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1 Group Theory

1.18 Simpliciy of A,
Theorem 1. The group A, is simple for n # 4. The group Ay contains (Z/27)* as a normal subgroup.

Proof. We already know that Az = Z/3Z is simple and that ((12)(34), (13)(24)) = (Z/2Z)? C A, is normal.

We now show by induction that A, is simple for n > 5. The base case is that the group As is simple.
Indeed, Syl;(As) contains ((12345)) and ((13245)). Now let G = A,, and suppose that it has a proper normal
subgroup H. Let G; = {0 € A,|o(i) = i} in which case G; & A,,_; is simple by the inductive hupothesis.
Thus G; N H < G; implies either that H NG; =1 or HNG; = G;.

If G; C H for some i then 0G0~ = Gy CoHo ' = H andso G; C H for all i. But G = (Gy,...,Gy)
(indeed, every o € A,, is a product of an even number of transpositions and if n > 5 then any product of
two transpositions is in some G;). Thus contradicts that H is proper in G.

Thus H N G; =1 for all i. Thus H acts freely by permutations on {1,...,n} since if o(i) = 7() then
o7 (i) =iand so o77! € HNG; so ¢ = 7 in H. Pick ¢ € H and write it as a product of disjoint
permutations o = ¢ - - - ¢;. Suppose ¢; has length > 3 with ¢; = (a1, a9, as,...). Pick 7 € G with 7 fixing a;
and ay but not ag (e.g., a product of two transpositions which include az but not a1, as). Then 707! and
o both take a; to as but they take as to different values. This contradicts the normality of H.

Therefore H consists of products of even numbers of disjoint transpositions. If o = (ajaq)(azaq)(asag) -« - €
H then for 7 = (ajaz)(agas) we have both o and 707! = (aja2)(asas)(azag) - - - take a; to as but take a3
to different values. This contradicts the normality of H.

Finally, H must contain only products of two disjoint transpositions. Pick (ab)(cd) € H and w,v not
among the a,b,c,d (n > 6). Write 0 = (ab)(cd) and T = (cu)(dv). Then o and 7o7~! = (ab)(uv) both that
a to b but are not the same, thus contradicting the normality of H. O

An alternative means of proving the simplicity of A,, is to use the following explicit generators:
Proposition 2. Let n > 3.

1.5, ={(i,i+ D)1 <i<n-—1).

2. 8, =((12),(12...n)).

3. A, =1{((123),(12...n)).

4. A, = {(abc)|la # b # ¢ # a).
Proof. No proof given, but we will use this statement in Galois theory. O

How to prove the simplicity of A, using this proposition? Suppose H < A, is proper normal. With
computations one can show that H then contains a 3-cycle. By normality it contains all of them and so
cannot be proper.



1.19 Duals

Lemma 3. Let G, H be groups. Then the set of homomorphisms Hom(G, H) forms a group under (fg)(x) =
f(@)g(x), with unit the identity map f(x) = 1,Vx € G. If H is abelian, then Hom(G, H) is also an abelian
group, often written additively.

Definition 4. For a group G write G* = Hom(G,S') where S' = {2z € C||z| = 1}. Write GV =
Hom(G,Q/Z).

Example 5. 1. Z* = S! and ZV = Q/Z.

2. (Z/nZ)" = Z/nZ and (Z/nZ)* = w,. Choosing a primitive n-root of unity one has Z/nZ = p,, sending
k to the k-th power of the chosen primitive root, but this depends on the choice of primitive root.

Lemma 6. Let G be a finite group. Then, noncanonically, GV = G*.

Proof. Consider the map e : Q/Z — S* given by e(x) = €2™*  which is a well-defined injective homomor-
phism. This gives Hom(G,Q/Z) = Hom(G,Ime). It suffices to show that every homomorphism G — S!
lands in Ime. Indeed, f(g/“!) = 1 and so f(g)/®l = 1 which implies that f(g) € pq = e(1/|G|Z/Z) C
Ime. O

Definition 7. The abelianization of a group G is defined as G** = G/[G, G].
Proposition 8. Let G be a group.
1. [G,G] < G and G? is an abelian group.

2. If f : G — A is a homomorphism to an abelian group then there exists a homomorphism f: G* — A
such that G — G* — A commutes.

3. Hom(G, A) = Hom(G®P, A).
4. If G is finite then (GV)V = G&b,

Proof. The first part follows from z[a, blx~! = [za, b][b, z].

Suppose f : G — A is a homomorphism. Then [G, G| C ker f and by the first isomorphism theorem we
deduce the second part.

Third part: The map f — f gives the isomorphism.

Fourth part: By part (3) it suffices to show the statement for G abelian, in this case finite. Consider
G — (GY)Y sending g to ¢, : f — f(g) for f € GV. This is an injective homomorphism. Indeed, if ¢4(f) =0
then f(g) = 0 for all f. If g # 1 then consider the natural projection G — (g) and send g to any nonzero
element to get f: G — A such that f(g) # 0, getting a contradiction. O



