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1 Group Theory

1.18 Simpliciy of An

Theorem 1. The group An is simple for n 6= 4. The group A4 contains (Z/2Z)2 as a normal subgroup.

Proof. We already know that A3
∼= Z/3Z is simple and that 〈(12)(34), (13)(24)〉 ∼= (Z/2Z)2 ⊂ A4 is normal.

We now show by induction that An is simple for n ≥ 5. The base case is that the group A5 is simple.
Indeed, Syl5(A5) contains 〈(12345)〉 and 〈(13245)〉. Now let G = An and suppose that it has a proper normal
subgroup H. Let Gi = {σ ∈ An|σ(i) = i} in which case Gi ∼= An−1 is simple by the inductive hupothesis.
Thus Gi ∩H CGi implies either that H ∩Gi = 1 or H ∩Gi = Gi.

If Gi ⊂ H for some i then σGiσ
−1 = Gσ(i) ⊂ σHσ−1 = H and so Gi ⊂ H for all i. But G = 〈G1, . . . , Gn〉

(indeed, every σ ∈ An is a product of an even number of transpositions and if n ≥ 5 then any product of
two transpositions is in some Gi). Thus contradicts that H is proper in G.

Thus H ∩ Gi = 1 for all i. Thus H acts freely by permutations on {1, . . . , n} since if σ(i) = τ(i) then
στ−1(i) = i and so στ−1 ∈ H ∩ Gi so σ = τ in H. Pick σ ∈ H and write it as a product of disjoint
permutations σ = c1 · · · ck. Suppose ci has length ≥ 3 with ci = (a1, a2, a3, . . .). Pick τ ∈ G with τ fixing a1
and a2 but not a3 (e.g., a product of two transpositions which include a3 but not a1, a2). Then τστ−1 and
σ both take a1 to a2 but they take a2 to different values. This contradicts the normality of H.

ThereforeH consists of products of even numbers of disjoint transpositions. If σ = (a1a2)(a3a4)(a5a6) · · · ∈
H then for τ = (a1a2)(a3a5) we have both σ and τστ−1 = (a1a2)(a5a4)(a3a6) · · · take a1 to a2 but take a3
to different values. This contradicts the normality of H.

Finally, H must contain only products of two disjoint transpositions. Pick (ab)(cd) ∈ H and u, v not
among the a, b, c, d (n ≥ 6). Write σ = (ab)(cd) and τ = (cu)(dv). Then σ and τστ−1 = (ab)(uv) both that
a to b but are not the same, thus contradicting the normality of H.

An alternative means of proving the simplicity of An is to use the following explicit generators:

Proposition 2. Let n ≥ 3.

1. Sn = 〈(i, i+ 1)|1 ≤ i ≤ n− 1〉.

2. Sn = 〈(12), (12 . . . n)〉.

3. An = 〈(123), (12 . . . n)〉.

4. An = 〈(abc)|a 6= b 6= c 6= a〉.

Proof. No proof given, but we will use this statement in Galois theory.

How to prove the simplicity of An using this proposition? Suppose H C An is proper normal. With
computations one can show that H then contains a 3-cycle. By normality it contains all of them and so
cannot be proper.
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1.19 Duals

Lemma 3. Let G,H be groups. Then the set of homomorphisms Hom(G,H) forms a group under (fg)(x) =
f(x)g(x), with unit the identity map f(x) = 1,∀x ∈ G. If H is abelian, then Hom(G,H) is also an abelian
group, often written additively.

Definition 4. For a group G write G∗ = Hom(G,S1) where S1 = {z ∈ C||z| = 1}. Write G∨ =
Hom(G,Q/Z).

Example 5. 1. Z∗ ∼= S1 and Z∨ ∼= Q/Z.

2. (Z/nZ)∨ ∼= Z/nZ and (Z/nZ)∗ ∼= µn. Choosing a primitive n-root of unity one has Z/nZ ∼= µn sending
k to the k-th power of the chosen primitive root, but this depends on the choice of primitive root.

Lemma 6. Let G be a finite group. Then, noncanonically, G∨ ∼= G∗.

Proof. Consider the map e : Q/Z → S1 given by e(x) = e2πix, which is a well-defined injective homomor-
phism. This gives Hom(G,Q/Z) ∼= Hom(G, Im e). It suffices to show that every homomorphism G → S1

lands in Im e. Indeed, f(g|G|) = 1 and so f(g)|G| = 1 which implies that f(g) ∈ µ|G| = e(1/|G|Z/Z) ⊂
Im e.

Definition 7. The abelianization of a group G is defined as Gab = G/[G,G].

Proposition 8. Let G be a group.

1. [G,G] CG and Gab is an abelian group.

2. If f : G→ A is a homomorphism to an abelian group then there exists a homomorphism f : Gab → A
such that G→ Gab → A commutes.

3. Hom(G,A) ∼= Hom(Gab, A).

4. If G is finite then (G∨)∨ ∼= Gab.

Proof. The first part follows from x[a, b]x−1 = [xa, b][b, x].
Suppose f : G → A is a homomorphism. Then [G,G] ⊂ ker f and by the first isomorphism theorem we

deduce the second part.
Third part: The map f 7→ f gives the isomorphism.
Fourth part: By part (3) it suffices to show the statement for G abelian, in this case finite. Consider

G→ (G∨)∨ sending g to φg : f 7→ f(g) for f ∈ G∨. This is an injective homomorphism. Indeed, if φg(f) = 0
then f(g) = 0 for all f . If g 6= 1 then consider the natural projection G → 〈g〉 and send g to any nonzero
element to get f : G→ A such that f(g) 6= 0, getting a contradiction.
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