Graduate Algebra, Fall 2014 Lecture 13

Andrei Jorza

2014-09-24

1 Group Theory

Sylow theorems and semidirect products (continued)

Theorem 1. Suppose $H = \langle a \rangle$ is finite cyclic of prime power order and N is a group. Suppose $f, g : H \to \operatorname{Aut}(N)$ are homomorphisms such that $\operatorname{Im} f$ and $\operatorname{Im} g$ are conjugate subgroups of $\operatorname{Aut}(N)$. Then $N \rtimes_f H \cong N \rtimes_g H$.

Proof. Since Im f and Im g are conjugate there exists $\sigma \in \operatorname{Aut}(N)$ such that $\sigma \operatorname{Im} f \sigma^{-1} = \operatorname{Im} g$ and so $\sigma \langle f(a) \rangle = \langle \sigma f(a) \rangle = \langle g(a) \rangle$. Thus $g(a)^k = \sigma f(a) \sigma^{-1}$ for some integer k coprime to $\operatorname{ord}(g(a)) = \operatorname{ord}(f(a))$. Since f(a) and g(a) are homomorphisms we deduce that for $h \in \langle a \rangle = H$ we have $\sigma f(h) \sigma^{-1} = g(h)^k = g(h^k)$, or $\sigma f(h) = g(h^k)\sigma$.

Consider the map $N \rtimes_f H \to N \rtimes_q H$ defined as $\phi(n,h) = (\sigma(n),h^k)$. Let's check it's a homomorphism.

$$\begin{split} \phi((n,h) \cdot_f (n',h')) &= \phi((nf(h)(n'),hh')) \\ &= (\sigma(nf(h)(n')),(hh')^k) \\ &= (\sigma(n)\sigma f(h)(n'),h^k(h')^k) \\ &= (\sigma(n)g(h^k)\sigma(n'),h^k(h')^k) \\ &= (\sigma(n),h^k) \cdot_g (\sigma(n'),(h')^k) \\ &= \phi(n,h) \cdot_g \phi(n',h') \end{split}$$

since H is abelian.

1.17 Application of the Sylow theorems: classifying finite groups (continued)

Example 2. If |G| = 12 then either G has a normal 3-Sylow subgroup or it is $\cong A_4$ and has a normal 2-Sylow subgroup.

Proof. From the previous example, there is a unique normal 2-Sylow subgroup P of G. Consider the conjugation action of G on the set of subgroups of G. Then 3-Sylow subgroups form a conjugacy class and if $Q \in \text{Syl}_3(G)$ then $n_3 = 4 = [G : \text{Stab}_G(Q)]$. Certainly $Q \subset \text{Stab}_G(Q)$ and [G : Q] = 4 so we deduce that $\text{Stab}_G(Q) = Q$.

Aside: What is $\operatorname{Stab}_G(Q)$? It is the set of $g \in G$ such that $gQg^{-1} = Q$, i.e., the normalizer of Q in G, which is the largest subgroup of G in which Q is normal.

Consider the conjugation action of G on $\operatorname{Syl}_3(G)$, which has 4 elements. This gives a homomorphism $f: G \to S_4$. If $g \in \ker f$ then $gQg^{-1} = Q$ for each $Q \in \operatorname{Syl}_3(G)$ and we already saw that $g \in Q$ so $\ker f \subset Q$. But $Q \cong \mathbb{Z}/3\mathbb{Z}$ so either $\ker f = 1$ or $\ker f = Q$. The latter cannot be since Q is not normal in G but $\ker f$ is. Thus f is injective $G \hookrightarrow S_4$. The only subgroup of S_4 with 12 elements is A_4 so $G \cong A_4$, which has $(\mathbb{Z}/2\mathbb{Z})^2$ as a normal subgroup as the subgroup of products of disjoint transpositions. \Box

Example 3. Suppose |G| = 30.

- 1. Then G has a normal 3-Sylow and a normal 5-Sylow subgroups.
- 2. There are four isomorphism classes of groups of order 30: $\mathbb{Z}/30\mathbb{Z}$, D_{30} , $\mathbb{Z}/5\mathbb{Z} \times S_3$ and $\mathbb{Z}/3\mathbb{Z} \times D_{10}$.