Graduate Algebra, Fall 2014
 Lecture 12

Andrei Jorza

2014-09-22

1 Group Theory

1.17 Application of the Sylow theorems: classifying finite groups (continued)

Example 1. (Continued from last time) If $|G|=p^{2} q$ then G has a normal Sylow subgroup.
Proof. We reduced to the case $|G|=12$. The method to tackle this case is very useful!
Assuming G has no normal Sylow subgroup implies, as before, that $n_{2}=3$ and $n_{3}=2^{2}=4$. Every element of G of order 3 generates a 3-Sylow subgroup and every two distinct 3-Sylow subgroups intersect trivially. Thus the number of elements of G of order 3 is $(3-1) n_{3}=8$. Let $P \in \operatorname{Syl}_{2}(G)$, of order 4. Then an element of G is either among the 8 of order 3 , or among the remaining 4 which make up all of P. Thus P is the only 2-Sylow subgroup and it is normal.

The Sylow theorems and semidirect products

In the previous example write P for a p-Sylow group and Q for a q-Sylow group. The content of the example is that one of P and Q is normal. Then $P Q=Q P$ is a subgroup of G and $P \cap Q=1$ since $(|P|,|Q|)=1$ and $|P \cap Q|||P|,|Q|$. Thus $| P Q|=|P|| Q\left|/|P \cap Q|=p^{2} q=|G|\right.$ so $G=P Q$. If $P \triangleleft G$ then $G \cong P \rtimes Q$ and if $Q \triangleleft G$ then $G \cong Q \rtimes P$.

This procedure is very effective: use the Sylow theorems (and counts of elements of a certain order) to produce normal Sylow subgroups and the use other Sylow subgroups to write the group as a semidirect product.

Two questions arise about semidirect products:
First, given $G=N \rtimes_{\phi} H$ for a homomorphism $\phi: H \rightarrow \operatorname{Aut}(N)$ and isomorphisms $N \cong N^{\prime}$ and $H \cong H^{\prime}$ explicitly write a homomorphism $\phi^{\prime}: H^{\prime} \rightarrow \operatorname{Aut}\left(N^{\prime}\right)$ such that $G \cong N^{\prime} \rtimes_{\phi^{\prime}} H^{\prime}$. This is possible because of the isomorphisms. In particular, if $N \triangleleft G$ and H is a subgroup of G such that $G=N H$ and $N \cap H=1$ then we know that $G \cong N \rtimes H$ given by $H \rightarrow \operatorname{Inn}(N) \subset \operatorname{Aut}(N)$ sending $h \in H$ to the inner automorphism $n \mapsto h n h^{-1}$. Often we'd like to describe this explicit semidirect product given by conjugation in terms of simpler isomorphic groups.

The example from the homework is relevant. We saw that $G=\left\{\left(\begin{array}{cc}* & * \\ & 1\end{array}\right)\right\}$ contained a normal $N=$ $\left\{\left(\begin{array}{ll}1 & * \\ & 1\end{array}\right)\right\}$ and the diagonal subgroup H with the property that $G=N H$ and $N \cap H=1$. The map $d: x \mapsto\left(\begin{array}{cc}x & \\ & 1\end{array}\right)$ given an isomorphism $(\mathbb{Z} / p \mathbb{Z})^{\times} \cong H$ and the map $u: x \mapsto\left(\begin{array}{ll}1 & x \\ & 1\end{array}\right)$ gives an isomorphism $\mathbb{Z} / p \mathbb{Z} \cong N$. We would like $\phi:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \operatorname{Aut}(\mathbb{Z} / p \mathbb{Z})$ such that $G \cong \mathbb{Z} / p \mathbb{Z} \rtimes(\mathbb{Z} / p \mathbb{Z})^{\times}$. In other words, we would like a homomorphism ϕ such that $u(\phi(h) n)=d(h) u(n) d(h)^{-1}$ since the original homomorphism is conjugation.

But $d(h) u(n) d(h)^{-1}=u(h n)$ so $\phi(h) n=h n$ sends h to the multiplication by h automorphism of $\mathbb{Z} / p \mathbb{Z}$.

Second, given N and H we would like to tell whether two semidirect products $N \rtimes H$ are isomorphic. The simplest example is the following: if $(|H|,|\operatorname{Aut}(N)|)=1$ then $N \rtimes H \cong N \times H$. Indeed, if $\phi: H \rightarrow \operatorname{Aut}(N)$ then $\operatorname{Im}(\phi)$ has order dividing both $|H|$ and $|\operatorname{Aut}(N)|$ and so $\phi=1$ giving the direct product.

What is $\mathbb{Z} / 3 \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$? They are parametrized by homomorphisms $\phi: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Aut}(\mathbb{Z} / 3 \mathbb{Z}) \cong(\mathbb{Z} / 3 \mathbb{Z})^{\times} \cong$ $\mathbb{Z} / 2 \mathbb{Z}$ and such ϕ are determined by $\phi(1)$ which is either the identity map or the multiplication by 2 map. Thus there are at most two semidirect products. We already know that the direct product $\mathbb{Z} / 6 \mathbb{Z} \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ corresponds to $\phi(1)=$ id. But $S_{n} \cong A_{n} \rtimes\langle(12)\rangle$ and so $S_{3} \cong \mathbb{Z} / 3 \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$ so we constructed two nonisomorphic examples and thus these are all the semidirect products.

In general listing or even counting the isomorphism classes of semidirect products is hard.
Theorem 2. Suppose $H=\langle a\rangle$ is finite cyclic and N is a group. Suppose $f, g: H \rightarrow \operatorname{Aut}(N)$ are homomorphisms such that $\operatorname{Im} f$ and $\operatorname{Im} g$ are conjugate subgroups of $\operatorname{Aut}(N)$. Then $N \rtimes_{f} H \cong N \rtimes_{g} H$.

Before proving this theorem let's see some applications.
Example 3. 1. What are the possibilities for $S_{3} \rtimes \mathbb{Z} / 2 \mathbb{Z}$? A homomorphism $f: \mathbb{Z} / 2 \mathbb{Z} \rightarrow$ Aut $\left(S_{3}\right)=$ $\operatorname{Inn}\left(S_{3}\right) \cong S_{3}$ sends 0 to the identity permutation and 1 to $f(1) \in S_{3}$ which gives the associated inner automorphism of S_{3}. Since f is a homomorphism, $1=f(2)=f(1)^{2}$ and so $f(1) \in\{1,(12),(13),(23)\}$. Thus there are four choices for the homomorphism $f: f_{\tau}$ sending 1 to τ for $\tau \in\{1,(12),(13),(23)\}$. By inspection $\operatorname{Im} f_{\tau}=\langle\tau\rangle$.

We know the conjugacy classes of S_{n} : they are indexed by cycle types. Thus every two transpositions are conjugate and so $\operatorname{Im} f_{\tau}$ and $\operatorname{Im} f_{\tau^{\prime}}$ if τ and τ^{\prime} are transpositions. Thus we get two nonisomorphic semidirect products: $S_{3} \times \mathbb{Z} / 2 \mathbb{Z}$ corresponding to f_{1} and $S_{3} \rtimes \mathbb{Z} / 2 \mathbb{Z}$ corresponding to f_{τ} for τ any of the three transpositions.
2. What are the nonisomorphic semidirect products $(\mathbb{Z} / 17 \mathbb{Z})^{2} \rtimes \mathbb{Z} / 3 \mathbb{Z}$? The semidirect products are indexed by homomorphisms $f: \mathbb{Z} / 3 \mathbb{Z} \rightarrow \mathrm{GL}\left(2, \mathbb{F}_{17}\right)$ and we would like to classify there homomorphisms up to conjugate image in $\operatorname{GL}\left(2, \mathbb{F}_{17}\right)$. Certainly the trivial map gives the direct product. What about the nontrivial map? Then $g=f(1)$ is a matrix in $\operatorname{GL}\left(2, \mathbb{F}_{17}\right)$ such that $g \neq I_{2}$ and $g^{3}=I_{2}$. The Jordan canonical form for matrices over \mathbb{F}_{17} then tells us that g is conjugate to $\left(\begin{array}{ll}-1 & \\ -1 & 1\end{array}\right)$. Thus there exist exactly two nonisomorphic semidirect products.

