Graduate Algebra, Fall 2014 Lecture 17

Andrei Jorza

2014-10-03

1 Group Theory

1.19 Duals (continued)

Proposition 1. Let G be a group.

- 1. $[G,G] \triangleleft G$ and G^{ab} is an abelian group.
- 2. If $f: G \to A$ is a homomorphism to an abelian group then there exists a homomorphism $\overline{f}: G^{ab} \to A$ such that $G \to G^{ab} \to A$ commutes.
- 3. Hom $(G, A) \cong \text{Hom}(G^{\text{ab}}, A)$.
- 4. If G is finite then $(G^{\vee})^{\vee} \cong G^{ab}$.

Proof. The first part follows from $x[a, b]x^{-1} = [xax^{-1}, xbx^{-1}]$.

Suppose $f: G \to A$ is a homomorphism. Then $[G, G] \subset \ker f$ and by the first isomorphism theorem we deduce the second part.

Third part: The map $f \mapsto \overline{f}$ gives the isomorphism.

Fourth part: By part (3) it suffices to show the statement for G abelian, in this case finite. Consider $G \to (G^{\vee})^{\vee}$ sending g to $\phi_g : f \mapsto f(g)$ for $f \in G^{\vee}$. This is an injective homomorphism. Indeed, if $\phi_g(f) = 0$ then f(g) = 0 for all f. If $g \neq 1$ then consider the natural projection $G \to \langle g \rangle$ and send g to any nonzero element to get $f : G \to A$ such that $f(g) \neq 0$, getting a contradiction.

Example 2. 1. From the homework $[S_n, S_n] = [A_n, A_n] = A_n$ so $S_n^{ab} \cong \mathbb{Z}/2\mathbb{Z}$ and $A_n^{ab} = 1$.

- 2. $[D_{2n}, D_{2n}] = \langle R^2 \rangle.$
- 3. It is also the case that $\operatorname{GL}(n, \mathbb{F}_q)^{\operatorname{ab}} \cong \mathbb{F}_q^{\times}$ when $(n, q) \neq (2, 3)$.

1.20 Solvable groups and nilpotent groups

Definition 3. A finite group G is said to be **solvable** if there exist subgroups $G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_s = 1$ such that G_{i+1} is normal in G_i and such that G_i/G_{i+1} is abelian.

Remark 1. One can show that if G is solvable then the quotients above can be chosen to be cyclic of prime order.

Proposition 4. 1. If H is a normal subgroup of the finite group G such that G/H is abelian then $[G,G] \subset H$.

2. A finite group G is solvable iff the sequence of subgroups $G^0 = G$, $G^{i+1} = [G^i, G^i]$ terminates in $G^m = 1$ for some m.

Proof. (1): $G \to G/H$ factors through $G \to G^{ab} = G/[G,G] \to G/H$ so [G,G] is in the kernel of the projection map $G \to G/H$ so $[G, G] \subset H$.

(2): Next time.

1. S_3 is solvable taking $S_3 \triangleright A_3$. Example 5.

- 2. S_4 is solvable taking $S_4 \triangleright A_4 \triangleright (\mathbb{Z}/2\mathbb{Z})^2 \triangleright 1$.
- 3. The group B of upper triangular matrices in $\mathrm{GL}(n,R)$ is solvable, taking

4. The group A_5 is not solvable (and this has deep consequences in number theory). Indeed, $G^0 = A_4$, $G^1 = [A_5, A_5] = A_5$ and so $G^n = A_5$ always.