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1 Group Theory

1.15 Group actions (continued)

Theorem 1 (Class equation). Let G be a finite group acting on a finite set X.

1. X = tOi where the Oi are the orbits of G on X.

2. If x ∈ X then |O(x)| = [G : StabG(x)].

3. In each orbit of G acting on X choose an element xi. Then

|X| =
∑

[G : StabG(xi)]

4. In each conjugacy class in G with more than one element select an element gi. Then

|G| = |Z(G)|+
∑

[G : CG(gi)]

Proof. (1): Every x ∈ X lies in the orbit O(x) so get a disjoint union.
(2): Consider the map f : G→ O(x) sending g to gx. What is the preimage of y ∈ O(X) in G? Suppose

gx = hx = y. This is equivalent to gh−1 ∈ StabG(x) and so |f−1(y)| = |StabG(x)| for all y ∈ O(x). Thus
|G| =

∑
y∈O(x) |f−1(y)| = |O(x)||StabG(x)| and the result follows.

(3): The RHS is the sum of sizes of all orbits, which equals the size of all X as X is a disjoint union of
orbits.

(4): Take the conjugacy action of G on itself, in which case stabilizers are centralizers and orbits are
conjugacy classes. Thus |G| =

∑
[G : CG(gi)] if we choose gi in all conjugacy classes. If a conjugacy class

consists of the one element gi then gi ∈ Z(G) and StabG(gi) = G. Thus we get the desired result.

Remark 1. To apply the class equation for the action of G on itself it is crucial to choose representatives in
each orbit, namely a set S such that each s ∈ S is in an orbit, and every orbit contains an element of S.

When the action is conjugation of G on itself we need to find representatives in each conjugacy class.

Example 2. Some conjugacy classes.

1. The conjugacy classes in GL(2,R). The conjugacy classes in GL(2,C). (Jordan canonical forms; done
last time.)

2. The conjugacy classes in Sn. Every σ ∈ Sn can be written uniquely (up to permutation) as a product∏
ci of disjoint cycles. The multiset of lengths of these cycles is the cycle type of σ. The proposition

I proved in class was that two permutations are in the same conjugacy class iff they have the same
cycle type (up to permutation). The idea is that if c = (ij) is a cycle then τcτ−1 = (τ(ij)) and so if
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we write σ =
∏
ci, σ

′ =
∏
c′i cycles of same lengths, writing the cycles one below the other gives a τ

such that τστ−1 =
∏
τciτ

−1 =
∏
c′i = σ′.

Thus the conjugacy classes of Sn are parametrized by partitions n = a1 + · · · + ak with a1 ≥ a2 ≥
. . . ≥ ak ≥ 1 and the conjugacy class corresponding to this partition consists of all products of disjoint
cycles of lengths a1, . . . , ak.

1.16 The Sylow theorems

Definition 3. 1. If G is a finite group with prm elements, where p - m and r > 0, a p-Sylow subgroup
of G is any subgroup of order pr.

2. A p-group is any group whose cardinality is of the form pr. We denote Sylp(G) the set of all p-Sylow
subgroups of G.

Example 4. 1. Sylp(Z/prmZ) = {mZ/prmZ ∼= Z/prZ}.

2. Syl2(S3) = {〈(12)〉, 〈(13)〉, 〈(23)〉} and Syl3(S3) = {〈(123)〉}.

Theorem 5. Let G be a finite group with prm elements, where p - m and r > 0.

1. G has at least one p-Sylow subgroup and denote np = |Sylp(G)| ≥ 1.

2. np ≡ 1 (mod p).

3. Every p-subgroup of G is contained in a p-Sylow subgroup.

4. If P ∈ Sylp(G) then Sylp(G) = {gPg−1|g ∈ G}, i.e., every two p-Sylow subgroups are conjugate.

5. np | m.

Remark 2. If np = 1 then Sylp(G) = {P} with P CG. Indeed, gPg−1 ∈ Sylp(G) and so P must be normal.

Example 6. Suppose p > q are primes such that q - p− 1. Then |G| = pq implies G is cyclic.
Indeed, np | q sp np = 1, q. Also p | np − 1 so np = 1 as p > q − 1. Thus Sylp(G) = {P} with |P | = p

and so P cyclic of order p and normal. Similarly nq = 1, p and since q - p − 1 it follows that nq = 1 so
Sylq(G) = {Q} with |Q| = q so Q cyclic of order q and normal.

Since (p, q) = 1 we get P ∩ Q = 1 and P,Q C G so PQ ∼= P × Q ∼= Z/pqZ by the Chinese Remainder
Theorem. But comparing orders get G = PQ is cyclic as desired.
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