# Graduate Algebra, Fall 2014 <br> Lecture 13 

Andrei Jorza

2014-09-24

## 1 Group Theory

## Sylow theorems and semidirect products (continued)

Theorem 1. Suppose $H=\langle a\rangle$ is finite cyclic of prime power order and $N$ is a group. Suppose $f, g$ : $H \rightarrow \operatorname{Aut}(N)$ are homomorphisms such that $\operatorname{Im} f$ and $\operatorname{Im} g$ are conjugate subgroups of $\operatorname{Aut}(N)$. Then $N \rtimes_{f} H \cong N \rtimes_{g} H$.
Proof. Since $\operatorname{Im} f$ and $\operatorname{Im} g$ are conjugate there exists $\sigma \in \operatorname{Aut}(N)$ such that $\sigma \operatorname{Im} f \sigma^{-1}=\operatorname{Im} g$ and so $\sigma\langle f(a)\rangle=\langle\sigma f(a)\rangle=\langle g(a)\rangle$. Thus $g(a)^{k}=\sigma f(a) \sigma^{-1}$ for some integer $k$ coprime to $\operatorname{ord}(g(a))=\operatorname{ord}(f(a))$. Since $f(a)$ and $g(a)$ are homomorphisms we deduce that for $h \in\langle a\rangle=H$ we have $\sigma f(h) \sigma^{-1}=g(h)^{k}=g\left(h^{k}\right)$, or $\sigma f(h)=g\left(h^{k}\right) \sigma$.

Consider the map $N \rtimes_{f} H \rightarrow N \rtimes_{g} H$ defined as $\phi(n, h)=\left(\sigma(n), h^{k}\right)$. Let's check it's a homomorphism.

$$
\begin{aligned}
\phi\left((n, h) \cdot_{f}\left(n^{\prime}, h^{\prime}\right)\right) & =\phi\left(\left(n f(h)\left(n^{\prime}\right), h h^{\prime}\right)\right) \\
& =\left(\sigma\left(n f(h)\left(n^{\prime}\right)\right),\left(h h^{\prime}\right)^{k}\right) \\
& =\left(\sigma(n) \sigma f(h)\left(n^{\prime}\right), h^{k}\left(h^{\prime}\right)^{k}\right) \\
& =\left(\sigma(n) g\left(h^{k}\right) \sigma\left(n^{\prime}\right), h^{k}\left(h^{\prime}\right)^{k}\right) \\
& =\left(\sigma(n), h^{k}\right) \cdot_{g}\left(\sigma\left(n^{\prime}\right),\left(h^{\prime}\right)^{k}\right) \\
& =\phi(n, h) \cdot_{g} \phi\left(n^{\prime}, h^{\prime}\right)
\end{aligned}
$$

since $H$ is abelian.

### 1.17 Application of the Sylow theorems: classifying finite groups (continued)

Example 2. If $|G|=12$ then either $G$ has a normal 3-Sylow subgroup or it is $\cong A_{4}$ and has a normal 2-Sylow subgroup.

Proof. From the previous example, there is a unique normal 2-Sylow subgroup $P$ of $G$. Consider the conjugation action of $G$ on the set of subgroups of $G$. Then 3-Sylow subgroups form a conjugacy class and if $Q \in \operatorname{Syl}_{3}(G)$ then $n_{3}=4=\left[G: \operatorname{Stab}_{G}(Q)\right]$. Certainly $Q \subset \operatorname{Stab}_{G}(Q)$ and $[G: Q]=4$ so we deduce that $\operatorname{Stab}_{G}(Q)=Q$.

Aside: What is $\operatorname{Stab}_{G}(Q)$ ? It is the set of $g \in G$ such that $g Q g^{-1}=Q$, i.e., the normalizer of $Q$ in $G$, which is the largest subgroup of $G$ in which $Q$ is normal.

Consider the conjugation action of $G$ on $\operatorname{Syl}_{3}(G)$, which has 4 elements. This gives a homomorphism $f: G \rightarrow S_{4}$. If $g \in \operatorname{ker} f$ then $g Q g^{-1}=Q$ for each $Q \in \operatorname{Syl}_{3}(G)$ and we already saw that $g \in Q$ so ker $f \subset Q$. But $Q \cong \mathbb{Z} / 3 \mathbb{Z}$ so either ker $f=1$ or $\operatorname{ker} f=Q$. The latter cannot be since $Q$ is not normal in $G$ but ker $f$ is. Thus $f$ is injective $G \hookrightarrow S_{4}$. The only subgroup of $S_{4}$ with 12 elements is $A_{4}$ so $G \cong A_{4}$, which has $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ as a normal subgroup as the subgroup of products of disjoint transpositions.

Example 3. Suppose $|G|=30$.

1. Then $G$ has a normal 3 -Sylow and a normal 5 -Sylow subgroups.
2. There are four isomorphism classes of groups of order $30: \mathbb{Z} / 30 \mathbb{Z}, D_{30}, \mathbb{Z} / 5 \mathbb{Z} \times S_{3}$ and $\mathbb{Z} / 3 \mathbb{Z} \times D_{10}$.
