Graduate Algebra, Fall 2014 Lecture 21

Andrei Jorza

2014-10-13

1 Group Theory

1.21 Limits (continued)

1.21.2 Inverse limits (continued)

Proposition 1. Have $\widehat{\mathbb{Z}} \cong \prod_{p \text{ prime}} \mathbb{Z}_p$.

Proof. For p prime and n integer write n_p for the power of p in n. For $x = (x_{p^n}) \in \mathbb{Z}_p$ write

$$x \mod n = \begin{cases} x_{p^{n_p}} & n_p > 0\\ 1 & n_p = 0 \end{cases}$$

This is clearly a homomorphism $\mathbb{Z}_p \to \mathbb{Z}/p^{n_p}\mathbb{Z}$. The Chinese Remainder Theorem tells us that $\mathbb{Z}/n\mathbb{Z} \cong \prod_p \mathbb{Z}/p^{n_p}\mathbb{Z}$ and we consider $x \mapsto x \mod n$ as the homomorphism $\mathbb{Z}_p \to \mathbb{Z}/p^{n_p}\mathbb{Z} \hookrightarrow \mathbb{Z}/n\mathbb{Z}$.

Consider the homomorphism $\prod \mathbb{Z}_p \to \mathbb{Z}/n\mathbb{Z}$ sending $\prod_p x_p$ to $\prod(x_p \mod n)$. This is a finite product since for $p \nmid n$ we have the convention that $x_p \mod n = 1$. The homomorphism also commutes with the projections $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ for $n \mid m$ and so we get a homomorphism $\prod \mathbb{Z}_p \to \widehat{\mathbb{Z}}$ from the universal property.

Going in the other direction, have a homomorphism $\mathbb{Z} \to \prod \mathbb{Z}_p$ sending (x_n) to $\prod_p(x_{p^k})$. These to homomorphisms are inverses to each other and so they provide an isomorphism.

1.21.3 Duality

Proposition 2. Suppose $\{G_u\}$ is a direct system of groups and H is an abelian group. Then

- 1. $\{Hom(G_u, H)\}$ forms an inverse system of groups and
- 2. $\lim \operatorname{Hom}(G_u, H) \cong \operatorname{Hom}(\lim G_u, H).$

Proof. Define $\pi_{v,u}(f_v) = f_v \circ \iota_{u,v}$ to form the inverse system. An element of $\varprojlim \operatorname{Hom}(G_u, H)$ is a tuple (ϕ_u) for $\phi_u : H \to G_u$ such that $\pi_{v,u} \circ \phi_v = \phi_u$. But by definition this is $\phi_v \circ \iota_{u,v} = \phi_u$ and so by the universal property of direct limits this is equivalent to giving $\phi : \varinjlim G_u \to H$ such that $\phi_u = \phi \circ \iota_u$. Thus we have a bijective homomorphism between $\varprojlim \operatorname{Hom}(G_u, H)$ and $\operatorname{Hom}(\varinjlim G_u, H)$.

1.22 Topological groups

Definition 3. A topological group is a group G endowed with a topology wrt which multiplication $m: G \times G \to G$ and inversion $i: G \to G$ are continuous maps. (Here $G \times G$ carries the product topology.)

Example 4. 1. Every group is topological wrt the discrete topology.

- 2. $S^1 \cong \mathbb{R}/\mathbb{Z}$ is a topological group wrt topology on \mathbb{C} .
- 3. \mathbb{R} with + and the usual topology is a topological group.