallest positive integer such that $(a^d)^m = a^{dm} = 1$. Certainly $(a^d)^{n/(d,n)} = (a^n)^{d/(d,n)} = 1$ and so $m \leq n/(d,n)$ by the minimality assumption.

Next, use division with remainder to write md = qn + r where $0 \le r < n$. This is a phenomenally powerful tool that we'll use many times. Then

$$1 = a^{dm} = a^{qn+r} = (a^n)^q a^r = a^r$$

Since a has order n and r < n it follows that r must be 0. Thus dm = qn and we can rewrite this as

$$\frac{d}{(d,n)}m = \frac{n}{(d,n)}q$$

Now d/(d, n) and n/(d, n) are coprime and so, by unique factorization in the integers, it follows that $n/(d, n) \mid m$. As m > 0 this implies that $m \ge n/(d, n)$ and so we deduce, from the above, that m = n/(d, n) as desired.