Graduate Algebra, Fall 2014
 Lecture 17

Andrei Jorza

2014-10-03

1 Group Theory

1.19 Duals (continued)

Proposition 1. Let G be a group.

1. $[G, G] \triangleleft G$ and G^{ab} is an abelian group.
2. If $f: G \rightarrow A$ is a homomorphism to an abelian group then there exists a homomorphism $\bar{f}: G^{\mathrm{ab}} \rightarrow A$ such that $G \rightarrow G^{\mathrm{ab}} \rightarrow A$ commutes.
3. $\operatorname{Hom}(G, A) \cong \operatorname{Hom}\left(G^{\mathrm{ab}}, A\right)$.
4. If G is finite then $\left(G^{\vee}\right)^{\vee} \cong G^{\mathrm{ab}}$.

Proof. The first part follows from $x[a, b] x^{-1}=\left[x a x^{-1}, x b x^{-1}\right]$.
Suppose $f: G \rightarrow A$ is a homomorphism. Then $[G, G] \subset \operatorname{ker} f$ and by the first isomorphism theorem we deduce the second part.

Third part: The map $f \mapsto \bar{f}$ gives the isomorphism.
Fourth part: By part (3) it suffices to show the statement for G abelian, in this case finite. Consider $G \rightarrow\left(G^{\vee}\right)^{\vee}$ sending g to $\phi_{g}: f \mapsto f(g)$ for $f \in G^{\vee}$. This is an injective homomorphism. Indeed, if $\phi_{g}(f)=0$ then $f(g)=0$ for all f. If $g \neq 1$ then consider the natural projection $G \rightarrow\langle g\rangle$ and send g to any nonzero element to get $f: G \rightarrow A$ such that $f(g) \neq 0$, getting a contradiction.

Example 2. 1. From the homework $\left[S_{n}, S_{n}\right]=\left[A_{n}, A_{n}\right]=A_{n}$ so $S_{n}^{\mathrm{ab}} \cong \mathbb{Z} / 2 \mathbb{Z}$ and $A_{n}^{\mathrm{ab}}=1$.
2. $\left[D_{2 n}, D_{2 n}\right]=\left\langle R^{2}\right\rangle$.
3. It is also the case that $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)^{\text {ab }} \cong \mathbb{F}_{q}^{\times}$when $(n, q) \neq(2,3)$.

1.20 Solvable groups and nilpotent groups

Definition 3. A finite group G is said to be solvable if there exist subgroups $G=G_{0} \triangleright G_{1} \triangleright \ldots \triangleright G_{s}=1$ such that G_{i+1} is normal in G_{i} and such that G_{i} / G_{i+1} is abelian.

Remark 1. One can show that if G is solvable then the quotients above can be chosen to be cyclic of prime order.

Proposition 4. 1. If H is a normal subgroup of the finite group G such that G / H is abelian then $[G, G] \subset$ H.
2. A finite group G is solvable iff the sequence of subgroups $G^{0}=G$, $G^{i+1}=\left[G^{i}, G^{i}\right]$ terminates in $G^{m}=1$ for some m.

Proof. (1): $G \rightarrow G / H$ factors through $G \rightarrow G^{\mathrm{ab}}=G /[G, G] \rightarrow G / H$ so $[G, G]$ is in the kernel of the projection map $G \rightarrow G / H$ so $[G, G] \subset H$.
(2): Next time.

Example 5. 1. S_{3} is solvable taking $S_{3} \triangleright A_{3}$.
2. S_{4} is solvable taking $S_{4} \triangleright A_{4} \triangleright(\mathbb{Z} / 2 \mathbb{Z})^{2} \triangleright 1$.
3. The group B of upper triangular matrices in $\operatorname{GL}(n, R)$ is solvable, taking

$$
\left\{\left(\begin{array}{cccc}
* & * & * & * \\
& * & * & * \\
& & * & * \\
& & & *
\end{array}\right)\right\} \triangleright\left\{\left(\begin{array}{cccc}
1 & * & * & * \\
& 1 & * & * \\
& & 1 & * \\
& & & 1
\end{array}\right)\right\} \triangleright\left\{\left(\begin{array}{cccc}
1 & 0 & * & * \\
& 1 & 0 & * \\
& & 1 & 0 \\
& & & 1
\end{array}\right)\right\} \triangleright \ldots \triangleright\left\{\left(\begin{array}{llll}
1 & & & * \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)\right\}
$$

4. The group A_{5} is not solvable (and this has deep consequences in number theory). Indeed, $G^{0}=A_{4}$, $G^{1}=\left[A_{5}, A_{5}\right]=A_{5}$ and so $G^{n}=A_{5}$ always.
