Graduate Algebra, Fall 2014
 Lecture 14

Andrei Jorza

2014-09-26

1 Group Theory

1.17 Application of the Sylow theorems: classifying finite groups (continued)

Proposition 1. Suppose $|G|=30$.

1. Then G has a normal 3-Sylow and a normal 5 -Sylow subgroups.
2. There are four isomorphism classes of groups of order $30: \mathbb{Z} / 30 \mathbb{Z}, D_{30}, \mathbb{Z} / 5 \mathbb{Z} \times S_{3}$ and $\mathbb{Z} / 3 \mathbb{Z} \times D_{10}$.

Proof. (1): Let $P \in \operatorname{Syl}_{5}(G)$ and $Q \in \operatorname{Syl}_{3}(G)$. If P or Q is normal then $P Q$ is a group and is a semidirect product of P and Q. As $(3, \varphi(5))=(5, \varphi(3))=1$ it follows that the semidirect product is a direct product so $P Q \cong \mathbb{Z} / 15 \mathbb{Z}$ is a subgroup of G. Since $P Q$ has index 2 in G it is normal in G and we deduce that both P and Q are normal in G : indeed, $g P Q g^{-1}=g P \times Q g^{-1}=g P g^{-1} \times g Q g^{-1}=P \times g Q g^{-1}=P \times Q$.

Suppose now that neither P nor Q is normal in G. Then $n_{5}=6$ and $n_{3}=10$. The number of elements of G of order 5 is $(5-1) n_{5}=24$ and the number of elements of order 3 are similarly $(3-1) n_{3}=20$ altogether giving more than the 30 elements of G. Thus P and Q are both normal in G.
(2): If G is abelian then the structure theorem implies that $G \cong \mathbb{Z} / 30 \mathbb{Z}$. Suppose G is not abelian. Then G has $\mathbb{Z} / 15 \mathbb{Z}$ as a normal subgroup. If $H \in \operatorname{Syl}_{2}(G)$ then $H \cap P Q=1$ and certainly $P Q H=G$ so $G \cong P Q \rtimes H$ with morphism $\mathbb{Z} / 2 \mathbb{Z} \rightarrow(\mathbb{Z} / 15 \mathbb{Z})^{\times}$. This means $\mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ and there are exactly 4 such homomorphisms: the trivial one, giving $\mathbb{Z} / 30 \mathbb{Z}, 1 \mapsto(1,0), 1 \mapsto(0,2)$ and $1 \mapsto(1,2)$. Here the list of 4 is complete.

Proposition 2. Let G be a finite group of order 60. The following are equivalent.

1. $n_{5}>1$, i.e., G has more than one 5 -Sylow subgroup.
2. G is simple.
3. $G \cong A_{5}$.

Proof. $3 \Rightarrow 1: \operatorname{Syl}_{5}\left(A_{5}\right)$ contains $\langle(12345)\rangle$ and $\langle(13245)\rangle$ thus $n_{5}>1$.
$1 \Rightarrow 2$: Suppose that $H \triangleleft G$ and $n_{5}>1$ in which case we know $n_{5} \mid 12$ with $n_{5} \equiv 1(\bmod 5)$ so $n_{5}=6$. Let $P \in \operatorname{Syl}_{5}(G)$ and so $\left[G: N_{G}(P)\right]=n_{5}=6$ giving $\left|N_{G}(P)\right|=10$.

Case A: If $5||H|$ then $P \subset H$ and so all 5 -Sylow are in H (by normality of H and the fact that all 5-Sylow subgroups are conjugate) giving $|H| \geq 6 \cdot(5-1)+1=25$ (any two 5-Sylow subgroups have size 5 so are either the same or intersect only in 1) and since $|H| \mid 60$ we deduce $|H|=30$. Now $\operatorname{Syl}_{5}(H)$ is unique by the previous proposition and $\operatorname{Syl}_{5}(G)=\operatorname{Syl}_{5}(H)$ contradicting $n_{5}>1$.

Case B: If $5 \nmid|H|$ and H is proper the only possibilities left are $|H| \mid 12$.
Case B1: If $|H|=2,3,4$ then G / H has size $15,20,30$. If 30 then $\operatorname{Syl}_{5}(G / H)$ is normal in G / H by the previous proposition; if $20=2^{2} \cdot 5$ then again $\operatorname{Syl}_{5}(G / H)$ is normal in G / H by the general $p^{2} q$ example. If $15=3 \cdot 5$ then G / H is $G / H \cong \mathbb{Z} / 15 \mathbb{Z}$ and again $\operatorname{Syl}_{5}(G / H)$ is normal in G / H. Let H^{\prime} be the preimage of
$\operatorname{Syl}_{5}(G / H)$ in which case $H^{\prime} \triangleleft G$ (showed this in class). But then $5\left|\left|H^{\prime}\right|\right.$ and we proceed as above to get a contradiction.

Case B2 and $2 \Rightarrow 3$ next time.

