Graduate Algebra, Fall 2014
Lecture 2

Andrei Jorza

2014-08-29

1 Group Theory

1.3 Subgroups

Recall that for a group G and a € G we defined ord(a) to be the smallest positive exponent of a that equals
the identity element, or infinity if no such exponent exists.

Example 1. The order of 2 in the multiplicative group (Z/15Z)* is 4 because 2* = 1 (mod 15) but no
smaller exponent is 1.

Also we wrote (a) = {a"|n € Z} C G. If ord(a) = oo this was the infinite cyclic group and if ord(a) =n
then (a) is a set of cardinality 1, consisting of {1,a,a?,...,a" '}.

Definition 2. A subgroup H of a group G is a subset of G, closed under multiplication in G, containing
the identity of G and such that every element of H has an inverse in H.

Proposition 3. Let G be a group and H a nonempty subset of G. Then H is a subgroup if and only if for
ala,be H, ab~! € H.

Proof. For a € H, aa ' = e € H. Fora € H, ea™ = a~! € H. For a,b € H also b~! € H and so
ab=a(b=1)"! € H so H is a subgroup. O

Definition 4. If X C G is a subset define (X) as the smallest subgroup of G containing X. For example
(a) is the smallest subgroup of G' containing a.

Example 5. Computing (X) is rarely easy, and most of the time relies on complicated combinatorics.
1. If m € Z then (m) C (Z,+) is the set mZ = {km|k € Z}.

2. If m,n € Z such that (m,n) = 1 then by the Euclidean algorithm one can find p,q € Z such that
pm+qgn =1. Let H = (m,n). Since m,n € H and H is a subgroup also pm + gn =1 € H. But then
forall k€ Z alsok=k-1€ H and so H = Z.

3. Here is a complicated example based on combinatorics that has applications in complex analysis. The
set SL(2,Z) of 2 x 2 matrices with determinant 1 and integer entries is a group (show this!). The

subgroup generated by the matrices ((1) i) and (_01 (1)> is the entire group SL(2,Z).

4. You'll see some more examples in the second homework.



1.4 Symmetric groups and dihedral groups
1.4.1 S,

Let S, be the set of all bijective functions o : {1,2,...,n} — {1,2,...,n}. Together with composition of
functions as a binary operator S, is a group with unit the identity function. Elements of S,, are often written

as
1 2 .. n
o) o(2) ... o)
Multiplication of matrices can be done easily visually. Here is a self-explanatory example:
1 2 3 4\(/1 2 3 4\ (2 1 4 3\ (1 2 3 4\ (1 2 3 4
34 2 1)J\2 14 3/ \4 31 2/\2 143/ \4 31 2
Note that S,,_; is a subgroup of S, consisting of all permutations of {1,2,...,n — 1}, fixing n.
On the homework you will show that S,, has cardinality |S,| = n!l.
1.4.2 Dy,

Let P be a regular n-gon, whose vertices correspond to the n roots of unity of order n in C. Look at all
symmetries of P, i.e., all operations on P that preserve P but move its vertices around. Two: examples: R
is rotation counterclockwise by 27 /n and F is flip with respect to the z-axis.

Symmetries can be composed, in other words, applied sequentially. Thus F? is applying twice F and so
F? = 1 where 1 is the identity map. Moreover R" is rotation by 27 and again this is the identity map so
R™ = 1. Also see that RF = FR™! = FR"!. The group Dy, is generated by R and F and consists of

Dy, ={1l,R,...,R" ' F,FR,...,FR" !}

Using R* = 1,F? = 1, RF = FR" ! it is clear that any combination of rotations and flips can be written
as R* or FR* and so Ds, has cardinality |Dy,| = 2n.

Note that Da,, is a noncommutative group (when n > 3) of order 2n which contains the cyclic group (R)
of order n.

1.4.3 Cyecles in 5,

Definition 6. A cycle (iy,...,i) is a permutation o € S,, such that o(j) = j for j ¢ {i1,...,ir}, 0(in) =
iyt+1 for u < k and o (i) = 1. The length of a cycle is |(i1,...,ik)| = k. A cycle of length 2 is (ij), only flips
7 and j and is called a transposition. All cycles of length 1 are equal to the identity element and instead of
(i) we simply write ().

Two cycles ¢ = (i1,...,1;) and ¢ = (j1,...,Js) are said to be disjoint if i,, # j, for all u,v.
Proposition 7. 1. If ¢1,co are disjoint cycles then cico = cacy.

2. A cycle c = (i1,...,ik) of length k has order k.

3. (i1,...,1k) = (i192)(G283) - - - (ik—17k)-

4. Bvery o € S, can be written as a product o = c1 - - - ¢, where ¢; are disjoint cycles. This expression is
unique up to permuting the order of the cycles.

5. Every o € S,, can be written as a product of transpositions, but no uniquely.



Proof. Most are straightforward, but let me show the fact that permutations are products of disjoint cycles.
Here is an algorithm. Start with a; = 1 and construct the cycle ¢; = (a1,0(a1),02(a1),...). Let az be the
smallest number between 1 and n that does not appear in ¢; and let co = (as,0(az),0?(as),...). Once you
have ¢y, ..., c; define a;4; as the smallest number between 1 and n not appearing in ¢; U. .. ¢; and construct
¢jt1 = (ajq1,0(aj41),...). This way you exhaust all the integers between 1 and n.

Lets show that ¢; and ¢; are disjoint for ¢ < j. Suppose c"(a;) = 0¥(a;). Then 6%7¥(a;) = a; which
contradicts the choice of a; as not appearing in ¢;, which contains all ¢"(a;) for r > 0.

It is now not difficult to show that o = ¢jco - - - ¢y. O]



