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1 Group Theory

1.16 The Sylow theorems

Theorem 1. Let G be a finite group with prm elements, where p - m and r > 0.

1. G has at least one p-Sylow subgroup and denote np = |Sylp(G)| ≥ 1.

2. np ≡ 1 (mod p).

3. Every p-subgroup of G is contained in a p-Sylow subgroup.

4. If P ∈ Sylp(G) then Sylp(G) = {gPg−1|g ∈ G}, i.e., every two p-Sylow subgroups are conjugate.

5. np | m.

Proof. Part one: Let X be the set of subsets of G of cardinality pr. Then |X| =
(
prm
pr

)
. The group G acts

on X and
|X| =

∑
[G : StabG(S)]

where the sum is taken over distinct orbits O having chosen S ∈ O. By the base p lemma we see that(
prm
pr

)
≡
(
m
1

)
(mod p) and so p - |X|. Thus the RHS is also not divisible by p so for at least one orbit O and

S ∈ O, p - [G : StabG(S)] which implies that pr | StabG(S). Let’s show that StabG(S) is in fact a p-Sylow
subgroup of G. Since S is an orbit of G we get a map StabG(S) → S taking g 7→ gx0 for a fixed x0 ∈ S.
This map is clearly injective and so we deduce that |StabG(S)| ≤ |S| = pr. The conclusion follows.

Part two: Let X now be the set of all p-Sylow subgroups on which a fixed p-Sylow subgroup P ⊂ G acts
by conjugation. Again,

np = |X| =
∑

[P : StabP (S)]

where the sum is over distinct conjugacy classes of p-Sylow subgroups and S is a choice in each such conjugacy
class. First, if for some S, StabP (S) = P then gSg−1 = S for every g ∈ P . We have PS = SP and so PS
is a subgroup of G. But |PS/S| = |P/P ∩ S| and so |PS| is also a power of p, at least as large as |P | = |S|.
This can only happen if PS = P = S as p-Sylow subgroups have largest power of p cardinality. Thus exactly
one conjugacy class has one element and for every other conjugacy class [P : StabP (S)] is divisible by p.
Thus we get

np = 1 +
∑

[P : StabP (S)] ≡ 1 (mod p)

Part three: Now suppose R is a p-subgroup of G, acting on G/P via the left regular action. Since p - |G/P |
at least one orbit of R acting on G/P has size coprime to p. This orbit has cardinality [R : StabR(gP )] for
some coset gP and since |R| is a power of p, the only way this cardinality is coprime to p is if it is 1. Thus
StabR(gP ) = gP so for r ∈ R, rgP = gP which is equivalent to r ∈ gPg−1 and so R ⊂ gPg−1, which is also
a p-Sylow subgroup.
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Part four: Applying part three to a p-Sylow subgroup shows that R = gPg−1 so all p-Sylow subgroups
are conjugate.

Part five: Consider the conjugate action of G on its subgroups. All p-Sylow subgroups, by part four, form
one conjugacy class under this action and the size of the orbit is [G : StabG(P )] | |G| and so np | |G| = prm.
Since np and p are coprime we deduce that np | m.

1.17 Application of the Sylow theorems: classifying finite groups

This is a large list of examples. Throughout, p, q are primes.
The main technical tool in using the Sylow theorems to studying finite groups is that if p | |G| then

np = 1 iff G has a normal p-Sylow subgroup.

Example 2. Suppose |G| = pq with p > q. We already saw that np = 1 so Sylp(G) = {P} with P CG. If
q - p− 1 we saw last time that G must be cyclic. Suppose q | p− 1. Let Q ∈ Sylq(G). Then P ∩Q = 1 and
comparing sizes G = PQ so G = P oQ wrt a homomorphism φ : Q→ Aut(P ) = 〈g〉 ∼= Z/(p− 1)Z. Such a
homomorphism is either trivial, giving G cyclic, or the map sending k to multiplication by gk(p−1)/q.

Example 3. Suppose G = p2q with p 6= q. Let P ∈ Sylp(G) and Q ∈ Sylq(G). Then one of P and Q is
normal in G.

Proof. Assume this is not the case. Then np, nq > 1 and np | q, nq | p2 implies that np = q and nq = p or
p2. Also np = q ≡ 1 (mod p) and so q ≥ p + 1 and nq ≡ 1 (mod q) implies nq ≥ q + 1 ≥ p + 2 so nq = p2.
But then q | nq − 1 = (p− 1)(p+ 1). We already saw that q ≥ p+ 1 so necessarily q | p+ 1 and we deduce
that q = p+ 1 which implies (p, q) = (2, 3).

Thus if |G| = p2q 6= 12 we showed G has a normal Sylow subgroup. The case |G| = 12 remains for next
time.
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