Graduate Algebra, Fall 2014 Lecture 20

Andrei Jorza

2014-10-10

1 Group Theory

1.21 Limits (continued)

1.21.1 Direct limits (continued)

Theorem 1 (Direct limits = categorical colimits). The **direct limit** $\varinjlim G_u$ of the directed system (G_u) satisfies the following universal property: for any group H and homomorphisms $\phi_u : G_u \to H$ commuting with the ι_{uv} , there exists a homomorphism $\phi : \varinjlim G_u \to H$ such that $\phi_u = \phi \circ \iota_u$ where $\iota_u : G_u \to \varinjlim G_u$ is the natural inclusion homomorphism.

The direct limit of a directed system of groups is uniquely defined by this universal property.

Proof. Define $\phi : G \to H$ as follows: pick $g_u \in G_u \subset G$ and let $\phi(g_u) := \phi_u(g_u)$. Since $g_u = \iota_{uv}(g_u)$ this definition makes sense because $\phi_u(g_u) = \phi_v(\iota_{uv}(g_u))$ and the map ϕ is a homomorphism. \Box

Example 2. From last time $\varinjlim p^{-n}\mathbb{Z} \cong \mathbb{Q}_{(p^{\infty})}$. Consider $\phi_n : p^{-n}\mathbb{Z} \to \mathbb{Q}$ sending ap^{-n} to $2ap^{-n}$. These homomorphisms commute with all $\iota_{m,n}$ and so they come from some homomorphism $\mathbb{Q}_{(p^{\infty})} \to \mathbb{Q}$. Indeed this homomorphism is simple multiplication by 2.

1.21.2 Inverse limits

Definition 3. Let *I* be a directed set. An **inverse system** of groups is a collection $\{G_u\}_{u \in I}$ together with homomorphisms $\pi_{vu} : G_v \to G_u$ for $u \leq v$, such that

- 1. $\pi_{uu} = \mathrm{id}$
- 2. If u < v < w then $\pi_{wu} = \pi_{vu} \circ \pi_{wv}$
- **Example 4.** 1. $I = \mathbb{Z}_{\geq 0}$ with usual order. $G_n = \mathbb{C}[X]_n$ are polynomials in degree $\leq n$. The maps $\pi_{m,n}$ from degree m to degree $n \leq m$ simply truncates polynomials. This is an inverse system.
 - 2. $I = \mathbb{Z}_{\geq 1}$ with $m \leq n$ iff $m \mid n$. Then $G_m = \mathbb{Z}/m\mathbb{Z}$ with $\pi_{m,n}(x) = x \mod n$ when $n \leq m$ gives an inverse system.

Theorem 5 (Inverse limits = categorical limits). An inverse limit of the inverse system G_u is a group $\lim_{u \to 0} G_u$ together with homomorphisms $\pi_u : \lim_{u \to 0} G_u \to G_u$, with the following universal property: for any group H and homomorphisms $\phi_u : H \to G_u$ commuting with the π_{vu} , there exists a homomorphism $\phi : H \to \lim_{u \to 0} G_u$ such that $\phi_u = \pi_u \circ \phi$.

Inverse limits of groups exist and are unique.

Proof. Let $G = \{(g_i) | g_i \in G_i, f_{ji}(g_j) = g_i, \forall i < j\}$. This is a group. How to construct ϕ ? Let $\phi(h) = (\phi_u(h)) \in \prod G_u$. It's easy to check that in fact $\phi(h) \in \varprojlim G_u$ and that it is a homomorphism since all ϕ_u are.

Example 6. 1. $\lim G$ with all transition maps being the identity map is $\cong G$.

- 2. $\mathbb{C}\llbracket X \rrbracket = \varprojlim \mathbb{C}[X]_n$.
- 3. For $m \ge n$, consider $\pi_{m,n} : \mathbb{Z}/p^m\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ sending x to $x \mod p^n$. Then $\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n\mathbb{Z}$ is the group of p-adic integers.
- 4. For $m \mid n$ consider $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ sending x to $x \mod m$. Then $\widehat{\mathbb{Z}} := \varprojlim \mathbb{Z}/n\mathbb{Z}$. [It turns out that the Galois group of every finite field is $\cong \widehat{\mathbb{Z}}$.]

Example 7. An example of the universal property. Consider H the group of power series with coefficients in \mathbb{C} and constant coefficient 1, under multiplication. Let $\phi_n : H \to \mathbb{C}[X]_n$ such that

$$\phi_n(1 + Xf(X)) = \text{truncation of } \sum_{i=1}^n \frac{(-1)^{i-1}(Xf(X))^i}{i}$$

This turns out to be a homomorphism. What is ϕ ? It is

$$\phi(1 + Xf(X)) = \sum_{i \ge 1} \frac{(-1)^{i-1} (Xf(X))^i}{i} = \log(1 + Xf(X))$$

which is a homomorphism from H to $\mathbb{C}[\![X]\!]$.