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1 Group Theory

1.15 Group actions (continued)

Theorem 1 (Class equation). Let G be a finite group acting on a finite set X.
1. X = UO; where the O; are the orbits of G on X.
2. If x € X then |O(x)| = [G : Stabg(x)].

3. In each orbit of G acting on X choose an element x;. Then
| X| = Z[G : Stabg (z;)]
4. In each conjugacy class in G with more than one element select an element g;. Then

Gl =12(G)| +)_[G : Calg:)]

Proof. (1): Every z € X lies in the orbit O(z) so get a disjoint union.

(2): Consider the map f : G — O(x) sending g to gx. What is the preimage of y € O(X) in G? Suppose
gr = hx = y. This is equivalent to gh~! € Stabg(z) and so |f~(y)| = | Stabg(z)| for all y € O(x). Thus
Gl =2 ycom |~ (y)| = |O(x)|| Stabg ()| and the result follows.

(3): The RHS is the sum of sizes of all orbits, which equals the size of all X as X is a disjoint union of
orbits.

(4): Take the conjugacy action of G on itself, in which case stabilizers are centralizers and orbits are
conjugacy classes. Thus |G| = Y [G : Ca(g:)] if we choose g; in all conjugacy classes. If a conjugacy class
consists of the one element g; then g; € Z(G) and Stabg(g;) = G. Thus we get the desired result. O

Remark 1. To apply the class equation for the action of G on itself it is crucial to choose representatives in
each orbit, namely a set S such that each s € S is in an orbit, and every orbit contains an element of S.
When the action is conjugation of G on itself we need to find representatives in each conjugacy class.

Example 2. Some conjugacy classes.

1. The conjugacy classes in GL(2,R). The conjugacy classes in GL(2,C). (Jordan canonical forms; done
last time.)

2. The conjugacy classes in S,,. Every o € S,, can be written uniquely (up to permutation) as a product
[] ¢ of disjoint cycles. The multiset of lengths of these cycles is the cycle type of o. The proposition
I proved in class was that two permutations are in the same conjugacy class iff they have the same
cycle type (up to permutation). The idea is that if ¢ = (i;) is a cycle then 7er™! = (7(4;)) and so if



we write o = [ ¢;, 0’ = [] ¢} cycles of same lengths, writing the cycles one below the other gives a 7
such that 7o~ = HTCiT_l =]]c =0

Thus the conjugacy classes of S,, are parametrized by partitions n = a3 + -+ + ap with a; > as >
...>ap > 1 and the conjugacy class corresponding to this partition consists of all products of disjoint
cycles of lengths aq,...,a.

1.16 The Sylow theorems

Definition 3. 1. If G is a finite group with p"m elements, where p 4 m and r > 0, a p-Sylow subgroup
of G is any subgroup of order p".

2. A p-group is any group whose cardinality is of the form p”. We denote Syl,(G) the set of all p-Sylow
subgroups of G.

Example 4. 1. Syl (Z/p"mZ) = {mZ/p"mZ = Z7/p"ZL}.
2. Syly(Ss) = 1((12)), {(13)), ((23))} and Syl (S5) = {((123))}.
Theorem 5. Let G be a finite group with p"m elements, where ptm and r > 0.
1. G has at least one p-Sylow subgroup and denote n, = |Syl,(G)| > 1.
2. np =1 (mod p).
3. Bvery p-subgroup of G is contained in a p-Sylow subgroup.
4. If P € Syl,(G) then Syl,(G) = {gPg~'|g € G}, i.e., every two p-Sylow subgroups are conjugate.
5. ny | m.
Remark 2. If n, = 1 then Syl,(G) = {P} with P < G. Indeed, gPg~" € Syl (G) and so P must be normal.

Example 6. Suppose p > ¢ are primes such that ¢ {p — 1. Then |G| = pg implies G is cyclic.

Indeed, n,, | ¢ sp np, = 1,q. Alsop | n, —1son, =1asp>q—1. Thus Syl (G) = {P} with |[P|=p
and so P cyclic of order p and normal. Similarly n, = 1,p and since ¢ { p — 1 it follows that ny = 1 so
Syl,(G) = {Q} with |Q| = ¢ so Q cyclic of order ¢ and normal.

Since (p,q) =1 weget PNQ =1and P,Q <G so PQ = P x Q = Z/pqZ by the Chinese Remainder
Theorem. But comparing orders get G = P(Q is cyclic as desired.



