Graduate Algebra, Fall 2014
 Lecture 2

Andrei Jorza

2014-08-29

1 Group Theory

1.3 Subgroups

Recall that for a group G and $a \in G$ we defined $\operatorname{ord}(a)$ to be the smallest positive exponent of a that equals the identity element, or infinity if no such exponent exists.

Example 1. The order of 2 in the multiplicative group $(\mathbb{Z} / 15 \mathbb{Z})^{\times}$is 4 because $2^{4} \equiv 1(\bmod 15)$ but no smaller exponent is 1 .

Also we wrote $\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\} \subset G$. If ord $(a)=\infty$ this was the infinite cyclic group and if ord $(a)=n$ then $\langle a\rangle$ is a set of cardinality 1 , consisting of $\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$.

Definition 2. A subgroup H of a group G is a subset of G, closed under multiplication in G, containing the identity of G and such that every element of H has an inverse in H.

Proposition 3. Let G be a group and H a nonempty subset of G. Then H is a subgroup if and only if for all $a, b \in H, a b^{-1} \in H$.

Proof. For $a \in H, a a^{-1}=e \in H$. For $a \in H$, $e a^{-1}=a^{-1} \in H$. For $a, b \in H$ also $b^{-1} \in H$ and so $a b=a\left(b^{-1}\right)^{-1} \in H$ so H is a subgroup.

Definition 4. If $X \subset G$ is a subset define $\langle X\rangle$ as the smallest subgroup of G containing X. For example $\langle a\rangle$ is the smallest subgroup of G containing a.

Example 5. Computing $\langle X\rangle$ is rarely easy, and most of the time relies on complicated combinatorics.

1. If $m \in \mathbb{Z}$ then $\langle m\rangle \subset(\mathbb{Z},+)$ is the set $m \mathbb{Z}=\{k m \mid k \in \mathbb{Z}\}$.
2. If $m, n \in \mathbb{Z}$ such that $(m, n)=1$ then by the Euclidean algorithm one can find $p, q \in \mathbb{Z}$ such that $p m+q n=1$. Let $H=\langle m, n\rangle$. Since $m, n \in H$ and H is a subgroup also $p m+q n=1 \in H$. But then for all $k \in \mathbb{Z}$ also $k=k \cdot 1 \in H$ and so $H=\mathbb{Z}$.
3. Here is a complicated example based on combinatorics that has applications in complex analysis. The set $\operatorname{SL}(2, \mathbb{Z})$ of 2×2 matrices with determinant 1 and integer entries is a group (show this!). The subgroup generated by the matrices $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ is the entire group $\mathrm{SL}(2, \mathbb{Z})$.
4. You'll see some more examples in the second homework.

1.4 Symmetric groups and dihedral groups

1.4.1 S_{n}

Let S_{n} be the set of all bijective functions $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$. Together with composition of functions as a binary operator S_{n} is a group with unit the identity function. Elements of S_{n} are often written as

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n)
\end{array}\right)
$$

Multiplication of matrices can be done easily visually. Here is a self-explanatory example:

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)=\left(\begin{array}{llll}
2 & 1 & 4 & 3 \\
4 & 3 & 1 & 2
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{array}\right)
$$

Note that S_{n-1} is a subgroup of S_{n} consisting of all permutations of $\{1,2, \ldots, n-1\}$, fixing n.
On the homework you will show that S_{n} has cardinality $\left|S_{n}\right|=n!$.

1.4.2 $D_{2 n}$

Let P be a regular n-gon, whose vertices correspond to the n roots of unity of order n in \mathbb{C}. Look at all symmetries of P, i.e., all operations on P that preserve P but move its vertices around. Two: examples: R is rotation counterclockwise by $2 \pi / n$ and F is flip with respect to the x-axis.

Symmetries can be composed, in other words, applied sequentially. Thus F^{2} is applying twice F and so $F^{2}=1$ where 1 is the identity map. Moreover R^{n} is rotation by 2π and again this is the identity map so $R^{n}=1$. Also see that $R F=F R^{-1}=F R^{n-1}$. The group $D_{2 n}$ is generated by R and F and consists of

$$
D_{2 n}=\left\{1, R, \ldots, R^{n-1}, F, F R, \ldots, F R^{n-1}\right\}
$$

Using $R^{n}=1, F^{2}=1, R F=F R^{n-1}$ it is clear that any combination of rotations and flips can be written as R^{k} or $F R^{k}$ and so $D_{2 n}$ has cardinality $\left|D_{2 n}\right|=2 n$.

Note that $D_{2 n}$ is a noncommutative group (when $n \geq 3$) of order $2 n$ which contains the cyclic group $\langle R\rangle$ of order n.

1.4.3 Cycles in S_{n}

Definition 6. A cycle $\left(i_{1}, \ldots, i_{k}\right)$ is a permutation $\sigma \in S_{n}$ such that $\sigma(j)=j$ for $j \notin\left\{i_{1}, \ldots, i_{k}\right\}, \sigma\left(i_{u}\right)=$ i_{u+1} for $u<k$ and $\sigma\left(i_{k}\right)=i_{1}$. The length of a cycle is $\left|\left(i_{1}, \ldots, i_{k}\right)\right|=k$. A cycle of length 2 is $(i j)$, only flips i and j and is called a transposition. All cycles of length 1 are equal to the identity element and instead of (i) we simply write ().

Two cycles $c_{1}=\left(i_{1}, \ldots, i_{k}\right)$ and $c_{2}=\left(j_{1}, \ldots, j_{s}\right)$ are said to be disjoint if $i_{u} \neq j_{v}$ for all u, v.
Proposition 7. 1. If c_{1}, c_{2} are disjoint cycles then $c_{1} c_{2}=c_{2} c_{1}$.
2. A cycle $c=\left(i_{1}, \ldots, i_{k}\right)$ of length k has order k.
3. $\left(i_{1}, \ldots, i_{k}\right)=\left(i_{1} i_{2}\right)\left(i_{2} i_{3}\right) \cdots\left(i_{k-1} i_{k}\right)$.
4. Every $\sigma \in S_{n}$ can be written as a product $\sigma=c_{1} \cdots c_{k}$ where c_{i} are disjoint cycles. This expression is unique up to permuting the order of the cycles.
5. Every $\sigma \in S_{n}$ can be written as a product of transpositions, but no uniquely.

Proof. Most are straightforward, but let me show the fact that permutations are products of disjoint cycles. Here is an algorithm. Start with $a_{1}=1$ and construct the cycle $c_{1}=\left(a_{1}, \sigma\left(a_{1}\right), \sigma^{2}\left(a_{1}\right), \ldots\right)$. Let a_{2} be the smallest number between 1 and n that does not appear in c_{1} and let $c_{2}=\left(a_{2}, \sigma\left(a_{2}\right), \sigma^{2}\left(a_{2}\right), \ldots\right)$. Once you have c_{1}, \ldots, c_{j} define a_{j+1} as the smallest number between 1 and n not appearing in $c_{1} \cup \ldots c_{j}$ and construct $c_{j+1}=\left(a_{j+1}, \sigma\left(a_{j+1}\right), \ldots\right)$. This way you exhaust all the integers between 1 and n.

Lets show that c_{i} and c_{j} are disjoint for $i<j$. Suppose $\sigma^{u}\left(a_{i}\right)=\sigma^{v}\left(a_{j}\right)$. Then $\sigma^{u-v}\left(a_{i}\right)=a_{j}$ which contradicts the choice of a_{j} as not appearing in c_{i}, which contains all $\sigma^{r}\left(a_{i}\right)$ for $r \geq 0$.

It is now not difficult to show that $\sigma=c_{1} c_{2} \cdots c_{k}$.

