Graduate Algebra, Fall 2014 Lecture 16

Andrei Jorza

2014-10-01

1 Group Theory

1.18 Simpliciy of A_{n}

Theorem 1. The group A_{n} is simple for $n \neq 4$. The group A_{4} contains $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ as a normal subgroup.
Proof. We already know that $A_{3} \cong \mathbb{Z} / 3 \mathbb{Z}$ is simple and that $\langle(12)(34),(13)(24)\rangle \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} \subset A_{4}$ is normal.
We now show by induction that A_{n} is simple for $n \geq 5$. The base case is that the group A_{5} is simple. Indeed, $\operatorname{Syl}_{5}\left(A_{5}\right)$ contains $\langle(12345)\rangle$ and $\langle(13245)\rangle$. Now let $G=A_{n}$ and suppose that it has a proper normal subgroup H. Let $G_{i}=\left\{\sigma \in A_{n} \mid \sigma(i)=i\right\}$ in which case $G_{i} \cong A_{n-1}$ is simple by the inductive hupothesis. Thus $G_{i} \cap H \triangleleft G_{i}$ implies either that $H \cap G_{i}=1$ or $H \cap G_{i}=G_{i}$.

If $G_{i} \subset H$ for some i then $\sigma G_{i} \sigma^{-1}=G_{\sigma(i)} \subset \sigma H \sigma^{-1}=H$ and so $G_{i} \subset H$ for all i. But $G=\left\langle G_{1}, \ldots, G_{n}\right\rangle$ (indeed, every $\sigma \in A_{n}$ is a product of an even number of transpositions and if $n \geq 5$ then any product of two transpositions is in some G_{i}). Thus contradicts that H is proper in G.

Thus $H \cap G_{i}=1$ for all i. Thus H acts freely by permutations on $\{1, \ldots, n\}$ since if $\sigma(i)=\tau(i)$ then $\sigma \tau^{-1}(i)=i$ and so $\sigma \tau^{-1} \in H \cap G_{i}$ so $\sigma=\tau$ in H. Pick $\sigma \in H$ and write it as a product of disjoint permutations $\sigma=c_{1} \cdots c_{k}$. Suppose c_{i} has length ≥ 3 with $c_{i}=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$. Pick $\tau \in G$ with τ fixing a_{1} and a_{2} but not a_{3} (e.g., a product of two transpositions which include a_{3} but not a_{1}, a_{2}). Then $\tau \sigma \tau^{-1}$ and σ both take a_{1} to a_{2} but they take a_{2} to different values. This contradicts the normality of H.

Therefore H consists of products of even numbers of disjoint transpositions. If $\sigma=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)\left(a_{5} a_{6}\right) \cdots \in$ H then for $\tau=\left(a_{1} a_{2}\right)\left(a_{3} a_{5}\right)$ we have both σ and $\tau \sigma \tau^{-1}=\left(a_{1} a_{2}\right)\left(a_{5} a_{4}\right)\left(a_{3} a_{6}\right) \cdots$ take a_{1} to a_{2} but take a_{3} to different values. This contradicts the normality of H.

Finally, H must contain only products of two disjoint transpositions. Pick $(a b)(c d) \in H$ and u, v not among the $a, b, c, d(n \geq 6)$. Write $\sigma=(a b)(c d)$ and $\tau=(c u)(d v)$. Then σ and $\tau \sigma \tau^{-1}=(a b)(u v)$ both that a to b but are not the same, thus contradicting the normality of H.

An alternative means of proving the simplicity of A_{n} is to use the following explicit generators:
Proposition 2. Let $n \geq 3$.

1. $S_{n}=\langle(i, i+1) \mid 1 \leq i \leq n-1\rangle$.
2. $S_{n}=\langle(12),(12 \ldots n)\rangle$.
3. $A_{n}=\langle(123),(12 \ldots n)\rangle$.
4. $A_{n}=\langle(a b c) \mid a \neq b \neq c \neq a\rangle$.

Proof. No proof given, but we will use this statement in Galois theory.
How to prove the simplicity of A_{n} using this proposition? Suppose $H \triangleleft A_{n}$ is proper normal. With computations one can show that H then contains a 3 -cycle. By normality it contains all of them and so cannot be proper.

1.19 Duals

Lemma 3. Let G, H be groups. Then the set of homomorphisms $\operatorname{Hom}(G, H)$ forms a group under $(f g)(x)=$ $f(x) g(x)$, with unit the identity map $f(x)=1, \forall x \in G$. If H is abelian, then $\operatorname{Hom}(G, H)$ is also an abelian group, often written additively.

Definition 4. For a group G write $G^{*}=\operatorname{Hom}\left(G, S^{1}\right)$ where $S^{1}=\{z \in \mathbb{C} \| z \mid=1\}$. Write $G^{\vee}=$ $\operatorname{Hom}(G, \mathbb{Q} / \mathbb{Z})$.

Example 5. 1. $\mathbb{Z}^{*} \cong S^{1}$ and $\mathbb{Z}^{\vee} \cong \mathbb{Q} / \mathbb{Z}$.
2. $(\mathbb{Z} / n \mathbb{Z})^{\vee} \cong \mathbb{Z} / n \mathbb{Z}$ and $(\mathbb{Z} / n \mathbb{Z})^{*} \cong \mu_{n}$. Choosing a primitive n-root of unity one has $\mathbb{Z} / n \mathbb{Z} \cong \mu_{n}$ sending k to the k-th power of the chosen primitive root, but this depends on the choice of primitive root.

Lemma 6. Let G be a finite group. Then, noncanonically, $G^{\vee} \cong G^{*}$.
Proof. Consider the map $e: \mathbb{Q} / \mathbb{Z} \rightarrow S^{1}$ given by $e(x)=e^{2 \pi i x}$, which is a well-defined injective homomorphism. This gives $\operatorname{Hom}(G, \mathbb{Q} / \mathbb{Z}) \cong \operatorname{Hom}(G, \operatorname{Im} e)$. It suffices to show that every homomorphism $G \rightarrow S^{1}$ lands in $\operatorname{Im} e$. Indeed, $f\left(g^{|G|}\right)=1$ and so $f(g)^{|G|}=1$ which implies that $f(g) \in \mu_{|G|}=e(1 /|G| \mathbb{Z} / \mathbb{Z}) \subset$ $\operatorname{Im} e$.

Definition 7. The abelianization of a group G is defined as $G^{\mathrm{ab}}=G /[G, G]$.
Proposition 8. Let G be a group.

1. $[G, G] \triangleleft G$ and G^{ab} is an abelian group.
2. If $f: G \rightarrow A$ is a homomorphism to an abelian group then there exists a homomorphism $\bar{f}: G^{\mathrm{ab}} \rightarrow A$ such that $G \rightarrow G^{\mathrm{ab}} \rightarrow A$ commutes.
3. $\operatorname{Hom}(G, A) \cong \operatorname{Hom}\left(G^{\mathrm{ab}}, A\right)$.
4. If G is finite then $\left(G^{\vee}\right)^{\vee} \cong G^{\mathrm{ab}}$.

Proof. The first part follows from $x[a, b] x^{-1}=[x a, b][b, x]$.
Suppose $f: G \rightarrow A$ is a homomorphism. Then $[G, G] \subset \operatorname{ker} f$ and by the first isomorphism theorem we deduce the second part.

Third part: The map $f \mapsto \bar{f}$ gives the isomorphism.
Fourth part: By part (3) it suffices to show the statement for G abelian, in this case finite. Consider $G \rightarrow\left(G^{\vee}\right)^{\vee}$ sending g to $\phi_{g}: f \mapsto f(g)$ for $f \in G^{\vee}$. This is an injective homomorphism. Indeed, if $\phi_{g}(f)=0$ then $f(g)=0$ for all f. If $g \neq 1$ then consider the natural projection $G \rightarrow\langle g\rangle$ and send g to any nonzero element to get $f: G \rightarrow A$ such that $f(g) \neq 0$, getting a contradiction.

