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1 Group Theory

1.3 Subgroups

Recall that for a group G and a ∈ G we defined ord(a) to be the smallest positive exponent of a that equals
the identity element, or infinity if no such exponent exists.

Example 1. The order of 2 in the multiplicative group (Z/15Z)× is 4 because 24 ≡ 1 (mod 15) but no
smaller exponent is 1.

Also we wrote 〈a〉 = {an|n ∈ Z} ⊂ G. If ord(a) =∞ this was the infinite cyclic group and if ord(a) = n
then 〈a〉 is a set of cardinality 1, consisting of {1, a, a2, . . . , an−1}.

Definition 2. A subgroup H of a group G is a subset of G, closed under multiplication in G, containing
the identity of G and such that every element of H has an inverse in H.

Proposition 3. Let G be a group and H a nonempty subset of G. Then H is a subgroup if and only if for
all a, b ∈ H, ab−1 ∈ H.

Proof. For a ∈ H, aa−1 = e ∈ H. For a ∈ H, ea−1 = a−1 ∈ H. For a, b ∈ H also b−1 ∈ H and so
ab = a(b−1)−1 ∈ H so H is a subgroup.

Definition 4. If X ⊂ G is a subset define 〈X〉 as the smallest subgroup of G containing X. For example
〈a〉 is the smallest subgroup of G containing a.

Example 5. Computing 〈X〉 is rarely easy, and most of the time relies on complicated combinatorics.

1. If m ∈ Z then 〈m〉 ⊂ (Z,+) is the set mZ = {km|k ∈ Z}.

2. If m,n ∈ Z such that (m,n) = 1 then by the Euclidean algorithm one can find p, q ∈ Z such that
pm+ qn = 1. Let H = 〈m,n〉. Since m,n ∈ H and H is a subgroup also pm+ qn = 1 ∈ H. But then
for all k ∈ Z also k = k · 1 ∈ H and so H = Z.

3. Here is a complicated example based on combinatorics that has applications in complex analysis. The
set SL(2,Z) of 2 × 2 matrices with determinant 1 and integer entries is a group (show this!). The

subgroup generated by the matrices

(
1 1
0 1

)
and

(
0 1
−1 0

)
is the entire group SL(2,Z).

4. You’ll see some more examples in the second homework.
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1.4 Symmetric groups and dihedral groups

1.4.1 Sn

Let Sn be the set of all bijective functions σ : {1, 2, . . . , n} → {1, 2, . . . , n}. Together with composition of
functions as a binary operator Sn is a group with unit the identity function. Elements of Sn are often written
as (

1 2 . . . n
σ(1) σ(2) . . . σ(n)

)
Multiplication of matrices can be done easily visually. Here is a self-explanatory example:(

1 2 3 4
3 4 2 1

)(
1 2 3 4
2 1 4 3

)
=

(
2 1 4 3
4 3 1 2

)(
1 2 3 4
2 1 4 3

)
=

(
1 2 3 4
4 3 1 2

)
Note that Sn−1 is a subgroup of Sn consisting of all permutations of {1, 2, . . . , n− 1}, fixing n.
On the homework you will show that Sn has cardinality |Sn| = n!.

1.4.2 D2n

Let P be a regular n-gon, whose vertices correspond to the n roots of unity of order n in C. Look at all
symmetries of P , i.e., all operations on P that preserve P but move its vertices around. Two: examples: R
is rotation counterclockwise by 2π/n and F is flip with respect to the x-axis.

Symmetries can be composed, in other words, applied sequentially. Thus F 2 is applying twice F and so
F 2 = 1 where 1 is the identity map. Moreover Rn is rotation by 2π and again this is the identity map so
Rn = 1. Also see that RF = FR−1 = FRn−1. The group D2n is generated by R and F and consists of

D2n = {1, R, . . . , Rn−1, F, FR, . . . , FRn−1}

Using Rn = 1, F 2 = 1, RF = FRn−1 it is clear that any combination of rotations and flips can be written
as Rk or FRk and so D2n has cardinality |D2n| = 2n.

Note that D2n is a noncommutative group (when n ≥ 3) of order 2n which contains the cyclic group 〈R〉
of order n.

1.4.3 Cycles in Sn

Definition 6. A cycle (i1, . . . , ik) is a permutation σ ∈ Sn such that σ(j) = j for j /∈ {i1, . . . , ik}, σ(iu) =
iu+1 for u < k and σ(ik) = i1. The length of a cycle is |(i1, . . . , ik)| = k. A cycle of length 2 is (ij), only flips
i and j and is called a transposition. All cycles of length 1 are equal to the identity element and instead of
(i) we simply write ().

Two cycles c1 = (i1, . . . , ik) and c2 = (j1, . . . , js) are said to be disjoint if iu 6= jv for all u, v.

Proposition 7. 1. If c1, c2 are disjoint cycles then c1c2 = c2c1.

2. A cycle c = (i1, . . . , ik) of length k has order k.

3. (i1, . . . , ik) = (i1i2)(i2i3) · · · (ik−1ik).

4. Every σ ∈ Sn can be written as a product σ = c1 · · · ck where ci are disjoint cycles. This expression is
unique up to permuting the order of the cycles.

5. Every σ ∈ Sn can be written as a product of transpositions, but no uniquely.
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Proof. Most are straightforward, but let me show the fact that permutations are products of disjoint cycles.
Here is an algorithm. Start with a1 = 1 and construct the cycle c1 = (a1, σ(a1), σ2(a1), . . .). Let a2 be the
smallest number between 1 and n that does not appear in c1 and let c2 = (a2, σ(a2), σ2(a2), . . .). Once you
have c1, . . . , cj define aj+1 as the smallest number between 1 and n not appearing in c1∪ . . . cj and construct
cj+1 = (aj+1, σ(aj+1), . . .). This way you exhaust all the integers between 1 and n.

Lets show that ci and cj are disjoint for i < j. Suppose σu(ai) = σv(aj). Then σu−v(ai) = aj which
contradicts the choice of aj as not appearing in ci, which contains all σr(ai) for r ≥ 0.

It is now not difficult to show that σ = c1c2 · · · ck.
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